Jump to content

Recommended Posts

  • Publishers
Posted
varda-capsule-with-parachute.jpeg?w=1024
A capsule containing the first products manufactured in space by Varda Space Industries and protected by a heat shield made at NASA’s Ames Research Center in California’s Silicon Valley lands at the Utah Test and Training Range on Feb. 21, 2024.
Varda Space Industries/John Kraus

Things are heating up in the atmosphere, and NASA is helping space start-ups stay cool.  

NASA has decades of expertise in creating technology that protects spacecraft from the intense heat generated when entering an atmosphere. As emerging companies develop innovative ways to do business in space, they know where to turn – and the agency is responding by offering its know-how and the advanced materials invented here to help enable new uses for space with big benefits for humanity.

Since 1951, when Harvey Allen, an engineer at NASA’s Ames Research Center in California’s Silicon Valley, showed a blunt-shaped capsule helps deflect the heat of atmospheric entry, Ames has led the agency in designing, developing, and testing thermal protection systems (TPS). These heat shields protect re-entering spacecraft and their cargo, such as pieces of a 4.5-billion-year-old asteroid or astronauts who will travel in the Orion crew capsule.

“In the past, the government was the only entity that needed heat shields,” said David Hash, chief of the Entry Systems and Technology Division at Ames, “That’s changing dramatically today. Companies that see new opportunities for commercial activities in space now have a business case to launch spacecraft and bring them back to Earth. NASA is uniquely positioned to show them how to do it.”

NASA works to encourage commercial growth. With an increasing number of start-ups who have smart ideas but limited funding and spaceflight experience, NASA experts at Ames and Langley Research Center in Hampton, Virginia, are doing their part to help. And success is already in the air – or passing safely through it.

In the past, the government was the only entity that needed heat shields. That’s changing dramatically today.

David Hash

David Hash

Chief, Entry Systems and Technology Division, NASA's Ames Research Center

On Feb. 21, Varda Space Industries of El Segundo, California, in partnership with Rocket Lab USA of Long Beach, California, returned to Earth the first product processed on its autonomous, free-flying, in-space manufacturing platform. The product is a pharmaceutical that may gain unique properties by forming in the near-absence of gravity. Ames made the spacecraft’s heat shield material, and Langley assisted Varda in developing their re-entry capsule through aeroscience expertise, systems design and analysis, and trade studies support.

Through a partnership agreement, Ames produced the thermal protection material, called C-PICA (Conformal Phenolic Impregnated Carbon Ablator), intended to bring down products from Varda’s factory in orbit for its first four missions. The material was originally developed at Ames, and February’s re-entry marked the first time a NASA-manufactured C-PICA heat shield ever returned from space.

“We performed extensive testing on the ground, in our arc jet facilities, where we can simulate the high temperatures of entry,” said Mairead Stackpoole, chief of the Thermal Protection Materials Branch at Ames, “but there’s nothing like a real spaceflight to test our systems. The Ames TPS team will soon take samples from the heat shield to analyze its performance in detail.”

NASA’s partnership with Varda will continue through a Tipping Point award from the agency’s Space Technology Mission Directorate (STMD). Managed by STMD’s Flight Opportunities program, this award will leverage technology transfer from Ames of the C-PICA production process, helping the small business establish its heat shield production and fully enter the space market, as well as a flight test to evaluate the material’s performance. A joint effort between NASA, the Air Force Research Laboratory, and Varda will also provide more flight tests of C-PICA, helping to fully mature this technology relevant for future Mars missions and more.

NASA’s thermal protection experts can work with any space company on tackling the complex challenges of re-entry. Current collaborations include two companies targeting flights in the coming year.

varda-capsule-heat-shield.jpeg?w=2048
A heat shield made by NASA is visible on the blunt, upward-facing side of a space capsule after its landing in the Utah desert. Varda Space Industries returned to Earth the first product processed on its in-space manufacturing platform on Feb. 21, 2024.
Varda Space Industries/John Kraus

The first flight of Inversion Space of Torrance, California, will take place in 2024 with the goal of using space to transport cargo. Inversion’s vehicle will re-enter the atmosphere using a C-PICA heat shield and a backshell, which protects the “downstream” end of the vehicle, made of another material developed at Ames: silicone-infused refractory ceramic ablator (SIRCA).

Later, NASA will support the first private mission to Venus with Rocket Lab. The spacecraft will use NASA’s Heatshield for Extreme Entry Environment Technology, developed at Ames, and a SIRCA backshell.

These and other projects NASA is enabling are born of 21st-century innovation, yet Hash sees similarities with the formation of commercial airlines in the 1920s and 30s.

As the Smithsonian’s National Postal Museum explains, when Congress passed the Air Mail Act in 1925, it allowed the U.S. Postal Service to transport mail using commercial air carriers. Because  companies could not rely on paying passengers in the early years to survive, this government participation encouraged and enabled the development of commercial aviation. NASA’s predecessor, the National Advisory Committee for Aeronautics, had the important role of advancing technologies to enable this new market.

“We need to do the same thing they did for the airways, only for the spaceways,” said Hash. “That’s our job, now. It’s the perfect role for government, and it will increase economic prosperity for our country.”

For news media:

Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA researchers are sending three air quality monitors to the International Space Station to test them for potential future use on the Moon.Credit: NASA/Sara Lowthian-Hanna As NASA prepares to return to the Moon, studying astronaut health and safety is a top priority. Scientists monitor and analyze every part of the International Space Station crew’s daily life—down to the air they breathe. These studies are helping NASA prepare for long-term human exploration of the Moon and, eventually, Mars.

      As part of this effort, NASA’s Glenn Research Center in Cleveland is sending three air quality monitors to the space station to test them for potential future use on the Moon. The monitors are slated to launch on Monday, April 21, aboard the 32nd SpaceX commercial resupply services mission for NASA.

      Like our homes here on Earth, the space station gets dusty from skin flakes, clothing fibers, and personal care products like deodorant. Because the station operates in microgravity, particles do not have an opportunity to settle and instead remain floating in the air. Filters aboard the orbiting laboratory collect these particles to ensure the air remains safe and breathable.

      Astronauts will face another air quality risk when they work and live on the Moon—lunar dust.
      “From Apollo, we know lunar dust can cause irritation when breathed into the lungs,” said Claire Fortenberry, principal investigator, Exploration Aerosol Monitors project, NASA Glenn. “Earth has weather to naturally smooth dust particles down, but there is no atmosphere on the Moon, so lunar dust particles are sharper and craggier than Earth dust. Lunar dust could potentially impact crew health and damage hardware.”

      Future space stations and lunar habitats will need monitors capable of measuring lunar dust to ensure air filtration systems are functioning properly. Fortenberry and her team selected commercially available monitors for flight and ground demonstration to evaluate their performance in a spacecraft environment, with the goal of providing a dust monitor for future exploration systems.
      NASA Glenn Research Center’s Claire Fortenberry holds a dust sample collected from International Space Station air filters.Credit: NASA/Sara Lowthian-Hanna Glenn is sending three commercial monitors to the space station to test onboard air quality for seven months. All three monitors are small: no bigger than a shoe box. Each one measures a specific property that provides a snapshot of the air quality aboard the station. Researchers will analyze the monitors based on weight, functionality, and ability to accurately measure and identify small concentrations of particles in the air.

      The research team will receive data from the space station every two weeks. While those monitors are orbiting Earth, Fortenberry will have three matching monitors at Glenn. Engineers will compare functionality and results from the monitors used in space to those on the ground to verify they are working as expected in microgravity. Additional ground testing will involve dust simulants and smoke.

      Air quality monitors like the ones NASA is testing also have Earth-based applications. The monitors are used to investigate smoke plumes from wildfires, haze from urban pollution, indoor pollution from activities like cooking and cleaning, and how virus-containing droplets spread within an enclosed space.

      Results from the investigation will help NASA evaluate which monitors could accompany astronauts to the Moon and eventually Mars. NASA will allow the manufacturers to review results and ensure the monitors work as efficiently and effectively as possible. Testing aboard the space station could help companies investigate pollution problems here on Earth and pave the way for future missions to the Red Planet.
      NASA Glenn Research Center’s Claire Fortenberry demonstrates how space aerosol monitors analyze the quality of the air.Credit: NASA/Sara Lowthian-Hanna “Going to the Moon gives us a chance to monitor for planetary dust and the lunar environment,” Fortenberry said. “We can then apply what we learn from lunar exploration to predict how humans can safely explore Mars.”
      NASA commercial resupply missions to the International Space Station deliver scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, significantly increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      Learn more about NASA and SpaceX’s 32nd commercial resupply mission to the space station:
      https://www.nasa.gov/nasas-spacex-crs-32/
      Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 17 hours ago 4 min read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
      Article 1 day ago 1 min read Recognizing Employee Excellence 
      Article 1 day ago View the full article
    • By European Space Agency
      Image: This very high-resolution image captures the Egyptian city of Giza and its surrounding area, including the world-famous Giza Pyramid Complex. View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      One of several NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation sits in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.NASA/Genaro Vavuris NASA engineers began using a network of ground sensors in March to collect data from an experimental air taxi to evaluate how to safely integrate such vehicles into airspace above cities – in all kinds of weather.
      Researchers will use the campaign to help improve tools to assist with collision avoidance and landing operations and ensure safe and efficient air taxi operations in various weather conditions.
      For years, NASA has looked at how wind shaped by terrain, including buildings in urban areas, can affect new types of aircraft. The latest test, which is gathering data from a Joby Aviation demonstrator aircraft, looks at another kind of wind – that which is generated by the aircraft themselves.
      Joby flew its air taxi demonstrator over NASA’s ground sensor array near the agency’s Armstrong Flight Research Center in Edwards, California producing air flow data. The Joby aircraft has six rotors that allow for vertical takeoffs and landings, and tilt to provide lift in flight. Researchers focused on the air pushed by the propellers, which rolls into turbulent, circular patterns of wind.
      NASA aeronautical meteorologist Luke Bard adjusts one of several wind lidar (light detection and ranging) sensors near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025, in preparation to collect data from Joby Aviation’s experimental air taxi aircraft. NASA is collecting information during this study to help advance weather-tolerant air taxi operations for the entire industryNASA/Genaro Vavuris This rolling wind can affect the aircraft’s performance, especially when it’s close to the ground, as well as others flying in the vicinity and people on the ground. Such wind turbulence is difficult to measure, so NASA enhanced its sensors with a new type of lidar – a system that uses lasers to measure precise distances – and that can map out the shapes of wind features.
      “The design of this new type of aircraft, paired with the NASA lidar technology during this study, warrants a better understanding of possible wind and turbulence effects that can influence safe and efficient flights,” said Grady Koch, lead for this research effort, from NASA’s Langley Research Center in Hampton, Virginia.
      Data to Improve Aircraft Tracking
      NASA also set up a second array of ground nodes including radar, cameras, and microphones in the same location as the sensors to provide additional data on the aircraft. These nodes will collect tracking data during routine flights for several months.
      The agency will use the data gathered from these ground nodes to demonstrate the tracking capabilities and functions of its “distributed sensing” technology, which involves embedding multiple sensors in an area where aircraft are operating.
      One of multiple NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation hovers in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.NASA/Genaro Vavuris This technology will be important for future air taxi flights, especially those occurring in cities by tracking aircraft moving through traffic corridors and around landing zones. Distributed sensing has the potential to enhance collision avoidance systems, air traffic management, ground-based landing sensors, and more.
      “Our early work on a distributed network of sensors, and through this study, gives us the opportunity to test new technologies that can someday assist in airspace monitoring and collision avoidance above cities,” said George Gorospe, lead for this effort from NASA’s Ames Research Center in California’s Silicon Valley.
      Using this data from an experimental air taxi aircraft, NASA will further develop the technology needed to help create safer air taxi flights in high-traffic areas. Both of these efforts will benefit the companies working to bring air taxis and drones safely into the airspace.
      The work is led by NASA’s Transformational Tools and Technologies and Convergent Aeronautics Solutions projects under the Transformative Aeronautics Concepts program in support of NASA’s Advanced Air Mobility mission. NASA’s Advanced Air Mobility mission seeks to deliver data to guide the industry’s development of electric air taxis and drones.
      Share
      Details
      Last Updated Apr 17, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Mobility Ames Research Center Convergent Aeronautics Solutions Drones & You Flight Innovation Glenn Research Center Langley Research Center Transformational Tools Technologies Transformative Aeronautics Concepts Program Explore More
      3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
      Article 3 hours ago 1 min read Recognizing Employee Excellence 
      Article 8 hours ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 23 hours ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      The space shuttle Discovery launches from NASA’s Kennedy Space Center in Florida, heading through Atlantic skies toward its 51-D mission. The seven-member crew lifted off at 8:59 a.m. ET, April 12, 1985.NASA The launch of space shuttle Discovery is captured in this April 12, 1985, photo. This mission, STS-51D, was the 16th flight of NASA’s Space Shuttle program, and Discovery’s fourth flight.
      Discovery carried out 39 missions, more than any other space shuttle. Its missions included deploying and repairing the Hubble Space Telescope and 13 flights to the International Space Station – including the very first docking in 1999. The retired shuttle now resides at the National Air and Space Museum’s Steven F. Udvar-Hazy Center in Virginia.
      Learn more about NASA’s Space Shuttle Program.
      Image credit: NASA
      View the full article
    • By NASA
      NASA Astronaut Don Pettit Soyuz MS-26 Space Station Farewells and Hatch Closing
  • Check out these Videos

×
×
  • Create New...