Members Can Post Anonymously On This Site
Students Become FjordPhyto Volunteers and Discover that Antarctica Is Much Colder Than Texas
-
Similar Topics
-
By USH
Antarctica is shrouded in mystery, holding secrets from the past and serving as the site of ongoing covert operations. It's no surprise that numerous restricted zones exist to conceal the truth about what’s really happening there. The intrigue extends beyond the surface, hidden dangers lurk beneath the ice, particularly in the depths of Lake Vostok.
This hidden subglacial lake, sealed off from the world for 15 million years, holds secrets beyond imagination. Preserved in isolation, its ecosystem is unlike anything else on Earth.
When a Russian team drilled into Lake Vostok, they uncovered more than just ancient water. But something went wrong. Two scientists died under mysterious circumstances, and official reports contradict witness accounts. Military operations, classified research, and blurred satellite images suggest something is being hidden.
What are they trying to hide at the bottom of the world? Rumors speak of monstrous, spider-like entities, shape-shifting predators, and colossal, whale-like humanoids known as the "Ningen" a name that means "human" in Japanese.
View the full article
-
By NASA
NASA astronauts Don Pettit and Nick Hague are at the controls of the robotics workstation.
Credit: NASA
Students from Rocky Hill, Connecticut, will have the chance to connect with NASA astronauts Nick Hague and Don Pettit as they answer prerecorded science, technology, engineering, and mathematics-related questions from aboard the International Space Station.
Watch the 20-minute space-to-Earth call at 11:40 a.m. EST on Tuesday, Feb. 18, on NASA+ and learn how to watch NASA content on various platforms, including social media.
The event for kindergarten through 12th grade students will be hosted at Rocky Hill Library in Rocky Hill, near Hartford, Connecticut. The goal is to engage area students by introducing them to the wide variety of STEM career opportunities available in space exploration and related fields.
Media interested in covering the event must contact by 5 p.m., Thursday, Feb. 14, to Gina Marie Davies at: gdavies@rockyhillct.gov or 860-258-2530.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos and lesson plans highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Feb 11, 2025 LocationNASA Headquarters Related Terms
Humans in Space Astronauts International Space Station (ISS) Space Communications & Navigation Program View the full article
-
By NASA
2 min read
Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project
Adventurous travellers aboard the Viking Octantis ship, sampling phytoplankton from Danco Island in the Errera Channel for the FjordPhyto project. Allison Cusick FjordPhyto is a collective effort where travelers on tour expedition vessels in Antarctica help scientists at Scripps Institution of Oceanography and Universidad Nacional de La Plata study phytoplankton. Now project leader Dr. Allison Cusick has a Ph.D.! . Dr. Cusick studies how melting glaciers influence phytoplankton in the coastal regions. She wrote her doctoral dissertation based on the data collected by FjordPhyto volunteers.
“Travelers adventure to the wild maritime climate of Antarctica and help collect samples from one of the most data-limited regions of the world,” said Cusick. “While on vacation, they can volunteer to join a FjordPhyto science boat experience where they spend an hour collecting water measurements like salinity, temperature, chlorophyll-a, turbidity, as well as physical samples for molecular genetics work, microscopy identification, and carbon biomass estimates. It’s a full immersion into the ecosystem and the importance of polar research!”
Cusick successfully defended her thesis on December 18, 2024, earning a Ph.D. in Oceanography from the Scripps Institution of Oceanography. Hers is the second Ph.D. based on data from the FjordPhyto project. Martina Mascioni from FjordPhyto team earned her Ph.D. from the National University of La Plata (Argentina) in 2018.
The project is a hit with travelers, too.
“It’s incredibly inspiring to be part of a program like this that’s open to non-specialist involvement,” said one volunteer, a retired biology teacher aboard the Viking Octantis ship, who continued to say, “Thank you for letting us be a part of the science and explaining so clearly why it matters to the bigger picture.”
If you would like to get involved, go to www.fjordphyto.org and reach out to the team!
Facebook logo @DoNASAScience @DoNASAScience Share
Details
Last Updated Feb 10, 2025 Related Terms
Citizen Science Earth Science Oceans Explore More
5 min read NASA CubeSat Finds New Radiation Belts After May 2024 Solar Storm
Article
4 days ago
3 min read NASA’s Cloud-based Confluence Software Helps Hydrologists Study Rivers on a Global Scale
Article
6 days ago
15 min read Summary of the 53rd U.S.–Japan ASTER Science Team Meeting
Article
3 weeks ago
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
2 Min Read More Than 400 Lives Saved with NASA’s Search and Rescue Tech in 2024
NASA Artemis II crew members are assisted by U.S. Navy personnel as they exit a mockup of the Orion spacecraft in the Pacific Ocean during Underway Recovery Test 11 (URT-11) on Feb. 25, 2024. Credits: NASA/Kenny Allen NASA’s Search and Rescue technologies enabled hundreds of lives saved in 2024.NASA/Dave Ryan Did you know that the same search and rescue technologies developed by NASA for astronaut missions to space help locate and rescue people across the United States and around the world?
NASA’s collaboration with the international satellite-aided search and rescue effort known as Cospas-Sarsat has enabled the development of multiple emergency location beacons for explorers on land, sea, and air.
Of the 407 lives saved in 2024 through search and rescue efforts in the United States, NOAA (National Oceanic and Atmospheric Administration) reports that 52 rescues were the result of activated personal locator beacons, 314 from emergency position-indicating radio beacons, and 41 from emergency locator transmitters. Since 1982, more than 50,000 lives have been saved across the world.
Using GPS satellites, these beacons transmit their location to the Cospas-Sarsat network once activated. The beacons then provide the activation coordinates to the network, allowing first responders to rescue lost or distressed explorers.
NASA Artemis II crew members are assisted by U.S. Navy personnel as they exit a mockup of the Orion spacecraft in the Pacific Ocean during Underway Recovery Test 11 (URT-11) on Feb. 25, 2024, while his crewmates look on. URT-11 is the eleventh in a series of Artemis recovery tests, and the first time NASA and its partners put their Artemis II recovery procedures to the test with the astronauts.NASA/Kenny Allen The Search and Rescue Office, part of NASA’s SCaN (Space Communications and Navigation) Program, has assisted in search and rescue services since its formation in 1979 Now, the office is building on their long legacy of Earth-based beacon development to support crewed missions to space.
The beacons also are used for emergency location, if needed, as part of NASA’s crew launches to and from the International Space Station, and will support NASA’s Artemis campaign crew recovery preparations during future missions returning from deep space. Systems being tested, like the ANGEL (Advanced Next-Generation Emergency Locator) beacon, are benefitting life on Earth and missions to the Moon and Mars. Most recently, NASA partnered with the Department of Defense to practice Artemis II recovery procedures – including ANGEL beacon activation – during URT-11 (Underway Recovery Test 11).
Miniaturized Advanced Next-Generation Emergency Locator (ANGEL) beacons will be attached to the astronauts’ life preserver units. When astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hanse splash back down to Earth — or in the unlikely event of a launch abort scenario — these beacons will allow them to be found if they need to egress from the Orion capsule.NASA The SCaN program at NASA Headquarters in Washington provides strategic oversight to the Search and Rescue office. NOAA manages the U.S. network region for Cospas-Sarsat, which relies on flight and ground technologies originally developed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. U.S. region rescue efforts are led by the U.S. Coast Guard, U.S. Air Force, and many other local rescue authorities.
About the Author
Kendall Murphy
Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
Share
Details
Last Updated Feb 06, 2025 EditorGoddard Digital TeamContactKatherine Schauerkatherine.s.schauer@nasa.govLocationNASA Goddard Space Flight Center Related Terms
Goddard Space Flight Center Artemis Communicating and Navigating with Missions Space Communications & Navigation Program Space Communications Technology Explore More
4 min read NASA Search and Rescue Team Prepares for Safe Return of Artemis II Crew
When Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space…
Article 2 years ago 3 min read NASA Search and Rescue Technology Saves Explorers, Enables Exploration
Article 1 year ago 4 min read NASA Tests Beacon for Safe Recovery of Astronauts on Artemis Missions
Article 3 years ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Captured by the HiRISE camera on NASA’s Mars Reconnaissance Orbiter on March 4, 2021, this impact crater was found in Cerberus Fossae, a seismically active region of the Red Planet. Scien-tists matched its appearance on the surface with a quake detected by NASA’s InSight lander. With help from AI, scientists discovered a fresh crater made by an impact that shook material as deep as the Red Planet’s mantle.
Meteoroids striking Mars produce seismic signals that can reach deeper into the planet than previously known. That’s the finding of a pair of new papers comparing marsquake data collected by NASA’s InSight lander with impact craters spotted by the agency’s Mars Reconnaissance Orbiter (MRO).
The papers, published on Monday, Feb. 3, in Geophysical Research Letters (GRL), highlight how scientists continue to learn from InSight, which NASA retired in 2022 after a successful extended mission. InSight set the first seismometer on Mars, detecting more than 1,300 marsquakes, which are produced by shaking deep inside the planet (caused by rocks cracking under heat and pressure) and by space rocks striking the surface.
By observing how seismic waves from those quakes change as they travel through the planet’s crust, mantle, and core, scientists get a glimpse into Mars’ interior, as well as a better understanding of how all rocky worlds form, including Earth and its Moon.
A camera on the robotic arm of NASA’s InSight captured the lander setting down its Wind and Thermal Shield on Feb. 2, 2019. The shield covered InSight’s seismometer, which captured data from more than 1,300 marsquakes over the lander’s four-year mission. Researchers have in the past taken images of new impact craters and found seismic data that matches the date and location of the craters’ formation. But the two new studies represent the first time a fresh impact has been correlated with shaking detected in Cerberus Fossae, an especially quake-prone region of Mars that is 1,019 miles (1,640 kilometers) from InSight.
The impact crater is 71 feet (21.5 meters) in diameter and much farther from InSight than scientists expected, based on the quake’s seismic energy. The Martian crust has unique properties thought to dampen seismic waves produced by impacts, and researchers’ analysis of the Cerberus Fossae impact led them to conclude that the waves it produced took a more direct route through the planet’s mantle.
InSight’s team will now have to reassess their models of the composition and structure of Mars’ interior to explain how impact-generated seismic signals can go that deep.
“We used to think the energy detected from the vast majority of seismic events was stuck traveling within the Martian crust,” said InSight team member Constantinos Charalambous of Imperial College London. “This finding shows a deeper, faster path — call it a seismic highway — through the mantle, allowing quakes to reach more distant regions of the planet.”
Spotting Mars Craters With MRO
A machine learning algorithm developed at NASA’s Jet Propulsion Laboratory in Southern California to detect meteoroid impacts on Mars played a key role in discovering the Cerberus Fossae crater. In a matter of hours, the artificial intelligence tool can sift through tens of thousands of black-and-white images captured by MRO’s Context Camera, detecting the blast zones around craters. The tool selects candidate images for examination by scientists practiced at telling which subtle colorations on Mars deserve more detailed imaging by MRO’s High-Resolution Imaging Science Experiment (HiRISE) camera.
“Done manually, this would be years of work,” said InSight team member Valentin Bickel of the University of Bern in Switzerland. “Using this tool, we went from tens of thousands of images to just a handful in a matter of days. It’s not quite as good as a human, but it’s super fast.”
Bickel and his colleagues searched for craters within roughly 1,864 miles (3,000 kilometers) of InSight’s location, hoping to find some that formed while the lander’s seismometer was recording. By comparing before-and-after images from the Context Camera over a range of time, they found 123 fresh craters to cross-reference with InSight’s data; 49 of those were potential matches with quakes detected by the lander’s seismometer. Charalambous and other seismologists filtered that pool further to identify the 71-foot Cerberus Fossae impact crater.
Deciphering More, Faster
The more scientists study InSight’s data, the better they become at distinguishing signals originating inside the planet from those caused by meteoroid strikes. The impact found in Cerberus Fossae will help them further refine how they tell these signals apart.
“We thought Cerberus Fossae produced lots of high-frequency seismic signals associated with internally generated quakes, but this suggests some of the activity does not originate there and could actually be from impacts instead,” Charalambous said.
The findings also highlight how researchers are harnessing AI to improve planetary science by making better use of all the data gathered by NASA and ESA (European Space Agency) missions. In addition to studying Martian craters, Bickel has used AI to search for landslides, dust devils, and seasonal dark features that appear on steep slopes, called slope streaks or recurring slope linae. AI tools have been used to find craters and landslides on Earth’s Moon as well.
“Now we have so many images from the Moon and Mars that the struggle is to process and analyze the data,” Bickel said. “We’ve finally arrived in the big data era of planetary science.”
More About InSight
JPL managed InSight for the agency’s Science Mission Directorate. InSight was part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supported spacecraft operations for the mission.
A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), supported the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.
A division of Caltech in Pasadena, California, JPL manages the Mars Reconnaissance Orbiter Project for NASA’s Science Mission Directorate, Washington. The University of Arizona, in Tucson, operates HiRISE, which was built by BAE Systems in Boulder, Colorado. The Context Camera was built by, and is operated by, Malin Space Science Systems in San Diego.
For more about Insight, visit:
https://science.nasa.gov/mission/insight/
For more about MRO, visit:
https://science.nasa.gov/mission/mars-reconnaissance-orbiter/
News Media Contacts
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
|karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
2025-013
Share
Details
Last Updated Feb 03, 2025 Related Terms
InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Jet Propulsion Laboratory Mars Mars Reconnaissance Orbiter (MRO) Explore More
5 min read 6 Things to Know About SPHEREx, NASA’s Newest Space Telescope
Article 3 days ago 5 min read NASA Juno Mission Spots Most Powerful Volcanic Activity on Io to Date
Article 6 days ago 5 min read NASA JPL Prepping for Full Year of Launches, Mission Milestones
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.