Jump to content

NASA’s Network of Small Moon-Bound Rovers Is Ready to Roll


Recommended Posts

  • Publishers
Posted

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Construction and testing are complete on the CADRE rovers, which will map the lunar surface together as a tech demo to show the promise of multirobot missions.

A trio of small rovers that will explore the Moon in sync with one another are rolling toward launch. Engineers at NASA’s Jet Propulsion Laboratory in Southern California recently finished assembling the robots, then subjected them to a punishing series of tests to ensure they’ll survive their jarring rocket ride into space and their travels in the unforgiving lunar environment.

Part of a technology demonstration called CADRE (Cooperative Autonomous Distributed Robotic Exploration), each solar-powered rover is about the size of a carry-on suitcase. The rovers and associated hardware will be installed on a lander headed for the Moon’s Reiner Gamma region. They’ll spend the daylight hours of a lunar day – the equivalent of about 14 days on Earth – conducting experiments by autonomously exploring, mapping, and using ground-penetrating radar that will peer below the Moon’s surface.

The goal is to show that a group of robotic spacecraft can work together to accomplish tasks and record data as a team without explicit commands from mission controllers on Earth. If the project succeeds, future missions could include teams of robots spreading out to take simultaneous, distributed scientific measurements, potentially in support of astronauts.

Engineers have put in long hours test-driving rovers and working out bugs to finish the hardware, get it through testing, and prepare it for integration with the lander.

Clamped to a shaker table, one of NASA’s CADRE rovers gets shaken vigorously during a test in November 2023. This vibration test is designed to show that the rover can withstand the jarring rocket ride on its journey to the Moon aboard a lunar lander.

“We have been in overdrive getting this tech demo ready for its lunar adventure,” said Subha Comandur, CADRE project manager at JPL. “It’s been months of nearly round-the-clock testing and sometimes re-testing, but the team’s hard work is paying off. Now we know these rovers are ready to show what a team of little space robots can accomplish together.”

Shake and Bake

While the list of tests is extensive, the most brutal involve extreme environmental conditions to ensure the rovers can withstand the rigors of the road ahead. That includes being locked in a thermal vacuum chamber that simulates the airless conditions of space and its extreme hot and cold temperatures. The hardware also gets clamped to a special “shaker table” that vibrates intensely to make sure it will endure the journey out of Earth’s atmosphere.

A CADRE rover is prepared for electromagnetic interference
A CADRE rover is prepared for electromagnetic interference and compatibility testing in a special chamber at JPL in November 2023. Such testing confirms that the operation of the electronic subsystems do not interfere with each other nor with those on the lander.
NASA/JPL-Caltech

“This is what we submit our rovers to: ‘shake’ to simulate the rocket launch itself and ‘bake’ to simulate the extreme temperatures of space. It’s very nerve-wracking to witness in person,” said JPL’s Guy Zohar, the project’s flight system manager. “We’re using many carefully selected commercial parts on our project. We expect them to work, but we’re always a little worried when we go into testing. Happily, each test has ultimately been successful.”

Engineers also performed environmental testing on three hardware elements mounted on the lander: a base station that the rovers will communicate with via mesh network radios, a camera that will provide a view of the rovers’ activities, and the deployer systems that will lower the rovers to the lunar surface via a fiber tether fed slowly out from a motorized spool.

Putting Code to the Test, Too

Meanwhile, engineers working on CADRE’s cooperative autonomy software have spent many days in JPL’s rocky, sandy Mars Yard with full-scale versions of the rovers called development models. With flight software and autonomy capabilities aboard, these test rovers showed they can accomplish key goals for the project. They drove together in formation. Faced with unexpected obstacles, they adjusted their plans as a group by sharing updated maps and replanning coordinated paths. And when one rover’s battery charge was low, the whole team paused so they could later continue together.

Two full-scale development model rovers
Two full-scale development model rovers are tested in JPL’s Mars Yard in August 2023 as part of NASA’s CADRE tech demo. These tests confirmed the project’s hardware and software can work together to accomplish key goals.
NASA/JPL-Caltech

The project conducted several drives at night under large flood lamps so the rovers could experience extreme shadows and lighting that approximate what they’ll encounter during the lunar daytime.

After that, the team performed similar drive tests with flight models (the rovers that will go to the Moon) in a JPL clean room. When the spotless floor there proved a bit slippery – a texture different from the lunar surface – the robots got out of formation. But they stopped, adjusted, and proceeded on their planned path.

“Dealing with curveballs – that’s important for the autonomy. The key is the robots respond to things going off plan, then they replan and are still successful,” said JPL’s Jean-Pierre de la Croix, CADRE principal investigator and autonomy lead. “We’re going to a unique environment on the Moon, and there will, of course, be some unknowns. We’ve done our best to prepare for those by testing software and hardware together in various situations.”

Next, the hardware will ship to Intuitive Machines for installation on a Nova-C lander that will launch atop a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida.

More About the Project

A division of Caltech in Pasadena, California, JPL manages the CADRE technology demonstration project for the Game Changing Development program within NASA’s Space Technology Mission Directorate in Washington. CADRE is a payload under NASA’s CLPS (Commercial Lunar Payload Services) initiative, which is managed by the agency’s Science Mission Directorate. The agency’s Glenn Research Center in Cleveland and its Ames Research Center in Silicon Valley, California, both supported the project. Motiv Space Systems designed and built key hardware elements at the company’s Pasadena facility. Clemson University in South Carolina contributed research in support of the project.

For more about CADRE, go to:

https://go.nasa.gov/cadre

News Media Contact

Melissa Pamer
Jet Propulsion Laboratory, Pasadena, Calif.
626-314-4928
melissa.pamer@jpl.nasa.gov

2024-022

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read
      Curiosity Blog, Sols 4584 – 4585: Just a Small Bump
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on June 27, 2025 — Sol 4582, or Martian day 4,582 of the Mars Science Laboratory mission — at 05:28:57 UTC. NASA/JPL-Caltech Written by Abigail Fraeman, Deputy Project Scientist at NASA’s Jet Propulsion Laboratory
      Earth planning date: Friday, June 27, 2025
      We weren’t able to unstow Curiosity’s robotic arm on Wednesday because of some potentially unstable rocks under Curiosity’s wheels, but we liked the rocks at Wednesday’s location enough that we decided to spend a sol repositioning the rover so that we’d have another chance today to analyze them. The small adjustment of the rover’s position, or “bump,” as we like to call it during tactical planning, was successful, and we found ourselves in a nice stable pose this morning which allowed us to use our highly capable robotic arm to observe the rocks in front of us.
      We will be collecting APXS and MAHLI observations of two targets today. The first, “Santa Elena,” is the bumpy rock that caught our eye on Wednesday. The second, informally named “Estancia Allkamari,” is a patch of nearby sand. We’ll analyze this target to understand if and how the sand composition has changed as we’ve driven across Mount Sharp, and to better help us understand how sand may be contributing to future compositional measurements that cover mixtures of sand and rock. MAHLI and ChemCam will team up to observe a third target named “Ticatica,” which is another bumpy rock nearby that looks like it might have a dark patch on its side.
      This is the final weekend of this Martian year when temperature and relative humidity in Gale crater hit the sweet spot where conditions are right for frost to form in the pre-dawn hours. We’re taking this last opportunity to see if we can catch any evidence of frost with the ChemCam laser, shooting a sandy (and hopefully cold) portion of the ground in the pre-dawn hours on a target named “Rio Huasco.” Other activities in the plan include atmospheric monitoring, Mastcam mosaics, including a 20 x 3 mosaic of the large boxwork structures in the distance, and a short drive to the southwest to check out a rocky raised ridge.

      For more Curiosity blog posts, visit MSL Mission Updates


      Learn more about Curiosity’s science instruments

      Share








      Details
      Last Updated Jul 01, 2025 Related Terms
      Blogs Explore More
      4 min read Curiosity Blog, Sols 4582-4583: A Rock and a Sand Patch


      Article


      3 days ago
      2 min read Curiosity Blog, Sols 4580-4581: Something in the Air…


      Article


      5 days ago
      2 min read Clay Minerals From Mars’ Most Ancient Past?


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      The Meteosat Third Generation Sounder (MTG-S1) satellite, which is hosting the instrument for the Copernicus Sentinel-4 mission, has been placed inside the nose cone of the Falcon 9 launch rocket and is ready for the scheduled liftoff at 23:03 CEST on Tuesday, 1 July.
      View the full article
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts Multimedia Images Videos Sonifications Podcasts e-Books Online Activities 3D Hubble Models Lithographs Fact Sheets Posters Hubble on the NASA App Glossary News Hubble News Social Media Media Resources More 35th Anniversary Online Activities 2 min read
      Hubble Studies Small but Mighty Galaxy
      This NASA/ESA Hubble Space Telescope features the nearby galaxy NGC 4449. ESA/Hubble & NASA, E. Sabbi, D. Calzetti, A. Aloisi This portrait from the NASA/ESA Hubble Space Telescope puts the nearby galaxy NGC 4449 in the spotlight. The galaxy is situated just 12.5 million light-years away in the constellation Canes Venatici (the Hunting Dogs). It is a member of the M94 galaxy group, which is near the Local Group of galaxies that the Milky Way is part of.
      NGC 4449 is a dwarf galaxy, which means that it is far smaller and contains fewer stars than the Milky Way. But don’t let its small size fool you — NGC 4449 packs a punch when it comes to making stars! This galaxy is currently forming new stars at a much faster rate than expected for its size, which makes it a starburst galaxy. Most starburst galaxies churn out stars mainly in their centers, but NGC 4449 is alight with brilliant young stars throughout. Researchers believe that this global burst of star formation came about because of NGC 4449’s interactions with its galactic neighbors. Because NGC 4449 is so close, it provides an excellent opportunity for Hubble to study how interactions between galaxies can influence the formation of new stars.
      Hubble released an image of NGC 4449 in 2007. This new version incorporates several additional wavelengths of light that Hubble collected for multiple observing programs. These programs encompass an incredible range of science, from a deep dive into NGC 4449’s star-formation history to the mapping of the brightest, hottest, and most massive stars in more than two dozen nearby galaxies.
      The NASA/ESA/CSA James Webb Space Telescope has also observed NGC 4449, revealing in intricate detail the galaxy’s tendrils of dusty gas, glowing from the intense starlight radiated by the flourishing young stars.
      Text Credit: ESA/Hubble
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Share








      Details
      Last Updated Jun 20, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Hubble Space Telescope Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Irregular Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Galaxies



      Galaxy Details and Mergers



      Hubble’s Night Sky Challenge


      View the full article
    • By European Space Agency
      Video: 00:02:00 ESA project astronaut Sławosz Uznański-Wiśniewski is heading to the International Space Station on his first mission as part of Axiom Mission 4 (Ax-4). He is the second ESA project astronaut from a new generation of Europeans to fly on a commercial human spaceflight mission with Axiom Space. 
      Sponsored by the Polish government and supported by ESA, the Polish Ministry of Economic Development and Technology (MRiT), and the Polish Space Agency (POLSA), the mission—called Ignis—features an ambitious technological and scientific programme. It includes several experiments proposed by the Polish space industry and developed in cooperation with ESA, along with additional ESA-led experiments.
      Follow Sławosz's journey on the Ignis mission website and discover more about the next mission patch to be hung on the walls of the Columbus Control Centre.
      View the full article
    • By NASA
      A new online portal by NASA and the Alaska Satellite Facility maps satellite radar meas-urements across North America, enabling users to track land movement since 2016 caused by earthquakes, landslides, volcanoes, and other phenomena.USGS An online tool maps measurements and enables non-experts to understand earthquakes, subsidence, landslides, and other types of land motion.
      NASA is collaborating with the Alaska Satellite Facility in Fairbanks to create a powerful web-based tool that will show the movement of land across North America down to less than an inch. The online portal and its underlying dataset unlock a trove of satellite radar measurements that can help anyone identify where and by how much the land beneath their feet may be moving — whether from earthquakes, volcanoes, landslides, or the extraction of underground natural resources such as groundwater.
      Spearheaded by NASA’s Observational Products for End-Users from Remote Sensing Analysis (OPERA) project at the agency’s Jet Propulsion Laboratory in Southern California, the effort equips users with information that would otherwise take years of training to produce. The project builds on measurements from spaceborne synthetic aperture radars, or SARs, to generate high-resolution data on how Earth’s surface is moving.
      The OPERA portal shows how land is sinking in Freshkills Park, which is being built on the site of a former landfill on Staten Island, New York. Landfills tend to sink over time as waste decomposes and settles. The blue dot marks the spot where the portal is showing movement in the graph.Alaska Satellite Facility Formally called the North America Surface Displacement Product Suite, the new dataset comes ready to use with measurements dating to 2016, and the portal allows users to view those measurements at a local, state, and regional scales in a few seconds. For someone not using the dataset or website, it could take days or longer to do a similar analysis.
      “You can zoom in to your country, your state, your city block, and look at how the land there is moving over time,” said David Bekaert, the OPERA project manager and a JPL radar scientist. “You can see that by a simple mouse click.”
      The portal currently includes measurements for millions of pixels across the U.S. Southwest, northern Mexico, and the New York metropolitan region, each representing a 200-foot-by-200-foot (60-meter-by-60-meter) area on the ground. By the end of 2025, OPERA will add data to cover the rest of the United States, Central America, and Canada within 120 miles (200 kilometers) of the U.S. border. When a user clicks on a pixel, the system pulls measurements from hundreds of files to create a graph visualizing the land surface’s cumulative movement over time.
      Land is rising at the Colorado River’s outlet to the Gulf of California, as indicated in this screenshot from the OPERA portal. The uplift is due to the sediment from the river building up over time. The graph shows that the land at the blue dot has risen about 8 inches (20 centimeters) since 2016.Alaska Satellite Facility “The OPERA project automated the end-to-end SAR data processing system such that users and decision-makers can focus on discovering where the land surface may be moving in their areas of interest,” said Gerald Bawden, program scientist responsible for OPERA at NASA Headquarters in Washington. “This will provide a significant advancement in identifying and understanding potential threats to the end users, while providing cost and time savings for agencies.” 
      For example, water-management bureaus and state geological surveys will be able to directly use the OPERA products without needing to make big investments in data storage, software engineering expertise, and computing muscle.
      How It Works
      To create the displacement product, the OPERA team continuously draws data from the ESA (European Space Agency) Sentinel-1 radar satellites, the first of which launched in 2014. Data from NISAR, the NASA-ISRO (Indian Space Research Organisation) Synthetic Aperture Radar mission, will be added to the mix after that spacecraft launches later this year.
      The OPERA portal shows that land near Willcox, Arizona, subsided about 8 inches (20 centimeters) since between 2016 and 2021, in large part due to groundwater pumping. The region is part of an area being managed by state water officials.Alaska Satellite Facility Satellite-borne radars work by emitting microwave pulses at Earth’s surface. The signals scatter when they hit land and water surfaces, buildings, and other objects. Raw data consists of the strength and time delay of the signals that echo back to the sensor. 
      To understand how land in a given area is moving, OPERA algorithms automate steps in an otherwise painstaking process. Without OPERA, a researcher would first download hundreds or thousands of data files, each representing a pass of the radar over the point of interest, then make sure the data aligned geographically over time and had precise coordinates.
      Then they would use a computationally intensive technique called radar interferometry to gauge how much the land moved, if at all, and in which direction — towards the satellite, which would indicate the land rose, or away from the satellite, which would mean it sank.
      “The OPERA project has helped bring that capability to the masses, making it more accessible to state and federal agencies, and also users wondering, ‘What’s going on around my house?’” said Franz Meyer, chief scientist of the Alaska Satellite Facility, a part of the University of Alaska Fairbanks Geophysical Institute.
      Monitoring Groundwater
      Sinking land is a top priority to the Arizona Department of Water Resources. From the 1950s through the 1980s, it was the main form of ground movement officials saw, as groundwater pumping increased alongside growth in the state’s population and agricultural industry. In 1980, the state enacted the Groundwater Management Act, which reduced its reliance on groundwater in highly populated areas and included requirements to monitor its use.
      The department began to measure this sinking, called subsidence, with radar data from various satellites in the early 2000s, using a combination of SAR, GPS-based monitoring, and traditional surveying to inform groundwater-management decisions.
      Now, the OPERA dataset and portal will help the agency share subsidence information with officials and community members, said Brian Conway, the department’s principal hydrogeologist and supervisor of its geophysics unit. They won’t replace the SAR analysis he performs, but they will offer points of comparison for his calculations. Because the dataset and portal will cover the entire state, they also could identify areas not yet known to be subsiding.
      “It’s a great tool to say, ‘Let’s look at those areas more intensely with our own SAR processing,’” Conway said.
      The displacement product is part of a series of data products OPERA has released since 2023. The project began in 2020 with a multidisciplinary team of scientists at JPL working to address satellite data needs across different federal agencies. Through the Satellite Needs Working Group, those agencies submitted their requests, and the OPERA team worked to improve access to information to aid a range of efforts such as disaster response, deforestation tracking, and wildfire monitoring.
      NASA-Led Project Tracking Changes to Water, Ecosystems, Land Surface News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      2025-076
      Share
      Details
      Last Updated Jun 06, 2025 Related Terms
      Earth Science Earth Science Division Earthquakes Jet Propulsion Laboratory Natural Disasters Volcanoes Explore More
      4 min read NASA Mars Orbiter Captures Volcano Peeking Above Morning Cloud Tops
      Article 9 mins ago 8 min read ICESat-2 Applications Team Hosts Satellite Bathymetry Workshop
      Introduction On September 15, 2018, the NASA Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission…
      Article 1 day ago 5 min read Jack Kaye Retires After a Storied Career at NASA
      Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] has decided to retire…
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...