Jump to content

20 Years Ago: First Image of Earth from Mars and Other Postcards of Home


Recommended Posts

  • Publishers
Posted

On March 8, 2004, the Mars Exploration Rover Spirit took the first image of Earth from the surface of another planet. The Earth appearing as nothing more than a bright star provided a new perspective on our home planet, a perspective reshaped over the past eight decades as cameras aboard rockets and spacecraft traveled farther and farther away. From sounding rockets in the 1940s and Earth orbiting satellites in the early 1960s to spacecraft and people traveling to the Moon in the late 1960s and early 1970s and since then to spacecraft exploring all reaches of our solar system, the images of Earth they sent back expanded our horizons while showing an ever-smaller pale blue dot in the vastness of space.

The Mars Exploration Rover Spirit photographed Earth before sunrise in 2004 The Mars Science Laboratory Curiosity rover photographed the Earth-Moon system in 2014
Left: The Mars Exploration Rover Spirit photographed Earth before sunrise in 2004. Right: The Mars Science Laboratory Curiosity rover photographed the Earth-Moon system in 2014.

Shortly after landing in Mars’ Gusev Crater on Jan. 4, 2004, Spirit began sending to Earth remarkable photos of its surroundings. On March 8, it turned its camera skyward in an attempt to photograph the Martian moon Deimos partially eclipsing the Sun as it transited across its disc. Shortly before sunrise, Spirit’s camera managed to capture Earth as a bright star, appearing much as Venus does to terrestrial observers. This marked the first photograph of Earth from another planetary surface. Nearly a decade passed before another rover, the Mars Science Laboratory Curiosity, took another photograph of Earth from its location in Mars’ Gale Crater. The image taken on Jan. 31, 2014, from 99 million miles away, also captured the Moon. These images, and others taken of Earth from ever-more distant vantage points over the past eight decades, provided a new perspective of our home planet’s place in our solar system. Enjoy the following postcards of Earth over the decades.

The first image of Earth taken from space in 1946 by a suborbital rocket, from an altitude of 65 miles The first photograph of Earth taken from orbit, by the Explorer 6 satellite The first television image of Earth, transmitted by the TIROS-1 weather satellite in 1960
Left: The first image of Earth taken from space in 1946 by a suborbital rocket, from an altitude of 65 miles. Image credit: courtesy White Sands Missile Range/Applied Physics Laboratory. Middle: The first photograph of Earth taken from orbit, by the Explorer 6 satellite. Right: The first television image of Earth, transmitted by the TIROS-1 weather satellite in 1960.

On Oct. 24, 1946, more than 10 years before the launch of the first artificial satellite Sputnik, scientists at the White Sands Missile Range in New Mexico placed a camera on top of a captured German V-2 ballistic missile. As the rocket flew to an altitude of about 65 miles – just above the generally recognized border of outer space – the 35-mm motion picture camera snapped a frame every one and a half seconds. Minutes later, the missile came crashing back down and slammed into the ground at more than 340 miles per hour, but the film survived and gave us our first glimpse of Earth from space. On Aug. 14, 1959, the Explorer 6 satellite took the first photograph of Earth from orbit about 17,000 miles high, but the image lacked detail. On April 1, 1960, from an orbital altitude of about 450 miles, the TIROS-1 weather satellite returned the first of its 23,000 television images of the Earth, most of them of sufficient quality for the satellite’s main purpose, weather forecasting.

The first full-disk photograph of Earth, taken by the Soviet Molniya 1-3 communications satellite in 1966 The first image of Earth taken from geostationary orbit, by the Advanced Technology Satellite-1 (ATS-1) satellite in 1966 The first color image of the full Earth from the DODGE (Department of Defense Gravity Experiment) satellite in 1967
Left: The first full-disk photograph of Earth, taken by the Soviet Molniya 1-3 communications satellite in 1966. Middle: The first image of Earth taken from geostationary orbit, by the Advanced Technology Satellite-1 (ATS-1) satellite in 1966. Right: The first color image of the full Earth from the DODGE (Department of Defense Gravity Experiment) satellite in 1967.

The Soviet Molniya 1-3 communications satellite took the first photograph showing the Earth as a full disk on May 30, 1966, although the image quality was somewhat poor. On Dec. 11, 1966, the ATS-1 advanced technology satellite beamed back the first photograph of Earth from geostationary orbit 22,300 miles above Ecuador. The Department of Defense Gravity Experiment (DODGE) satellite returned the first color image of the full Earth in August 1967.

The original photo, top, of Earth taken from lunar orbit by the Lunar Orbiter 1 spacecraft in 1966, and a 2008 digitized version by the Lunar Orbiter Image Recovery Project (LOIRP) The first color image of Earth taken from the surface of the Moon by Surveyor 3 in 1967
Left: The original photo, top, of Earth taken from lunar orbit by the Lunar Orbiter 1 spacecraft in 1966, and a 2008 digitized version by the Lunar Orbiter Image Recovery Project (LOIRP). Image credit: courtesy LOIRP.  Right: The first color image of Earth taken from the surface of the Moon by Surveyor 3 in 1967.

The primary purpose of early robotic spacecraft to the Moon was to prepare for the crewed Apollo missions that followed, including extensive photography of the lunar terrain from orbit and from the surface. The first of five Lunar Orbiter spacecraft designed to map the Moon’s surface from orbit took the first photograph of Earth from lunar distances on Aug. 23, 1966. A digital reconstruction of the original frame in 2008 as part of the Lunar Orbiter Image Recovery Project removed the scan lines and other imperfections. The Surveyor 3 robotic lander, later visited by the Apollo 12 astronauts, took the first photograph of Earth from the lunar surface on April 30, 1967.

The famous Earthrise photograph taken during the Apollo 8 crew’s first orbit around the Moon in 1968 The first photograph of Earth taken by an astronaut standing on the lunar surface, taken during the Apollo 11 Moon landing in 1969 The famous Blue Marble image taken by Apollo 17 astronauts on their way to the Moon in 1972 Earth and Moon photographed during the Artemis I uncrewed mission in 2022
Left: The famous Earthrise photograph taken during the Apollo 8 crew’s first orbit around the Moon in 1968. Middle left: The first photograph of Earth taken by an astronaut standing on the lunar surface, taken during the Apollo 11 Moon landing in 1969. Middle right: The famous Blue Marble image taken by Apollo 17 astronauts on their way to the Moon in 1972. Right: Earth and Moon photographed during the Artemis I uncrewed mission in 2022.

The Apollo missions of the late 1960s and early 1970s returned thousands of stunning and memorable images of humanity’s first exploration of another world. Among them are photographs of the Earth taken by the astronauts that show how small and fragile our planet can appear against the blackness and vastness of space. Arguably, the most famous is the Earthrise photos taken during Apollo 8, the first crewed mission to orbit the Moon in December 1968. The image of the smooth blue ball of Earth appearing suspended over the battered gray lunar terrain provided inspiration for the ecology movement of the time. In July 1969, the first human lunar landing mission, Apollo 11, returned many iconic photographs of Neil A. Armstrong and Edwin E. “Buzz” Aldrin on the surface, and also included the first image of the Earth taken by an astronaut on the Moon. In December 1972, astronauts on the final Apollo lunar landing mission, Apollo 17, took the famous Blue Marble image of the Earth from 72,000 miles away on their way to the Moon. More recently, in November 2012, the uncrewed Artemis I mission imaged the Moon and Earth together, from a distance of 268,563 miles from Earth.

A composite of two separate images of the Earth and Moon, taken by Mariner 10 in 1973 as it headed toward encounters with Venus and Mercury The first image of the Earth-Moon system in a single photographic frame taken by Voyager 1 in 1977 as it departed on its journey to explore Jupiter, Saturn, and beyond The first image of Earth taken by a planetary spacecraft, Galileo, as it made a return encounter with its home planet for a gravity assist in 1990
Left: A composite of two separate images of the Earth and Moon, taken by Mariner 10 in 1973 as it headed toward encounters with Venus and Mercury. Middle: The first image of the Earth-Moon system in a single photographic frame taken by Voyager 1 in 1977 as it departed on its journey to explore Jupiter, Saturn, and beyond. Right: The first image of Earth taken by a planetary spacecraft, Galileo, as it made a return encounter with its home planet for a gravity assist in 1990. 

As planetary spacecraft carried increasingly sophisticated instruments in the 1970s, some turned their cameras toward the Earth as they departed on their long voyages of exploration. In November 1973, a few days after Mariner 10 launched on its mission to explore Venus and Mercury, it snapped separate photographs of the Earth and the Moon, that technicians combined into a composite photo. On Sept. 18, 1977, at a distance of 7.25 million miles, the Jupiter-bound Voyager 1 snapped the first photograph of the Earth-Moon system in a single frame, providing an impression of the view from a spacecraft approaching our home planet. The Galileo spacecraft did exactly that – on Dec. 8, 1990, more than two years after its launch, it passed within 600 miles of Earth, using the planet for a gravity assist to reach Jupiter. During the fly-by, Galileo used its sophisticated instruments and cameras to study Earth as an unexplored planet and detected chemical signatures in atmospheric trace elements associated with life-form activity. 

Voyager 1’s family portrait of six planets, when the spacecraft was 3.7 billion miles from Earth in 1990
Voyager 1’s family portrait of six planets, when the spacecraft was 3.7 billion miles from Earth in 1990.

Pale Blue Dot Revisited, NASA’s 2020 remastered version of the Voyager 1 image of Earth
Pale Blue Dot Revisited, NASA’s 2020 remastered version of the Voyager 1 image of Earth.

On Feb. 14, 1990, more than 12 years after it began its journey from Earth and shortly before controller permanently turned off its cameras to conserve power, Voyager 1 spun around and pointed them back into the solar system. In a mosaic of 60 images, it captured a “family portrait” of six of the solar system’s planets, including a pale blue dot called Earth more than 3.7 billion miles away. In February 2020, to commemorate the photograph’s 30th anniversary, NASA released a remastered version of the image of Earth as Pale Blue Dot Revisited.

MESSENGER’s family portrait of the planets, taken from approximately the orbit of Mercury in 2010
MESSENGER’s family portrait of the planets, taken from approximately the orbit of Mercury in 2010.

Twenty years later, and from a very different part of the solar system, came another family portrait of the planets. From near the orbit of Mercury, the MESSENGER spacecraft took 34 images on Nov. 3 and 16, 2010, that engineers stitched together. The composite shows six planets, Venus, Earth, Jupiter, Mars, Mercury, and Saturn, and even several planetary satellites including the Moon and Jupiter’s four Galilean moons Callisto, Ganymede, Europa, and Io.

Earth and Moon photographed by the Mars Global Surveyor spacecraft in orbit around Mars in 2003 Earth and Moon photographed by the European Space Agency’s Mars Express spacecraft in orbit around Mars in 2003 Earth and Moon photographed by the Mars Reconnaissance Orbiter in orbit around Mars in 2007
Left: Earth and Moon photographed by the Mars Global Surveyor spacecraft in orbit around Mars in 2003. Middle: Earth and Moon photographed by the European Space Agency’s Mars Express spacecraft in orbit around Mars in 2003. Right: Earth and Moon photographed by the Mars Reconnaissance Orbiter in orbit around Mars in 2007.

Even before Spirit returned the first photo of Earth from the surface of Mars, spacecraft in orbit around the Red Planet took amazing photos of the Earth-Moon system with their telescopic high-resolution cameras. Mars Global Surveyor took the first photograph of the Earth-Moon system from Mars orbit in May 2003, the two planets 86 million miles apart. Given the Moon’s position in its orbit around Earth, the two bodies appeared close together. Two months later, in July 2003, the European Space Agency’s (ESA) Mars Express spacecraft photographed them appearing much further apart, given the Moon’s orbital position. In October 2007, Mars Reconnaissance Orbiter used its HiRISE camera to take a more detailed shot of the Earth-Moon system. Because Earth orbits closer to the Sun than Mars, it goes through phases, much as Mercury and Venus do as viewed from Earth.

The Earth-Moon system as seen from the Cassini spacecraft in orbit around Saturn in 2013
The Earth-Moon system as seen from the Cassini spacecraft in orbit around Saturn in 2013.

On July 19, 2013, the Cassini spacecraft in orbit around Saturn took a series of images from a distance of about 750,000 miles as the planet eclipsed the Sun. In the event dubbed The Day the Earth Smiled, people on Earth received notification in advance that Cassini would be taking their picture from 900 million miles away, and were encouraged to smile at its camera. In addition to the Earth and Moon, Cassini captured Venus, Mars, and seven of Saturn’s satellites in the photograph.

The MESSENGER spacecraft in orbit around Mercury took this photograph of Earth and Moon in 2013 The Parker Solar Probe photographed Earth through the solar corona from well inside the orbit of Mercury in 2023
Left: The MESSENGER spacecraft in orbit around Mercury took this photograph of Earth and Moon in 2013. Right: The Parker Solar Probe photographed Earth through the solar corona from well inside the orbit of Mercury in 2023.

On the same day that Cassini imaged Earth and other planets from Saturn, the MESSENGER spacecraft in orbit around Mercury, during a search for possible moons orbiting the small planet, took a photograph of the Earth-Moon system from 61 million miles away. The Parker Solar Probe, during its 16th close pass of the Sun in June 2023, took a series of photographs through the Sun’s corona, imaging several planets including Earth in the process. Engineers stitched the images together to create an amazing video of the solar corona and a coronal mass ejection. The view is from well inside Mercury’s orbit.

The European Space Agency’s Solar Orbiter took this mini-family portrait in November 2020
The European Space Agency’s Solar Orbiter took this mini-family portrait in November 2020.

The ESA Solar Orbiter spacecraft’s primary objectives focus on studying the Sun from close distances. These orbits enable it to photograph several planets at once. On Nov. 18, 2020, Solar Orbiter imaged Venus, Earth, and Mars in one frame.

We hope you enjoyed this review of how photographs of Earth over the past 80 years have changed our perspectives of our home planet, and also of our own place in the universe. Future human space explorers, whatever their destinations, will always look back and try to find their home planet in whatever sky it may shine, and hopefully share their experiences with us through photographs we can only dream about today.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      New NASA Mission to Reveal Earth’s Invisible ‘Halo’
      A new NASA mission will capture images of Earth’s invisible “halo,” the faint light given off by our planet’s outermost atmospheric layer, the exosphere, as it morphs and changes in response to the Sun. Understanding the physics of the exosphere is a key step toward forecasting dangerous conditions in near-Earth space, a requirement for protecting Artemis astronauts traveling through the region on the way to the Moon or on future trips to Mars. The Carruthers Geocorona Observatory will launch from NASA’s Kennedy Space Center in Florida no earlier than Tuesday, Sept. 23.
      Revealing Earth’s invisible edge
      In the early 1970s, scientists could only speculate about how far Earth’s atmosphere extended into space. The mystery was rooted in the exosphere, our atmosphere’s outermost layer, which begins some 300 miles up. Theorists conceived of it as a cloud of hydrogen atoms — the lightest element in existence — that had risen so high the atoms were actively escaping into space.
      But the exosphere reveals itself only via a faint “halo” of ultraviolet light known as the geocorona. Pioneering scientist and engineer Dr. George Carruthers set himself the task of seeing it. After launching a few prototypes on test rockets, he developed an ultraviolet camera ready for a one-way trip to space.
      Apollo 16 astronaut John Young is pictured on the lunar surface with George Carruthers’ gold-plated Far Ultraviolet Camera/Spectrograph, the first Moon-based observatory. The Lunar Module “Orion” is on the right and the Lunar Roving Vehicle is parked in the background next to the American flag. NASA In April 1972, Apollo 16 astronauts placed Carruthers’ camera on the Moon’s Descartes Highlands, and humanity got its first glimpse of Earth’s geocorona. The images it produced were as stunning for what they captured as they were for what they didn’t.
      “The camera wasn’t far enough away, being at the Moon, to get the entire field of view,” said Lara Waldrop, principal investigator for the Carruthers Geocorona Observatory. “And that was really shocking — that this light, fluffy cloud of hydrogen around the Earth could extend that far from the surface.” Waldrop leads the mission from the University of Illinois Urbana-Champaign, where George Carruthers was an alumnus.
      The first image of UV light from Earth’s outer atmosphere, the geocorona, taken from a telescope designed and built by George Carruthers. The telescope took the image while on the Moon during the Apollo 16 mission in 1972. G. Carruthers (NRL) et al./Far UV Camera/NASA/Apollo 16 Our planet, in a new light
      Today, the exosphere is thought to stretch at least halfway to the Moon. But the reasons for studying go beyond curiosity about its size.
      As solar eruptions reach Earth, they hit the exosphere first, setting off a chain of reactions that sometimes culminate in dangerous space weather storms. Understanding the exosphere’s response is important to predicting and mitigating the effects of these storms. In addition, hydrogen — one of the atomic building blocks of water, or H2O — escapes through the exosphere. Mapping that escape process will shed light on why Earth retains water while other planets don’t, helping us find exoplanets, or planets outside our solar system, that might do the same.
      NASA’s Carruthers Geocorona Observatory, named in honor of George Carruthers, is designed to capture the first continuous movies of Earth’s exosphere, revealing its full expanse and internal dynamics.
      “We’ve never had a mission before that was dedicated to making exospheric observations,” said Alex Glocer, the Carruthers mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’s really exciting that we’re going to get these measurements for the first time.”
      Download this video from NASA’s Scientific Visualization Studio.
      Journey to L1
      At 531 pounds and roughly the size of a loveseat sofa, the Carruthers spacecraft will launch aboard a SpaceX Falcon 9 rocket along with NASA’s IMAP (Interstellar Mapping and Acceleration Probe) spacecraft and the National Oceanic and Atmospheric Administration’s SWFO-L1 (Space Weather Follow On – Lagrange 1) space weather satellite. After launch, all three missions will commence a four-month cruise phase to Lagrange point 1 (L1), a location approximately 1 million miles closer to the Sun than Earth is. After a one-month period for science checkouts, Carruthers’ two-year science phase will begin in March 2026.
      Artist’s concept of the five Sun-Earth Lagrange points in space. At Lagrange points, the gravitational pull of two large masses counteract, allowing spacecraft to reduce fuel consumption needed to remain in position. The L1 point of the Earth-Sun system affords an uninterrupted view of the Sun and will be home to three new heliophysics missions in 2025: NASA’s Interstellar Mapping and Acceleration Probe (IMAP), NASA’s Carruthers Geocorona Observatory, and NOAA’s Space Weather Follow-On – Lagrange 1 (SWFO – L1). NASA’s Conceptual Image Lab/Krystofer Kim From L1, roughly four times farther away than the Moon, Carruthers will capture a comprehensive view of the exosphere using two ultraviolet cameras, a near-field imager and a wide-field imager.
      “The near-field imager lets you zoom up really close to see how the exosphere is varying close to the planet,” Glocer said. “The wide-field imager lets you see the full scope and expanse of the exosphere, and how it’s changing far away from the Earth’s surface.”
      The two imagers will together map hydrogen atoms as they move through the exosphere and ultimately out to space. But what we learn about atmospheric escape on our home planet applies far beyond it.
      “Understanding how that works at Earth will greatly inform our understanding of exoplanets and how quickly their atmospheres can escape,” Waldrop said.
      By studying the physics of Earth, the one planet we know that supports life, the Carruthers Geocorona Observatory can help us know what to look for elsewhere in the universe.
      The Carruthers Geocorona Observatory mission is led by Lara Waldrop from the University of Illinois Urbana-Champaign. The Space Sciences Laboratory at the University of California, Berkeley leads mission implementation, design and development of the payload in collaboration with Utah State University’s Space Dynamics Laboratory. The Carruthers spacecraft was designed and built by BAE Systems. NASA’s Explorers and Heliophysics Projects Division at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, manages the mission for the agency’s Heliophysics Division at NASA Headquarters in Washington.
      By Miles Hatfield
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 18, 2025 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division NASA Directorates Science & Research Science Mission Directorate Uncategorized Explore More
      5 min read NASA’s Hubble Sees White Dwarf Eating Piece of Pluto-Like Object


      Article


      3 hours ago
      6 min read NASA’s IMAP Mission to Study Boundaries of Our Home in Space


      Article


      1 day ago
      4 min read NASA Interns Apply NASA data to Real-World Problems to Advance Space Research and Aerospace Innovation


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      6 min read
      NASA’s IMAP Mission to Study Boundaries of Our Home in Space
      Summary
      NASA’s new Interstellar Mapping and Acceleration Probe, or IMAP, will launch no earlier than Tuesday, Sept. 23 to study the heliosphere, a giant shield created by the Sun. The mission will chart the heliosphere’s boundaries to help us better understand the protection it offers life on Earth and how it changes with the Sun’s activity. The IMAP mission will also provide near real-time measurements of the solar wind, data that can be used to improve models predicting the impacts of space weather ranging from power-line disruptions to loss of satellites, to the health of voyaging astronauts. Space is a dangerous place — one that NASA continues to explore for the benefit of all. It’s filled with radiation and high-energy particles that can damage DNA and circuit boards alike. Yet life endures in our solar system in part because of the heliosphere, a giant bubble created by the Sun that extends far beyond Neptune’s orbit.
      With NASA’s new Interstellar Mapping and Acceleration Probe, or IMAP, launching no earlier than Tuesday, Sept. 23, humanity is set to get a better look at the heliosphere than ever before. The mission will chart the boundaries of the heliosphere to help us better understand the protection it offers and how it changes with the Sun’s activity. The IMAP mission will also provide near real-time measurements of space weather conditions essential for the Artemis campaign and deep space travel. 
      “With IMAP, we’ll push forward the boundaries of knowledge and understanding of our place not only in the solar system, but our place in the galaxy as a whole,” said Patrick Koehn, IMAP program scientist at NASA Headquarters in Washington. “As humanity expands and explores beyond Earth, missions like IMAP will add new pieces of the space weather puzzle that fills the space between Parker Solar Probe at the Sun and the Voyagers beyond the heliopause.”
      Download this video from NASA’s Scientific Visualization Studio.
      Domain of Sun
      The heliosphere is created by the constant outflow of material and magnetic fields from the Sun called the solar wind. As the solar system moves through the Milky Way, the solar wind’s interaction with interstellar material carves out the bubble of the heliosphere. Studying the heliosphere helps scientists understand our home in space and how it came to be habitable.
      As a modern-day celestial cartographer, IMAP will map the boundary of our heliosphere and study how the heliosphere interacts with the local galactic neighborhood beyond. It will chart the vast range of particles, dust, ultraviolet light, and magnetic fields in interplanetary space, to investigate the energization of charged particles from the Sun and their interaction with interstellar space.
      The IMAP mission builds on NASA’s Voyager and IBEX (Interstellar Boundary Explorer) missions. In 2012 and 2018, the twin Voyager spacecraft became the first human-made objects to cross the heliosphere’s boundary and send back measurements from interstellar space. It gave scientists a snapshot of what the boundary looked like and where it was in two specific locations. While IBEX has been mapping the heliosphere, it has left many questions unanswered. With 30 times higher resolution and faster imaging, IMAP will help fill in the unknowns about the heliosphere.
      Energetic neutral atoms: atomic messengers from our heliosphere’s edge
      Of IMAP’s 10 instruments, three will investigate the boundaries of the heliosphere by collecting energetic neutral atoms, or ENAs. Many ENAs originate as positively charged particles released by the Sun but after racing across the solar system, these particles run into particles in interstellar space. In this collision, some of those positively charged particles become neutral, and an energetic neutral atom is born. The interaction also redirects the new ENAs, and some ricochet back toward the Sun.
      Charged particles are forced to follow magnetic field lines, but ENAs travel in a straight line, unaffected by the twists, turns, and turbulences in the magnetic fields that permeate space and shape the boundary of the heliosphere. This means scientists can track where these atomic messengers came from and study distant regions of space from afar. The IMAP mission will use the ENAs it collects near Earth to trace back their origins and construct maps of the boundaries of the heliosphere, which would otherwise be invisible from such a distance.
      “With its comprehensive state-of-the-art suite of instruments, IMAP will advance our understanding of two fundamental questions of how particles are energized and transported throughout the heliosphere and how the heliosphere itself interacts with our galaxy,” said Shri Kanekal, IMAP mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The IMAP mission will study the heliosphere, our home in space. NASA/Princeton University/Patrick McPike Space weather: monitoring solar wind
      The IMAP mission will also support near real-time observations of the solar wind and energetic solar particles, which can produce hazardous conditions in the space environment near Earth. From its location at Lagrange Point 1, about 1 million miles from Earth toward the Sun, IMAP will provide around a half hour’s warning of dangerous particles headed toward our planet. The mission’s data will help with the development of models that can predict the impacts of space weather ranging from power-line disruptions to loss of satellites.
      “The IMAP mission will provide very important information for deep space travel, where astronauts will be directly exposed to the dangers of the solar wind,” said David McComas, IMAP principal investigator at Princeton University.
      Cosmic dust: hints of the galaxy beyond
      In addition to measuring ENAs and solar wind particles, IMAP will also make direct measurements of interstellar dust — clumps of particles originating outside of the solar system that are smaller than a grain of sand. This space dust is largely composed of rocky or carbon-rich grains leftover from the aftermath of supernova explosions. 
      The specific elemental composition of this space dust is a postmark for where it comes from in the galaxy. Studying cosmic dust can provide insight into the compositions of stars from far outside our solar system. It will also help scientists significantly advance what we know about these basic cosmic building materials and provide information on what the material between stars is made of.
      David McComas leads the mission with an international team of 27 partner institutions. APL is managing the development phase and building the spacecraft, and it will operate the mission. IMAP is the fifth mission in NASA’s Solar Terrestrial Probes Program portfolio. The Explorers and Heliophysics Projects Division at NASA Goddard manages the STP Program for the agency’s Heliophysics Division of NASA’s Science Mission Directorate. NASA’s Launch Services Program, based at NASA’s Kennedy Space Center in Florida, manages the launch service for the mission.
      By Mara Johnson-Groh
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 17, 2025 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division IMAP (Interstellar Mapping and Acceleration Probe) Missions NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate Explore More
      4 min read NASA Interns Apply NASA data to Real-World Problems to Advance Space Research and Aerospace Innovation


      Article


      2 hours ago
      3 min read Regions on Asteroid Explored by NASA’s Lucy Mission Get Official Names
      The IAU (International Astronomical Union), a global naming authority for celestial objects, has approved official…


      Article


      1 day ago
      5 min read Connecting Educators with NASA Data: Learning Ecosystems Northeast in Action


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      NASA’s Nancy Grace Roman Space Telescope will help scientists better understand our Milky Way galaxy’s less sparkly components — gas and dust strewn between stars, known as the interstellar medium.
      One of Roman’s major observing programs, called the Galactic Plane Survey, will peer through our galaxy to its most distant edge, mapping roughly 20 billion stars—about four times more than have currently been mapped. Scientists will use data from these stars to study and map the dust their light travels through, contributing to the most complete picture yet of the Milky Way’s structure, star formation, and the origins of our solar system.
      Our Milky Way galaxy is home to more than 100 billion stars that are often separated by trillions of miles. The spaces in between, called the interstellar medium, aren’t empty — they’re sprinkled with gas and dust that are both the seeds of new stars and the leftover crumbs from stars long dead. Studying the interstellar medium with observatories like NASA’s upcoming Nancy Grace Roman Space Telescope will reveal new insight into the galactic dust recycling system.
      Credit: NASA/Laine Havens; Music credit: Building Heroes by Enrico Cacace [BMI], Universal Production Music “With Roman, we’ll be able to turn existing artist’s conceptions of the Milky Way into more data-driven models using new constraints on the 3D distribution of interstellar dust,” said Catherine Zucker, an astrophysicist at the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts.
      Solving Milky Way mystery
      Scientists know how our galaxy likely looks by combining observations of the Milky Way and other spiral galaxies. But dust clouds make it hard to work out the details on the opposite side of our galaxy. Imagine trying to map a neighborhood while looking through the windows of a house surrounded by a dense fog.
      Roman will see through the “fog” of dust using a specialized camera and filters that observe infrared light — light with longer wavelengths than our eyes can detect. Infrared light is more likely to pass through dust clouds without scattering.
      This artist’s concept visualizes different types of light moving through a cloud of particles. Since infrared light has a longer wavelength, it can pass more easily through the dust. That means astronomers observing in infrared light can peer deeper into dusty regions.Credit: NASA’s Goddard Space Flight Center Light with shorter wavelengths, including blue light produced by stars, more easily scatters. That means stars shining through dust appear dimmer and redder than they actually are.
      By comparing the observations with information on the source star’s characteristics, astronomers can disentangle the star’s distance from how much its colors have been reddened. Studying those effects reveals clues about the dust’s properties.
      “I can ask, ‘how much redder and dimmer is the starlight that Roman detects at different wavelengths?’ Then, I can take that information and relate it back to the properties of the dust grains themselves, and in particular their size,” said Brandon Hensley, a scientist who studies interstellar dust at NASA’s Jet Propulsion Laboratory in Southern California.
      Scientists will also learn about the dust’s composition and probe clouds to investigate the physical processes behind changing dust properties.
      Clues in dust-influenced starlight hint at the amount of dust between us and a star. Piecing together results from many stars allows astronomers to construct detailed 3D dust maps. That would enable scientists like Zucker to create a model of the Milky Way, which will show us how it looks from the outside. Then scientists can better compare the Milky Way with other galaxies that we only observe from the outside, slotting it into a cosmological perspective of galaxy evolution.
      “Roman will add a whole new dimension to our understanding of the galaxy because we’ll see billions and billions more stars,” Zucker said. “Once we observe the stars, we’ll have the dust data as well because its effects are encoded in every star Roman detects.”
      Galactic life cycles
      The interstellar medium does more than mill about the Milky Way — it fuels star and planet formation. Dense blobs of interstellar medium form molecular clouds, which can gravitationally collapse and kick off the first stages of star development. Young stars eject hot winds that can cause surrounding dust to clump into planetary building blocks.
      “Dust carries a lot of information about our origins and how everything came to be,” said Josh Peek, an associate astronomer and head of the data science mission office at the Space Telescope Science Institute in Baltimore, Maryland. “Right now, we’re basically standing on a really large dust grain — Earth was built out of lots and lots of really tiny grains that grew together into a giant ball.”
      Roman will identify young clusters of stars in new, distant star-forming regions as well as contribute data on “star factories” previously identified by missions like NASA’s retired Spitzer Space Telescope.
      “If you want to understand star formation in different environments, you have to understand the interstellar landscape that seeds it,” Zucker said. “Roman will allow us to link the 3D structure of the interstellar medium with the 3D distribution of young stars across the galaxy’s disk.”
      Roman’s new 3D dust maps will refine our understanding of the Milky Way’s spiral structure, the pinwheel-like pattern where stars, gas, and dust bunch up like galactic traffic jams. By combining velocity data with dust maps, scientists will compare observations with predictions from models to help identify the cause of spiral structure—currently unclear.
      The role that this spiral pattern plays in star formation remains similarly uncertain. Some theories suggest that galactic congestion triggers star formation, while others contend that these traffic jams gather material but do not stimulate star birth.
      Roman will help to solve mysteries like these by providing more data on dusty regions across the entire Milky Way. That will enable scientists to compare many galactic environments and study star birth in specific structures, like the galaxy’s winding spiral arms or its central stellar bar.
      NASA’s Nancy Grace Roman Space Telescope will conduct a Galactic Plane Survey to explore our home galaxy, the Milky Way. The survey will map around 20 billion stars, each encoding information about intervening dust and gas called the interstellar medium. Studying the interstellar medium could offer clues about our galaxy’s spiral arms, galactic recycling, and much more.
      Credit: NASA, STScI, Caltech/IPAC The astronomy community is currently in the final stages of planning for Roman’s Galactic Plane Survey.
      “With Roman’s massive survey of the galactic plane, we’ll be able to have this deep technical understanding of our galaxy,” Peek said.
      After processing, Roman’s data will be available to the public online via the Roman Research Nexus and the Barbara A. Mikulski Archive for Space Telescopes, which will each provide open access to the data for years to come.
      “People who aren’t born yet are going to be able to do really cool analyses of this data,” Peek said. “We have a really beautiful piece of our heritage to hand down to future generations and to celebrate.”
      Roman is slated to launch no later than May 2027, with the team working toward a potential early launch as soon as fall 2026.
      The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems Inc. in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California.
      Download additional images and video from NASA’s Scientific Visualization Studio.
      For more information about the Roman Space Telescope, visit:
      https://www.nasa.gov/roman
      By Laine Havens
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 16, 2025 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related Terms
      Nancy Grace Roman Space Telescope Galaxies Protostars Stars The Milky Way Explore More
      5 min read NASA’s Roman Team Selects Survey to Map Our Galaxy’s Far Side
      Article 2 years ago 6 min read NASA’s Roman Mission Shares Detailed Plans to Scour Skies
      Article 5 months ago 7 min read One Survey by NASA’s Roman Could Unveil 100,000 Cosmic Explosions
      Article 2 months ago View the full article
    • By European Space Agency
      Image: First view of aerosols from MetOp Second Generation’s 3MI instrument View the full article
    • By NASA
      5 Min Read NASA’s X-59 Moves Toward First Flight at Speed of Safety
      NASA’s X-59 quiet supersonic research aircraft is seen at dawn with firetrucks and safety personnel nearby during a hydrazine safety check at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. The operation highlights the extensive precautions built into the aircraft’s safety procedures for a system that serves as a critical safeguard, ensuring the engine can be restarted in flight as the X-59 prepares for its first flight. Credits: Lockheed Martin As NASA’s one-of-a-kind X-59 quiet supersonic research aircraft approaches first flight, its team is mapping every step from taxi and takeoff to cruising and landing – and their decision-making is guided by safety.
      First flight will be a lower-altitude loop at about 240 mph to check system integration, kicking off a phase of flight testing focused on verifying the aircraft’s airworthiness and safety. During subsequent test flights, the X-59 will go higher and faster, eventually exceeding the speed of sound. The aircraft is designed to fly supersonic while generating a quiet thump rather than a loud sonic boom.
      To help ensure that first flight – and every flight after that – will begin and end safely, engineers have layered protection into the aircraft.
      The X-59’s Flight Test Instrumentation System (FTIS) serves as one of its primary record keepers, collecting and transmitting audio, video, data from onboard sensors, and avionics information – all of which NASA will track across the life of the aircraft.
      “We record 60 different streams of data with over 20,000 parameters on board,” said Shedrick Bessent, NASA X-59 instrumentation engineer. “Before we even take off, it’s reassuring to know the system has already seen more than 200 days of work.”
      Through ground tests and system evaluations, the system has already generated more than 8,000 files over 237 days of recording. That record provides a detailed history that helps engineers verify the aircraft’s readiness for flight.
      Maintainers perform a hydrazine safety check on the agency’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, and is one of several safety features being validated ahead of the aircraft’s first flight.Credits: Lockheed Martin “There’s just so much new technology on this aircraft, and if a system like FTIS can offer a bit of relief by showing us what’s working – with reliability and consistency – that reduces stress and uncertainty,” Bessent said. “I think that helps the project just as much as it helps our team.”
      The aircraft also uses a digital fly-by-wire system that will keep the aircraft stable and limit unsafe maneuvers. First developed in the 1970s at NASA’s Armstrong Flight Research Center in Edwards, California, digital fly-by-wire replaced how aircraft were flown, moving away from traditional cables and pulleys to computerized flight controls and actuators.
      On the X-59, the pilot’s inputs – such as movement of the stick or throttle – are translated into electronic signals and decoded by a computer. Those signals are then sent through fiber-optic wires to the aircraft’s surfaces, like its wings and tail.
      Additionally, the aircraft uses multiple computers that back each other up and keep the system operating. If one fails, another takes over. The same goes for electrical and hydraulic systems, which also have independent backup systems to ensure the aircraft can fly safely.
      Onboard batteries back up the X-59’s hydraulic and electrical systems, with thermal batteries driving the electric pump that powers hydraulics. Backing up the engine is an emergency restart system that uses hydrazine, a highly reactive liquid fuel. In the unlikely event of a loss of power, the hydrazine system would restart the engine in flight. The system would help restore power so the pilot could stabilize or recover the aircraft.
      Maintainers perform a hydrazine safety check on NASA’s quiet supersonic X-59 aircraft at U.S. Air Force Plant 42 in Palmdale, California, on Aug. 18, 2025. Hydrazine is a highly toxic chemical, but it serves as a critical backup to restart the engine in flight, if necessary, which is one of several safety features being validated ahead of the aircraft’s first flight. Credits: Lockheed Martin Protective Measures
      Behind each of these systems is a team of engineers, technicians, safety and quality assurance experts, and others. The team includes a crew chief responsible for maintenance on the aircraft and ensuring the aircraft is ready for flight.
      “I try to always walk up and shake the crew chief’s hand,” said Nils Larson, NASA X-59 lead test pilot. “Because it’s not your airplane – it’s the crew chief’s airplane – and they’re trusting you with it. You’re just borrowing it for an hour or two, then bringing it back and handing it over.”
      Larson, set to serve as pilot for first flight, may only be borrowing the aircraft from the X-59’s crew chiefs – Matt Arnold from X-59 contractor Lockheed Martin and Juan Salazar from NASA – but plenty of the aircraft’s safety systems were designed specifically to protect the pilot in flight.
      The X-59’s life support system is designed to deliver oxygen through the pilot’s mask to compensate for the decreased atmospheric pressure at the aircraft’s cruising altitude of 55,000 feet – altitudes more than twice as high as that of a typical airliner. In order to withstand high-altitude flight, Larson will also wear a counter-pressure garment, or g-suit, similar to what fighter pilots wear.
      In the unlikely event it’s needed, the X-59 also features an ejection seat and canopy adapted from a U.S. Air Force T-38 trainer, which comes equipped with essentials like a first aid kit, radio, and water. Due to the design, build, and test rigor put into the X-59, the ejection seat is a safety measure.
      All these systems form a network of safety, adding confidence to the pilot and engineers as they approach to the next milestone – first flight.
      “There’s a lot of trust that goes into flying something new,” Larson said. “You’re trusting the engineers, the maintainers, the designers – everyone who has touched the aircraft. And if I’m not comfortable, I’m not getting in. But if they trust the aircraft, and they trust me in it, then I’m all in.”
      Share
      Details
      Last Updated Sep 12, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Ames Research Center Glenn Research Center Langley Research Center Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA, War Department Partnership Tests Boundaries of Autonomous Drone Operations
      Article 20 minutes ago 3 min read NASA, Embry-Riddle Enact Agreement to Advance Research, Educational Opportunities
      Article 24 hours ago 4 min read NASA Glenn Tests Mini-X-Ray Technology to Advance Space Health Care  
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...