Members Can Post Anonymously On This Site
NASA Helps Emerging Space Companies ‘Take the Heat’
-
Similar Topics
-
By NASA
NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
“Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
For more on HLS, visit:
https://www.nasa.gov/humans-in-space/human-landing-system
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
Explore More
8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
Article 1 day ago
r
View the full article
-
By Space Force
Over the past two years, the first U.S. space service component has tripled in size, established a 24/7 space watch cell and executed three Tier 1 Combatant Command exercises.
View the full article
-
By NASA
The future of human space exploration took a bold step forward at NASA’s Johnson Space Center in Houston on Nov. 15, 2024, as Texas A&M University leaders’ broke ground for the Texas A&M University Space Institute.
Texas state officials, NASA leaders, and distinguished guests participated in the ceremony, held near the future development site of Johnson’s new Exploration Park, marking an important milestone in a transformative partnership to advance research, innovation, and human spaceflight.
NASA’s Johnson Space Center Director Vanessa Wyche gives remarks at the Texas A&M University Space Institute groundbreaking ceremony in Houston on Nov. 15, 2024. NASA/Robert Markowitz “This groundbreaking is not just a physical act of breaking ground or planting a flag,” said Johnson Director Vanessa Wyche. “This is the moment our vision—to dare to expand frontiers and unite with our partners to explore for the benefit of all humanity—will be manifested.”
The Texas A&M University Space Institute will be the first tenant at NASA’s 240-acre Exploration Park to support facilities that enhance commercial access, foster a collaborative development environment, and strengthen the United States’ competitiveness in the space and aerospace industries.
Chairman Bill Mahomes Jr. of the Texas A&M University System Board of Regents, left, Chancellor John Sharp of the Texas A&M University System, and Johnson Director Vanessa Wyche hold a commemorative plaque celebrating the establishment of the Texas A&M University Space Institute at Exploration Park. NASA/Robert Markowitz Exploration Park aims to foster research, technology transfer, and a sustainable pipeline of career development for the Artemis Generation and Texas workers transitioning to the space economy. The park represents a key achievement of Johnson’s 2024 Dare | Unite | Explore commitments, emphasizing its role as the hub of human spaceflight, developing strategic partnerships, and paving the way for a thriving space economy.
Research conducted at the Space Institute is expected to accelerate human spaceflight by providing opportunities for the brightest minds worldwide to address the challenges of living in low Earth orbit, on the Moon, and on Mars.
Senior leadership from Johnson Space Center gathers for the groundbreaking ceremony of the Texas A&M University Space Institute. NASA/Robert Markowitz Industry leaders and Johnson executives stood alongside NASA’s Lunar Terrain Vehicle and Space Exploration Vehicle, symbolizing their commitment to fostering innovation and collaboration.
Texas A&M University Space Institute director and retired NASA astronaut Dr. Nancy Currie-Gregg and Dr. Rob Ambrose, Space Institute associate director, served as the masters of ceremony for the event. Johnson leaders present included Deputy Director Stephen Koerner; Associate Director Donna Shafer; Associate Director for Vision and Strategy Douglas Terrier; Director of External Relations Office Arturo Sanchez; and Chief Technologist and Director of the Business Development and Technology Integration Office Nick Skytland.
Also in attendance were Texas State Rep. Greg Bonnen; Texas A&M University System Board of Regents Chairman William Mahomes Jr.; Texas A&M University System Chancellor John Sharp; Texas A&M University President and Retired Air Force Gen. Mark Welsh III; and Texas A&M Engineering Vice Chancellor and Dean Robert Bishop.
Texas A&M University Space Institute Director and retired NASA astronaut Nancy Currie-Gregg plants a Texas A&M University Space Institute flag at Johnson Space Center, symbolizing the partnership between the institute and NASA.NASA/Robert Markowitz The institute, expected to open in September 2026, will feature the world’s largest indoor simulation spaces for lunar and Martian surface operations, high-bay laboratories, and multifunctional project rooms.
“The future of Texas’ legacy in aerospace is brighter than ever as the Texas A&M Space Institute in Exploration Park will create an unparalleled aerospace, economic, business development, research, and innovation region across the state,” Wyche said. “Humanity’s next giant leap starts here!”
View the full article
-
By NASA
NASA astronaut and Expedition 72 Flight Engineer Nick Hague pedals on the Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), an exercise cycle located aboard the International Space Station’s Destiny laboratory module. CEVIS provides aerobic and cardiovascular conditioning through recumbent (leaning back position) or upright cycling activities.NASA Lee esta historia en español aquí.
The International Space Station is humanity’s home in space and a research station orbiting about 250 miles above the Earth. NASA and its international partners have maintained a continuous human presence aboard the space station for more than 24 years, conducting research that is not possible on Earth.
The people living and working aboard the microgravity laboratory also are part of the research being conducted, helping to address complex human health issues on Earth and prepare humanity for travel farther than ever before, including the Moon and Mars.
Here are a few frequently asked questions about how NASA and its team of medical physicians, psychologists, nutritionists, exercise scientists, and other specialized caretakers ensure astronauts’ health and fitness aboard the orbiting laboratory.
How long is a typical stay aboard the International Space Station?
A typical mission to the International Space Station lasts about six months, but can vary based on visiting spacecraft schedules, mission priorities, and other factors. NASA astronauts also have remained aboard the space station for longer periods of time. These are known as long-duration missions, and previous missions have given NASA volumes of data about long-term spaceflight and its effects on the human body, which the agency applies to any crewed mission.
During long-duration missions, NASA’s team of medical professionals focus on optimizing astronauts’ physical and behavioral health and their performance to help ensure mission success. These efforts also are helping NASA prepare for future human missions to the Moon, Mars, and beyond.
How does NASA keep astronauts healthy while in space?
NASA has a team of medical doctors, psychologists, and others on the ground dedicated to supporting the health and well-being of astronauts before, during, and after each space mission. NASA assigns physicians with specialized training in space medicine, called flight surgeons, to each crew once named to a mission. Flight surgeons oversee the health care and medical training as crew members prepare for their mission, and they monitor the crew’s health before, during, and after their mission to the space station.
How does NASA support its astronauts’ mental and emotional well-being while in space?
The NASA behavioral health team provides individually determined psychological support services for crew members and their families during each mission. Ensuring astronauts can thrive in extreme environments starts as early as the astronaut selection process, in which applicants are evaluated on competencies such as adaptability and resilience. Astronauts receive extensive training to help them use self-assessment tools and treatments to manage their behavioral health. NASA also provides training in expeditionary skills to prepare every astronaut for missions on important competencies, such as self-care and team care, communication, and leadership and followership skills.
To help maintain motivation and morale aboard the space station, astronauts can email, call, and video conference with their family and friends, receive crew care packages aboard NASA’s cargo resupply missions, and teleconference with a psychologist, if needed.
How does microgravity affect astronaut physical health?
In microgravity, without the continuous load of Earth’s gravity, there are many changes to the human body. NASA understands many of the human system responses to the space environment, including adaptations to bone density, muscle, sensory-motor, and cardiovascular health, but there is still much to learn. These spaceflight effects vary from astronaut to astronaut, so NASA flight surgeons regularly monitor each crew member’s health during a mission and individualize diet and fitness routines to prioritize health and fitness while in space.
Why do astronauts exercise in space?
Each astronaut aboard the orbiting laboratory engages in specifically designed, Earth-like exercise plans. To maintain their strength and endurance, crew members are scheduled for two and a half hours of daily exercise to support muscle, bone, aerobic, and sensorimotor health. Current equipment onboard the space station includes the ARED (Advanced Resistive Exercise Device), which mimics weightlifting; a treadmill, called T2; and the CEVIS (Cycle Ergometer with Vibration Isolation and Stabilization System) for cardiovascular exercise.
What roles do food and nutrition play in supporting astronaut health?
Nutrition plays a critical role in maintaining an astronaut’s health and optimal performance before, during, and after their mission. Food also plays a psychosocial role during an astronaut’s long-duration stay aboard the space station. Experts working in NASA’s Space Food Systems Laboratory at the agency’s Johnson Space Center in Houston develop foods that are nutritious and appetizing. Crew members also have the opportunity to supplement the menu with personal favorites and off-the-shelf items, which can provide a taste of home.
NASA astronaut and Expedition 71 Flight Engineer Tracy C. Dyson is pictured in the galley aboard the International Space Station’s Unity module showing off food packets from JAXA (Japan Aerospace Exploration Agency).NASA How does NASA know whether astronauts are getting the proper nutrients?
NASA’s nutritional biochemistry dietitians and scientists determine the nutrients (vitamins, minerals, calories) the astronauts require while in space. This team tracks what each crew member eats through a tablet-based tracking program, which each astronaut completes daily. The data from the app is sent to the dietitians weekly to monitor dietary intake. Analyzing astronaut blood and urine samples taken before, during, and after space missions is a crucial part of studying how their bodies respond to the unique conditions of spaceflight. These samples provide valuable insight into how each astronaut adapts to microgravity, radiation, and other factors that affect human physiology in space.
How do astronauts train to work together while in space?
In addition to technical training, astronauts participate in team skills training. They learn effective group living skills and how to look out for and support one another. Due to its remote and isolated nature, long-duration spaceflight can make teamwork difficult. Astronauts must maintain situational awareness and implement the flight program in an ever-changing environment. Therefore, effective communication is critical when working as a team aboard station and with multiple support teams on the ground. Astronauts also need to be able to communicate complex information to people with different professional backgrounds. Ultimately, astronauts are people living and working together aboard the station and must be able to do a highly technical job and resolve any interpersonal issues that might arise.
What happens if there is a medical emergency on the space station?
All astronauts undergo medical training and have regular contact with a team of doctors closely monitoring their health on the ground. NASA also maintains a robust pharmacy and a suite of medical equipment onboard the space station to treat various conditions and injuries. If a medical emergency requires a return to Earth, the crew will return in the spacecraft they launched aboard to receive urgent medical care on the ground.
Expedition 69 NASA astronaut Frank Rubio is seen resting and talking with NASA ISS Program Manager Joel Montalbano, kneeling left, NASA Flight Surgeon Josef Schmid, red hat, and NASA Chief of the Astronaut Office Joe Acaba, outside the Soyuz MS-23 spacecraft after he landed with Roscosmos cosmonauts Sergey Prokopyev and Dmitri Petelin in a remote area near the town of Zhezkazgan, Kazakhstan on Wednesday, Sept. 27, 2023.NASA/Bill Ingalls Learn more about NASA’s Human Health and Performance Directorate at:
www.nasa.gov/hhp
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for life before DNA emerged — can favor making the building blocks of proteins in either the left-hand or the right-hand orientation. Resolving this mystery could provide clues to the origin of life. The findings appear in research recently published in Nature Communications.
Proteins are the workhorse molecules of life, used in everything from structures like hair to enzymes (catalysts that speed up or regulate chemical reactions). Just as the 26 letters of the alphabet are arranged in limitless combinations to make words, life uses 20 different amino acid building blocks in a huge variety of arrangements to make millions of different proteins. Some amino acid molecules can be built in two ways, such that mirror-image versions exist, like your hands, and life uses the left-handed variety of these amino acids. Although life based on right-handed amino acids would presumably work fine, the two mirror images are rarely mixed in biology, a characteristic of life called homochirality. It is a mystery to scientists why life chose the left-handed variety over the right-handed one.
A diagram of left-handed and right-handed versions of the amino acid isovaline, found in the Murchison meteorite.NASA DNA (deoxyribonucleic acid) is the molecule that holds the instructions for building and running a living organism. However, DNA is complex and specialized; it “subcontracts” the work of reading the instructions to RNA (ribonucleic acid) molecules and building proteins to ribosome molecules. DNA’s specialization and complexity lead scientists to think that something simpler should have preceded it billions of years ago during the early evolution of life. A leading candidate for this is RNA, which can both store genetic information and build proteins. The hypothesis that RNA may have preceded DNA is called the “RNA world” hypothesis.
If the RNA world proposition is correct, then perhaps something about RNA caused it to favor building left-handed proteins over right-handed ones. However, the new work did not support this idea, deepening the mystery of why life went with left-handed proteins.
The experiment tested RNA molecules that act like enzymes to build proteins, called ribozymes. “The experiment demonstrated that ribozymes can favor either left- or right-handed amino acids, indicating that RNA worlds, in general, would not necessarily have a strong bias for the form of amino acids we observe in biology now,” said Irene Chen, of the University of California, Los Angeles (UCLA) Samueli School of Engineering, corresponding author of the Nature Communications paper.
In the experiment, the researchers simulated what could have been early-Earth conditions of the RNA world. They incubated a solution containing ribozymes and amino acid precursors to see the relative percentages of the right-handed and left-handed amino acid, phenylalanine, that it would help produce. They tested 15 different ribozyme combinations and found that ribozymes can favor either left-handed or right-handed amino acids. This suggested that RNA did not initially have a predisposed chemical bias for one form of amino acids. This lack of preference challenges the notion that early life was predisposed to select left-handed-amino acids, which dominate in modern proteins.
“The findings suggest that life’s eventual homochirality might not be a result of chemical determinism but could have emerged through later evolutionary pressures,” said co-author Alberto Vázquez-Salazar, a UCLA postdoctoral scholar and member of Chen’s research group.
Earth’s prebiotic history lies beyond the oldest part of the fossil record, which has been erased by plate tectonics, the slow churning of Earth’s crust. During that time, the planet was likely bombarded by asteroids, which may have delivered some of life’s building blocks, such as amino acids. In parallel to chemical experiments, other origin-of-life researchers have been looking at molecular evidence from meteorites and asteroids.
“Understanding the chemical properties of life helps us know what to look for in our search for life across the solar system,” said co-author Jason Dworkin, senior scientist for astrobiology at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and director of Goddard’s Astrobiology Analytical Laboratory.
Dworkin is the project scientist on NASA’s OSIRIS-REx mission, which extracted samples from the asteroid Bennu and delivered them to Earth last year for further study.
“We are analyzing OSIRIS-REx samples for the chirality (handedness) of individual amino acids, and in the future, samples from Mars will also be tested in laboratories for evidence of life including ribozymes and proteins,” said Dworkin.
The research was supported by grants from NASA, the Simons Foundation Collaboration on the Origin of Life, and the National Science Foundation. Vázquez-Salazar acknowledges support through the NASA Postdoctoral Program, which is administered by Oak Ridge Associated Universities under contract with NASA.
Share
Details
Last Updated Nov 21, 2024 EditorWilliam SteigerwaldContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
Astrobiology Explore More
2 min read NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
NASA-supported scientists have developed a method to compute how tides affect the interiors of planets…
Article 2 weeks ago 2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
Article 3 weeks ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
Article 3 weeks ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.