Jump to content

NASA Unveils Design for Message Heading to Jupiter’s Moon Europa


Recommended Posts

  • Publishers
Posted
This side of a commemorative plate mounted on NASA’s Europa Clipper spacecraft features U.S. Poet Laureate Ada Limón’s handwritten “In Praise of Mystery: A Poem for Europa.” It will be affixed with a silicon microchip stenciled with names submitted by the public.
This side of a commemorative plate mounted on NASA’s Europa Clipper spacecraft features U.S. Poet Laureate Ada Limón’s handwritten “In Praise of Mystery: A Poem for Europa.” It will be affixed with a silicon microchip stenciled with names submitted by the public.
NASA/JPL-Caltech

When it launches in October, the agency’s Europa Clipper spacecraft will carry a richly layered dispatch that includes more than 2.6 million names submitted by the public.

Following in NASA’s storied tradition of sending inspirational messages into space, the agency has special plans for Europa Clipper, which later this year will launch toward Jupiter’s moon Europa. The moon shows strong evidence of an ocean under its icy crust, with more than twice the amount of water of all of Earth’s oceans combined. A triangular metal plate on the spacecraft will honor that connection to Earth in several ways.

At the heart of the artifact is an engraving of U.S. Poet Laureate Ada Limón’s handwritten “In Praise of Mystery: A Poem for Europa,” along with a silicon microchip stenciled with more than 2.6 million names submitted by the public. The microchip will be the centerpiece of an illustration of a bottle amid the Jovian system – a reference to NASA’s “Message in a Bottle” campaign, which invited the public to send their names with the spacecraft.

A ‘Golden Record’ for Europa

Made of the metal tantalum and about 7 by 11 inches (18 by 28 centimeters), the plate features graphic elements on both sides. The outward-facing panel features art that highlights Earth’s connection to Europa. Linguists collected recordings of the word “water” spoken in 103 languages, from families of languages around the world. The audio files were converted into waveforms (visual representations of sound waves) and etched into the plate. The waveforms radiate out from a symbol representing the American Sign Language sign for “water.”

To hear audio of the spoken languages and see the sign, go to: go.nasa.gov/MakeWaves.

In the spirit of the Voyager spacecraft’s Golden Record, which carries sounds and images to convey the richness and diversity of life on Earth, the layered message on Europa Clipper aims to spark the imagination and offer a unifying vision.

e1-pia26063.audio-waveform-side-new.jpg?
The art on this side of the plate, which will seal an opening of the vault on NASA’s Europa Clipper, features waveforms that are visual representations of the sound waves formed by the word “water” in 103 languages. At center is a symbol representing the American Sign Language sign for “water.”
NASA/JPL-Caltech

“The content and design of Europa Clipper’s vault plate are swimming with meaning,” said Lori Glaze, director of the Planetary Science Division at NASA Headquarters in Washington. “The plate combines the best humanity has to offer across the universe – science, technology, education, art, and math. The message of connection through water, essential for all forms of life as we know it, perfectly illustrates Earth’s tie to this mysterious ocean world we are setting out to explore.”

Reaching Out to the Cosmos

In 2030, after a 1.6-billion-mile (2.6-billion-kilometer) journey, Europa Clipper will begin orbiting Jupiter, making 49 close flybys of Europa. To determine if there are conditions that could support life, the spacecraft’s powerful suite of science instruments will gather data about the moon’s subsurface ocean, icy crust, thin atmosphere, and space environment. The electronics for those instruments are housed in a massive metal vault designed to protect them from Jupiter’s punishing radiation. The commemorative plate will seal an opening in the vault.

Because searching for habitable conditions is central to the mission, the Drake Equation is etched onto the plate as well – on the inward-facing side. Astronomer Frank Drake developed the mathematical formulation in 1961 to estimate the possibility of finding advanced civilizations beyond Earth. The equation has inspired and guided research in astrobiology and related fields ever since.

Learn more about how Europa Clipper’s vault plate engravings were designed and the inspiration for the plate’s multilayered message. Credit: NASA/JPL-Caltech

In addition, artwork on the inward-facing side of the plate will include a reference to the radio frequencies considered plausible for interstellar communication, symbolizing how humanity uses this radio band to listen for messages from the cosmos. These particular frequencies match the radio waves emitted in space by the components of water and are known by astronomers as the “water hole.” On the plate, they are depicted as radio emission lines.

Finally, the plate includes a portrait of one of the founders of planetary science, Ron Greeley, whose early efforts to develop a Europa mission two decades ago laid the foundation for Europa Clipper.

“We’ve packed a lot of thought and inspiration into this plate design, as we have into this mission itself,” says Project Scientist Robert Pappalardo of NASA’s Jet Propulsion Laboratory in Southern California. “It’s been a decades-long journey, and we can’t wait to see what Europa Clipper shows us at this water world.”

Once assembly of Europa Clipper has been completed at JPL, the spacecraft will be shipped to NASA’s Kennedy Space Center in Florida in preparation for its October launch.

More About the Mission

Europa Clipper’s main science goal is to determine whether there are places below Jupiter’s icy moon, Europa, that could support life. The mission’s three main science objectives are to determine the thickness of the moon’s icy shell and its surface interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.

Find more information about Europa here:

europa.nasa.gov

News Media Contacts

Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-6215
gretchen.p.mccartney@jpl.nasa.gov

Karen Fox / Alana Johnson
NASA Headquarters, Washington
301-286-6284 / 202-358-1501
karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov

2024-024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross When you’re testing a cutting-edge NASA aircraft, you need specialized tools to conduct tests and capture data –but if those tools need maintenance, you need to wait until they’re fixed. Unless you have a backup. That’s why NASA recently calibrated a new shock-sensing probe to capture shock wave data when the agency’s X-59 quiet supersonic research aircraft begins its test flights.
      When an aircraft flies faster than the speed of sound, it produces shock waves that travel through the air, creating loud sonic booms. The X-59 will divert those shock waves, producing just a quiet supersonic thump. Over the past few weeks, NASA completed calibration flights on a new near-field shock-sensing probe, a cone-shaped device that will capture data on the shock waves that the X-59 will generate.
      This shock-sensing probe is mounted to an F-15D research aircraft that will fly very close behind the X-59 to collect the data NASA needs. The new unit will serve as NASA’s primary near-field probe, with an identical model NASA developed last year acting as a backup mounted to an additional F-15B.
      The two units mean the X-59 team has a ready alternative if the primary probe needs maintenance or repairs. For flight tests like the X-59’s – where data gathering is crucial and operations revolve around tight timelines, weather conditions, and other variables – backups for critical equipment help to ensure continuity, maintain schedule, and preserve efficiency of operations.
      “If something happens to the probe, like a sensor failing, it’s not a quick fix,” said Mike Frederick, principal investigator for the probe at NASA’s Armstrong Flight Research Center in Edwards, California. “The other factor is the aircraft itself. If one needs maintenance, we don’t want to delay X-59 flights.”
      To calibrate the new probe, the team measured the shock waves of a NASA F/A-18 research aircraft. Preliminary results indicated that the probe successfully captured pressure changes associated with shock waves, consistent with the team’s expectations. Frederick and his team are now reviewing the data to confirm that it aligns with ground mathematical models and meets the precision standards required for X-59 flights.
      Researchers at NASA Armstrong are preparing for additional flights with both the primary and backup probes on their F-15s. Each aircraft will fly supersonic and gather shock wave data from the other. The team is working to validate both the primary and backup probes to confirm full redundancy – in other words, making sure that they have a reliable backup ready to go.
      Share
      Details
      Last Updated Apr 17, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Commercial Supersonic Technology Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 20 hours ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 2 days ago 3 min read Going Home: NASA Retires S-3B Viking to POW/MIA Museum
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA researchers are sending three air quality monitors to the International Space Station to test them for potential future use on the Moon.Credit: NASA/Sara Lowthian-Hanna As NASA prepares to return to the Moon, studying astronaut health and safety is a top priority. Scientists monitor and analyze every part of the International Space Station crew’s daily life—down to the air they breathe. These studies are helping NASA prepare for long-term human exploration of the Moon and, eventually, Mars.

      As part of this effort, NASA’s Glenn Research Center in Cleveland is sending three air quality monitors to the space station to test them for potential future use on the Moon. The monitors are slated to launch on Monday, April 21, aboard the 32nd SpaceX commercial resupply services mission for NASA.

      Like our homes here on Earth, the space station gets dusty from skin flakes, clothing fibers, and personal care products like deodorant. Because the station operates in microgravity, particles do not have an opportunity to settle and instead remain floating in the air. Filters aboard the orbiting laboratory collect these particles to ensure the air remains safe and breathable.

      Astronauts will face another air quality risk when they work and live on the Moon—lunar dust.
      “From Apollo, we know lunar dust can cause irritation when breathed into the lungs,” said Claire Fortenberry, principal investigator, Exploration Aerosol Monitors project, NASA Glenn. “Earth has weather to naturally smooth dust particles down, but there is no atmosphere on the Moon, so lunar dust particles are sharper and craggier than Earth dust. Lunar dust could potentially impact crew health and damage hardware.”

      Future space stations and lunar habitats will need monitors capable of measuring lunar dust to ensure air filtration systems are functioning properly. Fortenberry and her team selected commercially available monitors for flight and ground demonstration to evaluate their performance in a spacecraft environment, with the goal of providing a dust monitor for future exploration systems.
      NASA Glenn Research Center’s Claire Fortenberry holds a dust sample collected from International Space Station air filters.Credit: NASA/Sara Lowthian-Hanna Glenn is sending three commercial monitors to the space station to test onboard air quality for seven months. All three monitors are small: no bigger than a shoe box. Each one measures a specific property that provides a snapshot of the air quality aboard the station. Researchers will analyze the monitors based on weight, functionality, and ability to accurately measure and identify small concentrations of particles in the air.

      The research team will receive data from the space station every two weeks. While those monitors are orbiting Earth, Fortenberry will have three matching monitors at Glenn. Engineers will compare functionality and results from the monitors used in space to those on the ground to verify they are working as expected in microgravity. Additional ground testing will involve dust simulants and smoke.

      Air quality monitors like the ones NASA is testing also have Earth-based applications. The monitors are used to investigate smoke plumes from wildfires, haze from urban pollution, indoor pollution from activities like cooking and cleaning, and how virus-containing droplets spread within an enclosed space.

      Results from the investigation will help NASA evaluate which monitors could accompany astronauts to the Moon and eventually Mars. NASA will allow the manufacturers to review results and ensure the monitors work as efficiently and effectively as possible. Testing aboard the space station could help companies investigate pollution problems here on Earth and pave the way for future missions to the Red Planet.
      NASA Glenn Research Center’s Claire Fortenberry demonstrates how space aerosol monitors analyze the quality of the air.Credit: NASA/Sara Lowthian-Hanna “Going to the Moon gives us a chance to monitor for planetary dust and the lunar environment,” Fortenberry said. “We can then apply what we learn from lunar exploration to predict how humans can safely explore Mars.”
      NASA commercial resupply missions to the International Space Station deliver scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, significantly increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      Learn more about NASA and SpaceX’s 32nd commercial resupply mission to the space station:
      https://www.nasa.gov/nasas-spacex-crs-32/
      Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 17 hours ago 4 min read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
      Article 1 day ago 1 min read Recognizing Employee Excellence 
      Article 1 day ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      One of several NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation sits in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.NASA/Genaro Vavuris NASA engineers began using a network of ground sensors in March to collect data from an experimental air taxi to evaluate how to safely integrate such vehicles into airspace above cities – in all kinds of weather.
      Researchers will use the campaign to help improve tools to assist with collision avoidance and landing operations and ensure safe and efficient air taxi operations in various weather conditions.
      For years, NASA has looked at how wind shaped by terrain, including buildings in urban areas, can affect new types of aircraft. The latest test, which is gathering data from a Joby Aviation demonstrator aircraft, looks at another kind of wind – that which is generated by the aircraft themselves.
      Joby flew its air taxi demonstrator over NASA’s ground sensor array near the agency’s Armstrong Flight Research Center in Edwards, California producing air flow data. The Joby aircraft has six rotors that allow for vertical takeoffs and landings, and tilt to provide lift in flight. Researchers focused on the air pushed by the propellers, which rolls into turbulent, circular patterns of wind.
      NASA aeronautical meteorologist Luke Bard adjusts one of several wind lidar (light detection and ranging) sensors near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025, in preparation to collect data from Joby Aviation’s experimental air taxi aircraft. NASA is collecting information during this study to help advance weather-tolerant air taxi operations for the entire industryNASA/Genaro Vavuris This rolling wind can affect the aircraft’s performance, especially when it’s close to the ground, as well as others flying in the vicinity and people on the ground. Such wind turbulence is difficult to measure, so NASA enhanced its sensors with a new type of lidar – a system that uses lasers to measure precise distances – and that can map out the shapes of wind features.
      “The design of this new type of aircraft, paired with the NASA lidar technology during this study, warrants a better understanding of possible wind and turbulence effects that can influence safe and efficient flights,” said Grady Koch, lead for this research effort, from NASA’s Langley Research Center in Hampton, Virginia.
      Data to Improve Aircraft Tracking
      NASA also set up a second array of ground nodes including radar, cameras, and microphones in the same location as the sensors to provide additional data on the aircraft. These nodes will collect tracking data during routine flights for several months.
      The agency will use the data gathered from these ground nodes to demonstrate the tracking capabilities and functions of its “distributed sensing” technology, which involves embedding multiple sensors in an area where aircraft are operating.
      One of multiple NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation hovers in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.NASA/Genaro Vavuris This technology will be important for future air taxi flights, especially those occurring in cities by tracking aircraft moving through traffic corridors and around landing zones. Distributed sensing has the potential to enhance collision avoidance systems, air traffic management, ground-based landing sensors, and more.
      “Our early work on a distributed network of sensors, and through this study, gives us the opportunity to test new technologies that can someday assist in airspace monitoring and collision avoidance above cities,” said George Gorospe, lead for this effort from NASA’s Ames Research Center in California’s Silicon Valley.
      Using this data from an experimental air taxi aircraft, NASA will further develop the technology needed to help create safer air taxi flights in high-traffic areas. Both of these efforts will benefit the companies working to bring air taxis and drones safely into the airspace.
      The work is led by NASA’s Transformational Tools and Technologies and Convergent Aeronautics Solutions projects under the Transformative Aeronautics Concepts program in support of NASA’s Advanced Air Mobility mission. NASA’s Advanced Air Mobility mission seeks to deliver data to guide the industry’s development of electric air taxis and drones.
      Share
      Details
      Last Updated Apr 17, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Ames Research Center Convergent Aeronautics Solutions Drones & You Flight Innovation Glenn Research Center Langley Research Center Transformational Tools Technologies Transformative Aeronautics Concepts Program Explore More
      3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 3 hours ago 1 min read Recognizing Employee Excellence 
      Article 8 hours ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 23 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Curiosity Mars rover sees its tracks receding into the distance at a site nicknamed “Ubajara” on April 30, 2023. This site is where Curiosity made the discovery of siderite, a mineral that may help explain the fate of the planet’s thicker ancient atmosphere.Credit: NASA/JPL-Caltech/MSSS New findings from NASA’s Curiosity Mars rover could provide an answer to the mystery of what happened to the planet’s ancient atmosphere and how Mars has evolved over time.
      Researchers have long believed that Mars once had a thick, carbon dioxide-rich atmosphere and liquid water on the planet’s surface. That carbon dioxide and water should have reacted with Martian rocks to create carbonate minerals. Until now, though, rover missions and near-infrared spectroscopy analysis from Mars-orbiting satellites haven’t found the amounts of carbonate on the planet’s surface predicted by this theory.
      Reported in an April paper in Science, data from three of Curiosity’s drill sites revealed the presence of siderite, an iron carbonate mineral, within the sulfate-rich rocky layers of Mount Sharp in Mars’ Gale Crater.
      “The discovery of abundant siderite in Gale Crater represents both a surprising and important breakthrough in our understanding of the geologic and atmospheric evolution of Mars,” said Benjamin Tutolo, associate professor at the University of Calgary, Canada, and lead author of the paper.
      To study the Red Planet’s chemical and mineral makeup, Curiosity drills three to four centimeters down into the subsurface, then drops the powdered rock samples into its CheMin instrument. The instrument, led by NASA’s Ames Research Center in California’s Silicon Valley, uses X-ray diffraction to analyze rocks and soil. CheMin’s data was processed and analyzed by scientists at the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston.
      “Drilling through the layered Martian surface is like going through a history book,” said Thomas Bristow, research scientist at NASA Ames and coauthor of the paper. “Just a few centimeters down gives us a good idea of the minerals that formed at or close to the surface around 3.5 billion years ago.”
      The discovery of this carbonate mineral in rocks beneath the surface suggests that carbonate may be masked by other minerals in near-infrared satellite analysis. If other sulfate-rich layers across Mars also contain carbonates, the amount of stored carbon dioxide would be a fraction of that needed in the ancient atmosphere to create conditions warm enough to support liquid water. The rest could be hidden in other deposits or have been lost to space over time.
      In the future, missions or analyses of other sulfate-rich areas on Mars could confirm these findings and help us better understand the planet’s early history and how it transformed as its atmosphere was lost.
      Curiosity, part of NASA’s Mars Exploration Program (MEP) portfolio, was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      For more information on Curiosity, visit: 
      https://science.nasa.gov/mission/msl-curiosity
      News Media Contacts 
      Karen Fox / Molly Wasser 
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 

      Andrew Good 
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Share
      Details
      Last Updated Apr 17, 2025 Related Terms
      Ames Research Center Astromaterials Curiosity (Rover) General Jet Propulsion Laboratory Mars Science Laboratory (MSL) Explore More
      7 min read NASA’s SpaceX 32nd Commercial Resupply Mission Overview
      NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21,…
      Article 21 hours ago 6 min read NASA’s Chandra Releases New 3D Models of Cosmic Objects
      Article 24 hours ago 3 min read NASA Sees Progress on Blue Origin’s Orbital Reef Design Development
      Article 1 day ago Keep Exploring Discover Related Topics
      Curiosity Rover (MSL)
      Ames Research Center
      Mars
      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
      Curiosity Science Instruments
      Curiosity’s scientific instruments are the tools that bring us stunning images of Mars and ground-breaking discoveries.
      View the full article
    • By NASA
      4 Min Read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
      NASA astronaut Don Pettit is scheduled to return home in mid-April after a seven-month mission aboard the International Space Station as part of Expedition 72. Throughout his stay, Pettit contributed to research that benefits humanity and future space missions.

      Pettit also shared what he calls “science of opportunity” to demonstrate how experimenting with our surroundings can help gain a better understanding of how things work. This understanding is perhaps enhanced when art, science, and microgravity come together.
      Electrostatic Displays
      NASA astronaut Don Pettit demonstrates electrostatic forces using charged water droplets and a knitting needle made of Teflon. This series of overlapping frames displays the unique attraction-repulsion properties of Teflon and charged droplets, similar to how charged particles from the Sun behave when they come in contact with Earth’s magnetic field. Highly energetic particles from space that collide with atoms and molecules in the atmosphere create the aurora borealis.
      Specialized Equipment for Superb Science
      NASA astronaut Don Pettit snaps an image of the hands of NASA astronauts Nick Hague, left, and Suni Williams inside the Life Science Glovebox, a facility at the International Space Station that separates the science from the scientists, thus protecting both from contamination.
      The freezers on the International Space Station are as crucial as its experiment modules, preserving samples for further analysis on Earth. The Minus Eighty-Degree Laboratory Freezer for International Space Station stores samples at ultra-cold temperatures. NASA astronaut Don Pettit used it to freeze thin ice wafers, which he photographed with a polarizing filter to reveal unique crystal structures.
      New Tech Roll-Out
      NASA astronaut Don Pettit films a time-lapse sequence of Canadarm2 retrieving Materials International Space Station Experiment (MISSE-20-Commercial) samples at the International Space Station. This investigation exposed various experiments to the harsh space environment, such as vacuum, radiation, and extreme temperatures. Findings could help in many areas, from designing more durable materials to advancing quantum communications.
      A surge in International Space Station research supports NASA’s exploration efforts at the Moon and beyond, requiring more energy to operate the orbiting laboratory. NASA astronaut Don Pettit photographs new and old solar arrays side by side. The technology used by the International Space Station Roll-Out Solar Arrays (IROSA) on the right was first tested aboard the station in 2017. By 2023, six IROSAs were deployed aboard station, providing a 20-30% increase in power for research and operations. Roll-Out Solar Arrays were also used on NASA’s DART asteroid mission and now are slated for the Gateway lunar outpost, a vital component of Artemis.
      Squire for Spacewalks
      I am the nameless boy who stays in the confines of the tent helping the Knights suit up for battle. I remain in the airlock, preparing these knights for a walk outside.
      Don Pettit
      "Space Squire" posted to X
      NASA astronaut Don Pettit helped his colleagues suit up for two spacewalks in January. The first spacewalk involved patching the Neutron Star Interior Composition Explorer (NICER), a telescope that measures X-rays from neutron stars and other cosmic objects. Sunlight interference affected data collection, and the patches reduced this issue. On the second spacewalk, astronauts collected samples from the exterior of the International Space Station for ISS External Microorganisms. This investigation examines whether the orbiting laboratory releases microbes, how many, and how far these may travel. Findings could inform the design of future spacecraft, including spacesuits, to limit biocontamination during future space missions.
      Photography with a Spin
      NASA astronaut Don Pettit photographs “cosmic colors at sunrise.” From 250 miles above, the International Space Station’s orbital path covers most of Earth’s population, offering valuable data and a great opportunity for shooting breathtaking photography.
      NASA astronaut Don Pettit leveraged his stay aboard the International Space Station to photograph our planet with an artistic twist.
      NASA astronaut Don Pettit wrote on social media about his snapshot of the Mediterranean Sea from the International Space Station, “Sun glint off the Mediterranean Sea (infrared and converted to black and white). When the Sun reflects off the ocean, watery details unseen with normal lighting appear. Small centimeter differences in ocean height become visible, revealing hidden currents.”
      NASA astronaut Don Pettit’s photography could contribute to the study of transient luminous events, colorful electrical discharges that occur above thunderstorms. His imagery can be paired with data from the Atmosphere-Space Interactions Monitor (ASIM) and Thor-Davis, a high-speed thunderstorm camera. The combined efforts of crew photography and instruments aboard the International Space Station help scientists better understand thunderstorms and their impacts on Earth’s upper atmosphere.
      More of Pettit’s photography can be found on his X profile, @astro_Pettit.
      Share
      Details
      Last Updated Apr 17, 2025 Related Terms
      ISS Research Donald R. Pettit Expedition 72 Humans in Space International Space Station (ISS) Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...