Jump to content

2023 Pushing the Envelope Honoree (Group)


NASA

Recommended Posts

  • Publishers

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

2023 Aeronautics Research Mission Directorate Associate Administrator Awards

Pushing the Envelope Honoree

X-57 Maxwell Team

* Denotes Team Lead

NASA Armstrong Flight Research Center
Bony J. Baca
Jeffrey E. Baker
Kaleiokalani J. Barela
Ethan A. Baumann
Paul S. Bean
Matthew J. Berry
Keerti K. Bhamidipati
Andrew D. Blua
John K. Bodylski
Kirsten M. Boogaard
Trong T. Bui
Bradley S. Butler
Sean C. Clarke
Bruce R. Cogan
John G. Coggins
James R. Cowart
Brian P. Curlett
Adam F. Curry
Angelo De La Rosa
Jacob J. Ediger
German Escobar Vicelis
Karen L. Estes
David E. Farmer
Russell J. Franz
Mei L. Franz
Michael A. Frederick
Timothy R. Gadbois
Eric J. Garza
Starr R. Ginn
Donald T. Griffith
Leo J. Gross
Mary A. Grossman
Joe G. Hernandez
Joel J. Hiddema
April M. Jungers
Matthew R. Kamlet
Ed T. Koshimoto
Wesley W. Li
Yohan Lin
Lyndel L. Lohberger
Johanna B. Lucht
Heather A. Maliska*
John L. Maliska
Kassidy M. McLaughlin
Shaun C. Mcwherter
Daniel C. Melo
Sarkis S. Mikaelian
Andrea K. Muir
Elizabeth L Nail
Jason P. Nelson
Eric W. Nisbet
Deleena M. Noble
Chan-gi Pak
Kurt V. Papathakis
Francisco Pena
Richard H. Pokorski
Thang T. Quach
Almanda Randle
Jeffrey R. Ray
Patrick D. Ray
Matthew E. Redifer
James R. Reynolds
Thomas K. Rigney
Wayne M. Ringelberg
Anthony P. Rodgers
Michael P. Rodriguez
John R. Rudy
Rosalio Salazar
Claudia Y. Sales
Aamod G. Samuel
Otto C. Schnarr
Keith A. Schweikhard
Mark S. Smith
Natalie D. Spivey
Gregory W. Strombo
Daniel W. Sturgeon
David J. Tempesta
Jacob R. Terry
April C. Torres
Duc N. Tran
Samson S. Truong
Rashmi N. Vidyasagar
Abbigail G. Waddell
Randy L. Wagner
Ryan D. Wallace
Aric D. Warner
Brennan R. Wehr
Kyle J. Whitfield
Timothy L. Williams
Mae Yook Y. Wong
Seung Y. Yoo
Alex C. Zamora
Christina M. Zinger

NASA Glenn Research Center
Aaron D. Anderson
David Avanesian
Julie A. Blystone
Jeffrey C. Chin
Peggy A. Cornell
Ryan D. Edwards
Bradley D. French
Michael J. Garrett
Matthew G. Granger
Dionne M. Hernandez-Lugo
Ralph H. Jansen
Susanah R. Kowalewski
Alex M. Leary
John M. Maroli
Thomas B. Miller
Brian A. Morris
Adabelle Narvaez-Bostwick
Ron D. Noebe
Andrew D. Smith
Jarred M. Whilhite

NASA Johnson Space Center
Linda K. Ruhl

NASA Langley Research Center
Christopher J. Bahr
Steven X. Bauer
Nicholas K Borer
Melissa B. Carter
William P. Chambers
David E. Cox
Stephen E. Cutright
Karen A. Deere
Joseph M. Derlaga
Jared S. Fell
Zachary J. Frederick
Frank H. Gern
Thomas G. Ivanco
Theodore F Johnson
Donald F. Keller
Laura K. Kushner
Brandon L. Litherland
David P. Lockard
Charles B. Lunsford
Steven J. Massey
Sean P. McCormick
John Dana D. Mcminn
James B. Moore
Douglas M. Nark
Michael D. Patterson
David J. Piatak
Russ D. Rausch
Stephen A. Rizzi
Kevin P. Roscoe
Vincent P. Schultz
Martin Krystian (K) Sekula
Bret K. Stanford
Erik D. Tyler
Jeffrey K. Viken
Sally A. Viken
Josiah M. Waite
James P. Winkel
Nikolas S. Zawodny

AEGIS
Tyler B. Allen

ALBERS
Frank O. Andrade
Richard W. Smith

Analytical Mechanics Associates Inc.
Donna A. Gilchrist
Joy R. Bland
Phillip A. Burkhardt
Lynda D. Clinton
William A. Cookson
Tara E. Requist
Nathan D. Rick
Linda D. Soden
Stephen R. Washington

Arcata Associates, Inc.
Joseph N. Innis
Andrew S. Kelly
Jesus Vazquez

ASRC Federal System Solutions
Kathleen J. Chavez
Cody S. Lydon

Axient
Nicholas J. Bierschwal
Franklin K. Harris
Lynnell L. Parker

Distinguished Research Associates
Patrick C. Murphy

Empirical Systems Aerospace (ESAero)
Joseph Ayala
Kevin Barton
Ike Bayraktar
Nick Brake
Alexander Bugrov
Anthony Cash
Raymond Curtis
Felipe DeJesus
Joseph Fernandez
Trevor Foster
Andrew Gibson
Clayton Green
Michael Green
Deb Jelen
Garrett Klunk
Jonathan Lazatin
Madison Machado
Michael McDonald
Aric Naess
Philip Osterkamp
Christopher Platt
Marc Richardson
Benjamin Sauer
Benjamin Schiltgen
Matthew Shemenski
Daniel Soto
Autumn Turner
Chris Welch
Colin Wilson
Jackie Young

HS Advanced Concepts, LLC
Herb Schlickenmaier

HX5, LLC
Vicky L. Freeworth
Gregor Liederbach
Wesley A. Miller
Andrew M. O’Connor

Kay & Associates, Inc.
April D. Hagan

NCS
Sarah Mann

NFSS
Amanda Torgerson-Monsees

Northrop Grumman Systems Corporation
Rick A. Solano

Peerless Technologies Corp.
Shun-fat F. Lung

ROTHE ARES Joint Venture
Steven M. Harris

RSES
Ted M. Holtz
Edward Nemie
Sev F. Rosario
Dan D. Vicroy

Science & Technology Corp
Cathy J. Davis
James J. Faber
Pablo M. Mendoza
Daniel Son

SRC Federal System Solutions
Sonja T. Belcher

Vertex Aerospace LLC
Edwin J. Albornoz
Andrew G. Olvera
Mark Scherer

2023 AA Award Honorees

2023 AA Award Honorees PDF

ARMD Associate Administrator Awards

Share

Details

Last Updated
Mar 06, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Apollo 11 mission in July 1969 completed the goal set by President John F. Kennedy in 1961 to land a man on the Moon and return him safely to the Earth before the end of the decade. At the time, NASA planned nine more Apollo Moon landing missions of increasing complexity and an Earth orbiting experimental space station. No firm human space flight plans existed once these missions ended in the mid-1970s. After taking office in 1969, President Richard M. Nixon chartered a Space Task Group (STG) to formulate plans for the nation’s space program for the coming decades. The STG’s proposals proved overly ambitious and costly to the fiscally conservative President who chose to take no action on them.

      Left: President John F. Kennedy addresses a Joint Session of Congress in May 1961. Middle: President Kennedy addresses a crowd at Rice University in Houston in September 1962. Right: President Lyndon B. Johnson addresses a crowd during a March 1968 visit to the Manned Spacecraft Center, now NASA’s Johnson Space Center, in Houston.
      On May 25, 1961, before a Joint Session of Congress, President John F. Kennedy committed the United States to the goal, before the decade was out, of landing a man on the Moon and returning him safely to the Earth. President Kennedy reaffirmed the commitment during an address at Rice University in Houston in September 1962. Vice President Lyndon B. Johnson, who played a leading role in establishing NASA in 1958, under Kennedy served as the Chair of the National Aeronautics and Space Council. Johnson worked with his colleagues in Congress to ensure adequate funding for the next several years to provide NASA with the needed resources to meet that goal.
      Following Kennedy’s assassination in November 1963, now President Johnson continued his strong support to ensure that his predecessor’s goal of a Moon landing could be achieved by the stipulated deadline. But with increasing competition for scarce federal resources from the conflict in southeast Asia and from domestic programs, Johnson showed less interest in any space endeavors to follow the Apollo Moon landings. NASA’s annual budget peaked in 1966 and began a steady decline three years before the agency met Kennedy’s goal. From a budgetary standpoint, the prospects of a vibrant, post-Apollo space program didn’t look all that rosy, the triumphs of the Apollo missions of 1968 and 1969 notwithstanding.

      Left: On March 5, 1969, President Richard M. Nixon, left, introduces Thomas O. Paine as the NASA Administrator nominee, as Vice President Spiro T. Agnew looks on. Middle: Proposed lunar landing sites through Apollo 20, per August 1969 NASA planning. Right: An illustration of the Apollo Applications Program experimental space station that later evolved into Skylab.
      Less than a month after assuming the Presidency in January 1969, Richard M. Nixon appointed a Space Task Group (STG), led by Vice President Spiro T. Agnew as the Chair of the National Aeronautics and Space Council, to report back to him on options for the American space program in the post-Apollo years. Members of the STG included NASA Acting Administrator Thomas O. Paine (confirmed by the Senate as administrator on March 20), the Secretary of Defense, and the Director of the Office of Science and Technology. At the time, the only approved human space flight programs included lunar landing missions through Apollo 20 and three long-duration missions to an experimental space station based on Apollo technology that evolved into Skylab.
      Beyond a general vague consensus that the United States human space flight program should continue, no approved projects existed once these missions ended by about 1975. With NASA’s intense focus on achieving the Moon landing within President Kennedy’s time frame, long-term planning for what might follow the Apollo Program garnered little attention. During a Jan. 27, 1969, meeting at NASA chaired by Acting Administrator Paine, a general consensus emerged that the next step after the Moon landing should involve the development of a 12-person earth-orbiting space station by 1975, followed by an even larger outpost capable of housing up to 100 people “with a multiplicity of capabilities.” In June, with the goal of the Moon landing almost at hand, NASA’s internal planning added the development of a space shuttle by 1977 to support the space station, the development of a lunar base by 1976, and the highly ambitious idea that the U.S. should prepare for a human mission to Mars as early as the 1980s. NASA presented these proposals to the STG for consideration in early July in a report titled “America’s Next Decades in Space.”

      Left: President Richard M. Nixon, right, greets the Apollo 11 astronauts aboard the U.S.S. Hornet after their return from the Moon. Middle: The cover page of the Space Task Group (STG) Report to President Nixon. Right: Meeting in the White House to present the STG Report to President Nixon. Image credit: courtesy Richard Nixon Presidential Library and Museum.
      Still bathing in the afterglow of the successful Moon landing, the STG presented its 29-page report “The Post-Apollo Space Program:  Directions for the Future” to President Nixon on Sep. 15, 1969, during a meeting at the White House. In its Conclusions and Recommendations section, the report noted that the United States should pursue a balanced robotic and human space program but emphasized the importance of the latter, with a long-term goal of a human mission to Mars before the end of the 20th century. The report proposed that NASA develop new systems and technologies that emphasized commonality, reusability, and economy in its future programs. To accomplish these overall objectives, the report presented three options:

      Option I – this option required more than a doubling of NASA’s budget by 1980 to enable a human Mars mission in the 1980s, establishment of a lunar orbiting space station, a 50-person Earth orbiting space station, and a lunar base. The option required a decision by 1971 on development of an Earth-to-orbit transportation system to support the space station. The option maintained a strong robotic scientific and exploration program.

      Option II – this option maintained NASA’s budget at then current levels for a few years, then anticipated a gradual increase to support the parallel development of both an earth orbiting space station and an Earth-to-orbit transportation system, but deferred a Mars mission to about 1986. The option maintained a strong robotic scientific and exploration program, but smaller than in Option I.

      Option III – essentially the same as Option II but deferred indefinitely the human Mars mission.
      In separate letters, both Agnew and Paine recommended to President Nixon to choose Option II. 

      Left: Illustration of a possible space shuttle, circa 1969. Middle: Illustration of a possible 12-person space station, circa 1969. Right: An August 1969 proposed mission scenario for a human mission to Mars.
      The White House released the report to the public at a press conference on Sep. 17 with Vice President Agnew and Administrator Paine in attendance. Although he publicly supported a strong human spaceflight program, enjoyed the positive press he received when photographed with Apollo astronauts, and initially sounded positive about the STG options, President Nixon ultimately chose not to act on the report’s recommendations.  Nixon considered these plans too grandiose and far too expensive and relegated NASA to one America’s domestic programs without the special status it enjoyed during the 1960s. Even some of the already planned remaining Moon landing missions fell victim to the budgetary axe.
      On Jan. 4, 1970, NASA had to cancel Apollo 20 since the Skylab program needed its Saturn V rocket to launch the orbital workshop. In 1968, then NASA Administrator James E. Webb had turned off the Saturn V assembly line and none remained beyond the original 15 built under contract. In September 1970, reductions in NASA’s budget forced the cancellation of two more Apollo missions, and  in 1971 President Nixon considered cancelling two more. He reversed himself and they flew as Apollo 16 and Apollo 17 in 1972, the final Apollo Moon landing missions.

      Left: NASA Administrator James C. Fletcher, left, and President Richard M. Nixon announce the approval to proceed with space shuttle development in 1972. Middle: First launch of the space shuttle in 1981. Right: In 1984, President Ronald W. Reagan directs NASA to build a space station.
      More than two years after the STG submitted its report, in January 1972 President Nixon directed NASA Administrator James C. Fletcher to develop the Space Transportation System, the formal name for the space shuttle, the only element of the recommendations to survive the budgetary challenges.  NASA anticipated the first orbital flight of the program in 1979, with the actual first flight occurring two years later. Twelve years elapsed after Nixon’s shuttle decision when President Ronald W. Reagan approved the development of a space station, the second major component of the STG recommendation.  14 years later, the first element of that program reached orbit. In those intervening years, NASA had redesigned the original American space station, leading to the development of a multinational orbiting laboratory called the International Space Station. Humans have inhabited the space station continuously for the past quarter century, conducting world class and cutting edge scientific and engineering research. Work on the space station helps enable future programs, returning humans to the Moon and later sending them on to Mars and other destinations.

      The International Space Station as it appeared in 2021.
      Explore More
      7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 6 days ago 9 min read 30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid
      Article 6 days ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 2 weeks ago View the full article
    • By NASA
      2 min read
      Geospatial AI Foundation Model Team Receives NASA Marshall Group Achievement Award 
      Rahul Ramachandran of NASA IMPACT, left, Elizabeth Fancher of NASA IMPACT, Ankur Kumar of the University of Alabama in Huntsville (UAH), Sujit Roy of UAH, Raghu Ganti of IBM Research, David McKenzie of NASA, Muthukumaran Ramasubramanian of UAH, Iksha Gurung of UAH, and Manil Maskey of NASA IMPACT, right, accept the NASA Marshall Space Flight Center Group Achievement Award on Thursday, August 15, 2024 at NASA Marshall. NASA NASA’s science efforts aim to empower scientists with the tools to perform research into our planet and universe. To this end, a collaborative effort between NASA and IBM created an AI geospatial foundation model, which was released as an open-source application in 2024. 
      Trained on vast amounts of NASA Earth science data, the foundation model can be adapted for Earth science applications such as flood, burn scar, and cropland studies. Tailoring the model for a specific task takes far less data than the original training set, providing an easy path for researchers to perform AI-powered studies. 
      For their groundbreaking work on this project, the development team behind the foundation model has received the NASA Marshall Space Flight Center Group Achievement Award. Their success with the model showcases their commitment to advancing AI and scientific research and will inspire progress in this field for years to come.
      The team members from NASA’s Marshall Space Fight Center /IMPACT (Interagency Implementation and Advanced Concepts Team) are:
      Rahul Ramachandran  Manil Maskey  Elizabeth Fancher  The team members from the University of Alabama in Huntsville (UAH) are: 
      Sujit Roy  Ankur Kumar  Christopher Phillips  Iksha Gurung  Muthukumaran Ramasubramanian The team members from IBM are: 
      Ranjini Bangalore  Juan Bernabe-Moreno  Dario Augusto Borges Oliveira  Linsong Chu  Blair Edwards  Paolo Fraccaro  Carlos Gomes  Raghu Ganti  Adnan Hoque  Johannes Jakubik  Levente Klein  Devyani Lambhate  Gabby Nyirjesy  Naomi Simumba  Johannes Schmude  Mudhakar Srivatsa  Harini Srinivasan  Daniela Szwarcman  Rob Parkin  Kommy Weldemariam  Campbell Watson  Bianca Zadrozny  The team members from Clark University are:
      Hamed Alemohammad  Michael Cecil  Steve Li  Sam Khallaghi  Denys Godwin  Maryam Ahmadi  Fatemeh Kordi To learn more about the NASA projects improving accessible science discovery for the benefit of all, visit the Open Science at NASA page. 
      Share








      Details
      Last Updated Aug 15, 2024 Related Terms
      Open Science Explore More
      5 min read How NASA Citizen Science Fuels Future Exoplanet Research


      Article


      1 week ago
      3 min read Meet NASA Interns Shaping Future of Open Science


      Article


      3 weeks ago
      4 min read Mapping the Red Planet with the Power of Open Science


      Article


      2 months ago
      Keep Exploring Discover Related Topics
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      On Aug. 14, 1969, NASA announced the selection of seven new astronauts. The Group 7 astronauts consisted of pilots transferred from the Manned Orbital Laboratory (MOL) Program canceled two months earlier. The MOL, a joint project of the U.S. Air Force (USAF) and the National Reconnaissance Office, sought to obtain high-resolution photographic imagery of America’s Cold War adversaries. The Air Force selected 17 pilots in three groups for the MOL program – eight pilots in 1965, five in 1966, and four in 1967. After the cancellation, NASA invited the younger (under 35) of the 14 remaining MOL pilots to join its astronaut corps at the Manned Spacecraft Center, now the Johnson Space Center in Houston. The selected pilots included Major Karol J. “Bo” Bobko, USAF, Commander Robert L. Crippen, US Navy, Major C. Gordon Fullerton, USAF, Major Henry W. “Hank” Hartsfield, USAF, Major Robert F. Overmyer, US Marine Corps, Major Donald H. Peterson, USAF, and Commander Richard H. Truly, US Navy. In addition to the seven selected as astronauts, NASA assigned an eighth MOL pilot, Lt. Colonel Albert H. Crews, USAF, to MSC’s Flight Crew Operations Directorate. Prior to his MOL training, Crews served as a pilot for the X-20 Dyna-Soar Program, an early USAF experimental lifting body vehicle canceled in 1963.

      Left: Official NASA photograph of Group 7 astronauts Karol J. “Bo” Bobko, left, C. Gordon Fullerton, Henry “Hank” W. Hartsfield, Robert L. Crippen, Donald H. Peterson, Richard H. Truly, and Robert F. Overmyer who transferred from the Manned Orbiting Laboratory program. Right: Official Air Force portrait of Albert H. Crews. Image credit: courtesy U.S. Air Force.
      The MOL Program had envisioned a series of 60-foot-long space stations in low polar Earth orbit, occupied by 2-man crews for 30 days at a time, launching and returning to Earth aboard modified Gemini-B capsules. Externally similar to NASA’s Gemini spacecraft, the MOL version’s major modification involved a hatch cut into the heat shield that allowed the pilots to access the laboratory located behind the spacecraft without the need for a spacewalk. While MOL pilots would carry out a variety of experiments, a telescope with imaging systems for military reconnaissance constituted the primary payload intended to fly in the laboratory. The imaging system carried the Keyhole KH-10 designation with the code name Dorian. Its 72-inch primary mirror could provide high resolution images of targets of military interest. To reach their polar orbits, MOLs would launch from Vandenberg Air Force, now Space Force, Base in California atop Titan-IIIM rockets. Construction of Space Launch Complex-6 (SLC-6) had begun in 1966 to accommodate that launch vehicle but stopped with the program’s cancellation. When NASA and the Air Force decided to fly payloads into polar orbit using the space shuttle, in 1979 they began to reconfigure the SLC-6 facilities to accommodate the new vehicle. After the January 1986 Challenger accident, the agencies abandoned plans for shuttle missions from Vandenberg and mothballed SLC-6.

      Group 7 astronauts. Left: Karol J. “Bo” Bobko. Middle left: Robert L. Crippen. Middle right: L. Gordon Fullerton. Right: Henry “Hank” W. Hartsfield.
      Bobko, selected in the second group of MOL pilots, served as the pilot for the 56-day Skylab Medical Experiment Altitude Test (SMEAT) in 1972, a ground-based simulation of a Skylab mission. He then served as a support crew member for the Apollo-Soyuz Test Project (ASTP) that flew in July 1975. For his first spaceflight, he served as pilot on STS-6 in April 1983. NASA next assigned him as commander of STS-41F, a mission to launch two communications satellites in August 1984. However, following the STS-41D launch abort in June 1984, NASA canceled the mission, combined its payloads with the delayed STS-41D, and reassigned Bobko and his crew to a later mission. That flight, STS-51E, a four-day mission aboard Challenger planned for February 1985 to deploy the second Tracking and Data Relay Satellite (TDRS), in turn was canceled when the TDRS developed serious problems. NASA reassigned Bobko and his crew to STS-51D, flown aboard Discovery in April 1985. Bobko flew his third and final spaceflight as commander of STS-51J, a Department of Defense mission and the first flight of Atlantis, in October 1985. The 167 days between his last two missions marked the shortest turnaround between spaceflights up to that time. Bobko retired from NASA in 1989.
      Crippen, a member of the second group of MOL pilots, served as commander of SMEAT in 1972, a ground-based simulation of a Skylab mission. He then served as a member of the ASTP support crew. NASA assigned him as pilot of STS-1, the first space shuttle mission in April 1981. He later served as commander of STS-7 in June 1983, STS-41C in April 1984, and STS-41G in October 1984. NASA assigned him as commander of STS-62A, planned for October 1986 as the first shuttle flight from Vandenberg in California, prior to cancellation of all shuttle flights from that launch site after the Challenger accident. Crippen went on to serve as director of the Space Shuttle Program at NASA Headquarters in Washington, D.C., from 1990 to 1992, and then as director of NASA’s Kennedy Space Center in Florida from 1992 until his retirement from the agency in 1995.
      Fullerton, selected into the second group of MOL pilots, served as the pilot of the first, third, and fifth Approach and Landing Tests (ALT) with space shuttle Enterprise in 1977. NASA assigned him as pilot on STS-3, the only shuttle to land at White Sands in March 1982. He flew his second mission in July-August 1985 as the commander of the STS-51F Spacelab 2 mission. Fullerton retired from NASA in 1986.
      Hartsfield, part of the second group of MOL pilots, served as the pilot on STS-4, the first Department of Defense shuttle mission in June-July 1982. NASA next assigned him as commander of STS-12, a mission to launch the second TDRS that was canceled due to continuing problems with its Inertial Upper Stage. NASA reassigned Hartsfield and his crew to STS-41D, space shuttle Discovery’s first flight that in June 1984, experienced the first launch pad abort of the program. That mission flew two months later, having absorbed payloads from the canceled STS-41F mission. Hartsfield commanded his third and final flight in October-November 1985, the STS-61A German Spacelab D1 mission that included the first eight-person crew. He retired from NASA in 1988.

      Group 7 astronauts. Left: Robert F. Overmyer. Middle: Donald H. Peterson. Right: Richard H. Truly.
      Overmyer, selected as part of the second group of MOL pilots, served as a support crew member for ASTP. For his first space mission, Overmyer served as pilot of STS-5 in November 1982. For his second and final spaceflight, he served as commander of the STS-51B Spacelab 3 mission in April-May 1985. Overmyer retired from NASA in 1986.
      Peterson, selected in the third group of MOL pilots, made his only spaceflight as a mission specialist during STS-6 in April 1983. During that mission, he participated in the first spacewalk of the shuttle program. Peterson retired from NASA in 1984.
      Truly, selected with the first group of MOL pilots, served as an ASTP support crew member and then as the pilot of the ALT-2 and 4 flights with space shuttle Enterprise in 1977. During his first spaceflight, he served as pilot of STS-2 in November 1981, the first reflight of a reusable spacecraft. On his second and final mission, he commanded STS-8 that included the first night launch and night landing of the shuttle program. Truly retired from NASA in 1984 but returned in 1986 as Associate Administrator for Space Flight at NASA Headquarters in Washington, D.C. In 1989, he assumed the position of NASA’s eighth administrator, serving until 1992.

      Summary of spaceflights by Group 7 astronauts. Missions in italics represent canceled flights.
      Although it took nearly 12 years for the first of the MOL transfers to make it to orbit (Crippen on STS-1 in 1981), many served in supporting roles during Skylab and ASTP, and all of them went on to fly on the space shuttle in the 1980s. After their flying careers, Truly and Crippen went on serve in senior NASA leadership positions. Crews stayed with the agency as a pilot until 1994.
      Read Bobko’s, Crews’, Crippen’s, Fullerton’s, Hartsfield’s, Peterson’s, and Truly’s recollections of the MOL program and their subsequent NASA careers in their oral history interviews with the JSC History Office.
      Explore More
      5 min read Celebrating NASA’s Coast Guard Astronauts on Coast Guard Day
      Article 2 weeks ago 20 min read MESSENGER – From Setbacks to Success
      Article 2 weeks ago 5 min read 60 Years Ago: Ranger 7 Photographs the Moon
      Article 2 weeks ago View the full article
    • By NASA
      Personnel from the MSFC Earth Science Branch and local partners participated in the Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS), and they are members of the IMPACTS team that recently won the prestigious Presidential Rank Group Achievement Award from NASA. IMPACTS was a highly successful NASA Earth Venture Suborbital airborne field campaign that examined why and how heavy snowfalls occur, as well as how NASA missions can better detect and measure these events. The suborbital mission had three flight campaigns in 2020, 2022, and 2023, and used the NASA ER-2 and P-3 aircraft. MSFC contributed the Advanced Microwave Precipitation Radiometer (AMPR) and the Lightning Instrument Package (LIP) to IMPACTS, and both instruments flew on the ER-2.
      MSFC Earth science and engineering civil servants that contributed to IMPACTS over the years include Timothy Lang, Chris Schultz, Mason Quick, Rich Blakeslee (Emeritus), Paul Meyer (Emeritus), Patrick Duran, Eric Cantrell, Max Vankeuren, Kurt Dietz, David Hyde, Tom Phillips, Patrick Fulda, and Mark James. MSFC partners for IMPACTS included University of Alabama in Huntsville (UAH; Doug Huie, Jonathan Hicks, Julia Burton, Philip Alldredge, Dave Simmons, Sue O’Brien, Amanda Richter, Corey Amiot, Sebastian Harkema, Monte Bateman, Mike Stewart, Scott Podgorny, David Corredor, Dennis Buechler, Jeff Daskar, Dan Walker), Universities Space Research Association (USRA; Doug Mach), Jacobs (Mark Sloan, Lisa Gibby), and The Aerospace Corporation (Sayak Biswas). MSFC resource analyst support for IMPACTS was provided by Robyn Rudock, Jennifer Thovson, Jacob Guthrie,Chris Anthony, and Lisa Dorsett.

      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 18 min read
      Summary of the 2023 Sun – Climate Symposium
      Introduction
      Observations of the Sun and Earth from space continue to revolutionize our view and understanding of how solar variability and other natural and anthropogenic forcings impact Earth’s atmosphere and climate. For more than four decades (spanning four 11-year solar cycles and now well into a fifth), the total and spectral solar irradiance and global terrestrial atmosphere and surface have been observed continuously, providing an unprecedented, high-quality time series of data for Sun–climate studies, such as the Total Solar Irradiance (TSI) composite record – see Figure 1.
      Figure 1. The Total Solar Irradiance (TSI) composite record spans almost 5 decades and includes measurements from 13 different instruments (9 NASA and 4 international). Figure credit: Greg Kopp, Laboratory for Atmospheric and Space Physics (LASP)/University of Colorado (UC). Sun–Climate Symposia, originally called SOlar Radiation and Climate Experiment (SORCE) Science Team Meetings, have been held at a regular cadence since 1999 – before the launch of SORCE in 2003. These meetings provide an opportunity for experts from across the solar, Earth atmosphere, climate change, stellar, and planetary communities to present and discuss their research results about solar variability, climate influences and the Earth-climate system, solar and stellar variability comparative studies, and stellar impacts on exoplanets.
      The latest iteration was the eighteenth in the series and occurred in October 2023. (As an example of a previous symposium, see Summary of the 2022 Sun–Climate Symposium, in the January–February 2023 issue of The Earth Observer [Volume 35, Issue 1, pp. 18–27]). The 2023 Sun–Climate Symposium took place October 17­–20 in Flagstaff, AZ – with a focus topic of “Solar and Stellar Variability and its Impacts on Earth and Exoplanets.” The Sun–Climate Research Center – a joint venture between NASA’s Goddard Space Flight Center (GSFC) and the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado (UC) with the Lowell Observatory hosting the meeting. The in-person meeting had 75 attendees – including 7 international participants – with diverse backgrounds covering a wide range of climate change and solar-stellar variability research topics – see Photo.
      Photo. Attendees at the 2023 Sun–Climate Symposium in Flagstaff, AZ. Photo credit: Kelly Boden/LASP Update on NASA’s Current and Planned TSIS Missions
      The current NASA solar irradiance mission, the Total and Spectral Solar Irradiance Sensor (TSIS-1), marks a significant advance in our ability to measure the Sun’s energy input to Earth across various wavelengths. Following in the footsteps of its predecessors, most notably SORCE, TSIS-1 contributes to the continuous time series of solar energy data dating back to 1978 – see Figure 1. The two instruments on TSIS-1 improve upon those on previous missions, enabling scientists to study the Sun’s natural influence on Earth’s ozone layer, atmospheric circulation, clouds, and ecosystems. These observations are essential for a scientific understanding of the effects of solar variability on the Earth system. 
      TSIS-1 launched to the International Space Station (ISS) in December 2017 and is deployed on the Station’s EXpedite the PRocessing of Experiments to Space Station (ExPRESS) Logistics Carrier–3 (ELC-3). Its payload includes the Total Irradiance Monitor (TIM) for observing the TSI and the Spectral Irradiance Monitor (SIM) for measuring the Solar Spectral Irradiance (SSI) – see comparison in Figure 2. The mission completed its five-year prime science mission in March 2023. SIM measures from 200–2400 nm with variable spectral resolution ranging from about 1 nm in the near ultraviolet (NUV) to about 10 nm in the near infrared (NIR). TSIS-1 has been extended by at least three more years as part of the Earth Sciences Senior Review process.
      TSIS-2 is intended as the follow-on to TSIS-1. The mission is currently in development at LASP and GSFC with a planned launch around mid 2025. The TSIS-2 payload is nearly identical to that of TSIS-1, except that the payload will ride on a free-flying spacecraft rather than be mounted on a solar pointing platform on the ISS. NASA hopes to achieve 1–2 years of overlap between TSIS-1 and TSIS-2. Achieving such measurement overlap between missions is crucial to the continuity of the long-term records of the TSI and SSI without interruption and improving the solar irradiance composite.
      In addition to the current solar irradiance mission and its planned predecessor, NASA is always looking ahead to plan for the inevitable next solar irradiance mission. Two recent LASP CubeSat missions – called Compact SIM (CSIM) and Compact TIM (CTIM) – have tested miniaturized versions of the SIM and TIM instruments, respectively. Both CSIM and CTIM have performed extremely well in space – with measurements that correlate well with the larger instruments – and are being considered as continuity options for the SSI and TSI measurements. Based on the success of CSIM and CTIM, LASP has developed a concept study report about the Compact-TSIS (CTSIS) as a series of small satellites viable for a future TSIS-3 mission.
      Figure 2. The Solar Spectral Irradiance (SSI) variability from TSIS-1 Spectral Irradiance Monitor (SIM) is compared to the Total Solar Irradiance (TSI) variability from TSIS-1 Total Irradiance Monitor (TIM). The left panel shows the SIM SSI integrated over its wavelength range of 200–2400 nm, which is in excellent agreement with the TSI variability during the rising phase of solar cycle 25. The right panels show comparison of SSI variability at individual wavelengths to the TSI variability, revealing linear relationships with ultraviolet variability larger than TSI variability, visible variability similar to TSI variability, and near infrared variability smaller than TSI variability. Figure credit: Erik Richard/LASP Meeting Overview
      After an opening plenary presentation in which Erik Richard [LASP] covered the information on TSIS-1, TSIS-2, CSIM, and CTIM presented in the previous section on “NASA’s Current and Planned Solar Irradiance Missions,” the remainder of the four-day meeting was divided into five science sessions each with oral presentations, and a poster session featuring 23 contributions.
      The five session topics were:
      Solar and Stellar Activity Cycles Impacts of Stellar Variability on Planetary Atmospheres Evidence of Centennial and Longer-term Variability in Climate Change Evidence of Short-term Variability in Climate Change Trending of Solar Variability and Climate Change for Solar Cycle 25 (present and future) There was also a banquet held on the final evening of the meeting (October 19) with special presentations focusing on the water drainage system and archaeology of the nearby Grand Canyon – see Sun-Climate Symposium Banquet Special Presentation on the Grand Canyon National Park.
      The remainder of this report summarizes highlights from each of the science sections. To learn more, the reader is referred to the full presentations from the 2023 Sun–Climate Symposium, which can be found on the Symposium website by clicking on individual presentation titles in the Agenda tab.
      Session 1: Solar and Stellar Activity Cycles
      Sun-like stars (and solar analogs, solar twins) provide a range of estimates for how the Sun’s evolution may affect its solar magnetic cycle variability. Recent astrophysics missions (e.g., NASA’s Kepler mission) have added thousands of Sun-like stars to study, compared to just a few dozen from a couple decades ago when questions remained if the Sun is a normal G star or not.
      Tom Ayres [UC Center for Astrophysics and Space Astronomy (CASA)] gave the session’s keynote presentation on Sun-like stars. He pointed out that the new far ultraviolet (FUV) and X-ray stellar observations have been used to clarify that our Sun is a normal G-type dwarf star with low activity relative to most other G-type dwarf stars.
      Travis Metcalfe [White Dwarf Research Corporation (WDRC)] discussed the recent progress in modeling of the physical processes that generate a star’s magnetic field – or stellar dynamo. He explained how the presence of stellar wind can slow down a star’s rotation, which in turn lengthens the period of the magnetic cycle. He related those expectations to the Sun and to the thousands of Sun-like stars observed by Kepler.
      Continuing on the topic of solar dynamo, Lisa Upton [Space Systems Research Corporation (SSRC)] and Greg Kopp [LASP] discussed their recent findings using a solar surface magnetic flux transport model, which they can use to reconstruct an estimated TSI record back in time to the anomalously low activity during the Maunder Minimum in the 1600s. Dan Lubin [University of California San Diego (UCSD)] described efforts to identify grand-minimum stars – which exhibit characteristics similar to our Sun during the Maunder Minimum. Using Hamilton Echelle Spectrograph observations, they have identified about two dozen candidate grand-minimum stars.
      In other presentations and posters offered during this session, Adam Kowalski [LASP]) discussed stellar and solar flare physics and revealed that the most energetic electrons generated during a flare are ten times more than previously thought, while Moira Jardine [University of St. Andrews, Scotland]) discussed the related subject of space weather on the Sun and stars and how the coronal extent was likely much larger for the younger Sun. Three presenters – Debi Choudhary [California State University, Northridge], Garrett Zills [Augusta University], and Serena Criscuoli [National Solar Observatory] –discussed how solar emission line variability from both line intensity and line width are good indicators of magnetic activity on the Sun and thus relevant for studies of Sun-like star variability. Andres Munoz-Jaramillo [Southwest Research Institute (SWRI)] highlighted the importance of archiving large datasets showing the Harvard dataverse as an example. Juan Arjona [LASP] discussed the solar magnetic field observations made using the Max Planck Institute for Solar System Research’s GREGOR solar telescope.
      Session 2: Impacts of Stellar Variability on Planetary Atmospheres
      Presenters in this session focused on how the stellar variability can impact exoplanet evolution and climate. By analyzing data from NASA’s Kepler mission, scientists have discovered numerous Earth-like planets orbiting other stars – or exoplanets, which has enabled comparative studies between planets in our Solar System and exoplanets.
      Aline Vidotto [University of Leiden, Netherlands] gave this session’s keynote presentation in which he discussed the impact of stellar winds on exoplanets. In general, younger stars rotate faster and thus have more stellar variability. The evolution of the exoplanet’s atmosphere is dependent on its star’s variability and also modulated by the exoplanet’s own magnetic field. Robin Ramstad [LASP] further clarified a planetary magnetic field’s influences on atmospheric evolution for planets in our solar system.
      Vladimir Airapetian [GSFC] presented an overview of how laboratory measurements used to simulate pre-biosignatures – characteristics that precede those elements, molecules, or substances that would indicate past or present life – could be created in an exoplanet atmosphere by highly energetic particles and X-rays from stars with super flares, very large-scale magnetic eruptions on a star that can be thousands of times brighter than a typical solar flare. While the probability of a super flare event is low for our Sun (perhaps 1 every 400 years), super flares are routinely observed on more active stars.
      The stellar flares and the spectral distribution of the flare’s released energy can have large impacts on exoplanet’s atmospheres. Laura Amaral [Arizona State University] presented on the super-flare influences on the habitable zone of exoplanets and explained how the flare’s significantly enhanced X-ray emissions would greatly accelerate water escape from the exoplanet’s atmosphere. Ward Howard [ UC CASA] showed that exoplanet transits can also provide information about starspots (akin to the dark sunspots on the Sun) when a transit event happens to occult a starspot – see Figure 3. Ward also explained the importance of observing the transit events at multiple wavelengths, referred to as transit spectroscopy, to understand the physical characteristics of the starspots. Yuta Notsu [LASP] compared the energetics observed in many different stars using X-ray and far ultraviolet (FUV) observations to estimate stellar magnetic field strengths, which in turn can be used to estimate the stellar extreme ultraviolet (EUV) spectra. Those results provide new information on how the stellar spectra could evolve during the lifetime of Sun-like stars, and how those spectral changes can affect the atmospheric escape rates on their exoplanets.  
      Nina-Elisabeth Nemec [University of Göttingen, Germany] described how Kepler observations of exoplanets rely on tracking their transits across its host star’s disk. She explained some of the challenges that arise with analyzing such transits when there are large starspots present. 
      Figure 3. Illustration of an exoplanet transit that will occult a starspot. The transit light curve can provide information about the size of the starspot, and transit observations at multiple wavelengths can reveal physical parameters, such as temperature, of the starspot. Figure credit: Ward Howard, CASA/University of Colorado Session 3: Evidence of Centennial and Longer-term Variability in Climate Change
      Venkatachalam “Ram” Ramaswamy [National Oceanic and Atmospheric Administration’s (NOAA) Geophysical Fluid Dynamics Laboratory (GFDL)] gave the keynote for this session in which he discussed Earth’s variable climate change over the past two centuries. He explained in detail Earth’s energy budget and energy imbalance, which leads to less land and sea ice, warmer temperatures at the surface and in the atmosphere and ocean, and more extreme weather. These weather changes have different regional impacts, such as more floods in some regions and more drought in different regions – see Figure 4. 
      Figure 4. The rainfall amount has shifted over the past fifty years (red is less and blue is more) with strong regional impacts on droughts and floods. Figure credit: Ram Ramaswamy/NOAA/GFDL Bibhuti Kumar Jha [SWRI], Bernhard Hofer [Max Planck Institute for Solar System Research, Germany], and Serena Criscuoli [National Solar Observatory] discussed long-term solar measurements from the Kodaikanal Solar Observatory and showed that the chromospheric plages (Ca K images) have 1.6% faster solar rotation rate than sunspots (white light images). Timothy Jull [University of Arizona (UA)], Fusa Miyake [Nagoya University, Japan], Georg Fueulner [Potsdam Institute for Climate Impact Research, Germany], and Dan Lubin discussed the impact that solar influences (i.e., solar flares, solar energetic particles) have had on Earth’s climate over hundreds of years through their impact on phenomena such as the natural distribution of carbon dioxide in the atmosphere and fluctuations in the North Atlantic Oscillation.  
      Hisashi Hayawawa [Nagoya University] and Kalevi Mursula [University of Oulu, Finland] discussed the influence that ever-changing sunspots and magnetic fields on the Sun are having on climate – with a focus on the Maunder Minimum period. Irina Panyushkina [UA] and Timothy Jull presented tree ring radioisotope information as it relates to climate change trends as well as long-term, solar variability trends. According to Lubin, if a reduction in solar input similar to what happened during the Maunder Minimum would happen today, the resulting reduction in temperature would be muted due to the higher concentration of greenhouse gases (GHG) in the atmosphere.
      Session 4: Evidence of Short-term Variability in Climate Change
      Session 4 focused on discussions that examined shorter-term variations of solar irradiance and climate change. Bill Collins [Lawrence Berkeley National Laboratory (LBNL)] started off the session with a presentation on Earth albedo asymmetry across the hemispheres from Nimbus-7 observations, and then showed some important differences when looking at the Clouds and the Earth’s Radiant Energy System (CERES) record – shown in Figure 5. Lon Hood [UA] discussed the changes in atmospheric circulation patterns which might be the consequence of Arctic sea ice loss increasing the sea level pressure over northern Eurasia. Alexi Lyapustin [GSFC] described how higher temperatures are causing an extension of the wildfire season in the Northern hemisphere by 1–3 months.
      Figure 5. The albedo difference between the visible and near-infrared bands are shown for the southern hemisphere (red line) and the northern hemisphere (blue lines) for CERES [left] and Nimbus 7 [right]. The southern hemisphere albedo difference is higher than the northern hemisphere albedo difference, both for the 1980s as measured by Nimbus-7 and for the recent two decades as measured by CERES. These hemispheric differences are related mostly to differences in cloud coverage. The seasonal effect on the albedo difference values is about 2%, but the changes from 1980s to 2010s appear to be about 10%. Figure credit: Bill Collins/Lawrence Berkeley National Laboratory Jae Lee [GSFC/University of Maryland, Baltimore County] discussed changes in the occurrence and intensity of the polar mesosphere clouds (PMCs), showing high sensitivity to mesospheric temperature and water, and fewer PMCs for this solar cycle. In addition, some presenters discussed naturally driven climate changes. Luiz Millan [JPL], whose research has found that the water-laden plume from the Hunga-Tonga-Hunga-Ha’apai (HT-HH) volcano eruption in January 2022 has had a warming effect on the atmosphere as well as the more typical cooling effect at the surface from the volcanic aerosols. In another presentation, Jerry Raedar [University of New Hampshire, Space Science Center] showed results from his work indicating about 5% reductions in temperature and pressure following major solar particle storms, but noted differences in dependence between global and regional effects.
      Session 5: Trending of Solar Variability and Climate Change for Solar Cycle 25 (present and future)
      Session 5 focused on trends during Solar cycle 25 (SC-25), which generated lively discussions about predictions. It appears the SC-25 maximum sunspot number could be about 15% higher than the original SC-25 maximum predictions. Those differences between the sunspot observations and this prediction may be related to the timing of SC-25 ramp up. Lisa Upton started off Session 5 by presenting both the original and latest predictions from the NASA–NOAA SC-25 Prediction Panel. Her assessment of the Sun’s polar magnetic fields and different phasing of magnetic fields over the Sun’s north and south poles suggests that the SC-25 maximum will be larger than the prediction – see Figure 6.
      The next several speakers – Matt DeLand [Science Systems and Applicatons Inc. (SSAI)], Sergey Marchenko [SSAI], Dave Harber [LASP], Tom Woods [LASP], and Odele Coddington [LASP] – showed a variety of TSI and SSI (NUV, visible, and NIR) variability observations during SC-25. The group consensus was that the difference between the SC-24 and SC-25 maxima may be due to the slightly higher solar activity during SC-25 as compared to the time of the SC-24 maximum – which was an anomalously low cycle. The presenters all agreed that SC-25 maximum may not have been reached yet (and SC-25 maximum may not have occurred yet in 2024).
      Figure 6. The sunspot number progression (black) during solar cycle 25 is higher than predicted (red). The original NASA–NOAA panel prediction was for a peak sunspot number of 115 in 2025. Lisa Upton’s updated prediction is for a sunspot number peak of 134 in late 2024. Figure credit: NOAA Space Weather Prediction Center On the climate change side, Don Wuebbles [University of Illinois, Urbana-Champaign] provided a thorough overview of climate change science showing that: the largest impacts result from the activities of humans, land is warming faster than the oceans, the Arctic is warming two times faster than rest of the world, and 2023 was the hottest year on record with an unprecedented number of severe weather events.
      There were several presentations about the solar irradiance observations. Leah Ding [American University] presented new analysis techniques using machine learning with Solar Dynamics Observatory (SDO) solar images to study irradiance variability. Steve Penton [LASP] discussed new SIM algorithm improvements for TSIS-1 SIM data product accuracy. Margit Haberreiter [Physikalisch-Meteorologisches Observatorium Davos (PMOD), Switzerland] discussed new TSI observations from the Compact Lightweight Absolute Radiometer (CLARA) on the Norwegian NorSat-1 microsatellite. Marty Snow [South African National Space Agency] discussed a new TSI-proxy from the visible light (green filter) Solar Position Sensor (SPS) flown on the NOAA Geostationary Operational Environmental Satellites (GOES-R). (The first of four satellites in the GOES-R series launched in 2016 (GOES-16) followed by GOES-17 and GOES-18 in 2018 and 2022 respectively. The final satellite in the series – GOES-U – launched June 25, 2024 will become GOES-19 after checkout is complete.)
      Peter Pilewskie [LASP] discussed future missions, focusing on the Libera mission for radiative energy budget, on which he is Principal Investigator. Selected as the first Earth Venture Continuity mission (EVC-1), Libera will record how much energy leaves our planet’s atmosphere on a day-by-day basis providing crucial information about how Earth’s climate is evolving. In Roman mythology, Libera was Ceres’ daughter. The mission name is thus fitting as Libera will act as a follow-on mission to maintain the decades long data record of observation from NASA’s suite of CERES instruments. Figure 7 shows the CERES climate data record trends over the past 20 years.
      Figure 7. The CERES Earth Radiation Budget (ERB) climate data record shows a positive trend for the absorbed solar radiation [left] and the net radiation [right] and a small negative trend for the emitted terrestrial radiation [middle]. Figure credit: Peter Pilewskie/adapted from a 2021 paper in Geophysical Research Letters Susan Breon [GSFC] discussed the plans for and status of TSIS-2 , and Tom Patton [LASP] discussed CTSIS as an option for TSIS-3 – both of these topics were discussed earlier in this article in the section on “NASA’s Current and Planned Solar Irradiance Missions.”
      Angie Cookson [California State University, San Fernando Observatory (SFO)] shared information about the SFO’s 50-year history, and how analyses of solar image observations taken at SFO are used to derive important indicators of solar irradiance variability – see Figure 8.
      Figure 8. The San Fernando Observatory (SFO) [left] has been making visible [middle] and near ultraviolet (NUV) [right] solar images from the ground for more than 50 years. Those solar images have been useful for understanding the sources of solar irradiance variability. Figure credit: Angie Cookson/SFO Sun-Climate Symposium Banquet Special Presentation on the Grand Canyon National Park
      At the Thursday evening banquet, two speakers – Mark Nebel and Anne Millar – from the National Park Service (NPS) presented some of their geological research on the nearby Grand Canyon. Nebel discussed the water drainage systems surrounding the Grand Canyon while Millar described the many different fossils that have been found in the surrounding rocks. Nebel explained how  the Grand Canyon’s water drainage system into the Colorado River is complex and has evolved over the past few decades – see map and photo below. Millar brought several samples of the plant and insect fossils found in the Grand Canyon to share with banquet participants. Those fossils ranged in time from the Bright Angel Formation ocean period 500 million years ago to the Hermit Formation period 285 million years ago – when the Grand Canyon was semi-arid land with slow-moving rivers.
      Map and photo credit: Mark Nebel/NPS Conclusion
      Altogether, 80 presentations during the 2023 Sun–Climate Symposium spread across 6 sessions about solar analogs, exoplanets, long-term climate change, short-term climate change, and solar/climate recent trending. The multidisciplinary group of scientists attending made for another exciting conference for learning more about the TSIS solar irradiance observations. Sun–Climate recent results have improved perception of our Sun’s variability relative to many other Sun-like stars, solar impact on Earth and other planets and similar type impacts of stellar variability on exoplanets, and better characterization of anthropogenic climate drivers (e.g., increases in GHG) and natural climate drivers (Sun and volcanoes).
      The next Sun–Climate Symposium will be held in spring 2025 with a potential focus on polar climate records, including polar ice trends and long-term solar variabilities derived from ice-core samples. Readers who may be interested in participating in the 2025 science organizing committee should contact Tom Woods and/or Dong Wu [GSFC].
      Acknowledgments
      The three co-authors were all part of the Science Organizing Committee for this meeting and wish to acknowledge the other members for their work in planning for and participating in another successful Sun–Climate Symposium. They include: Odele Coddington, Greg Kopp, and Ed Thiemann [all at LASP]; Jae Lee, Doug Rabin, and Dong Wu [all at GSFC]; Jeff Hall, Joe Llama, and Tyler Ryburn [all at Lowell Observatory]; Dan Lubin [UCSD’s Scripps Institution of Oceanography (SIO)]; and Tom Stone [U.S. Geological Survey’s Astrogeology Science Center]. The authors and other symposium participants are also deeply grateful to Kelly Boden [LASP] for organizing the logistics and management of the conference, and to the Lowell Observatory, the Drury Inn conference center staff, and the LASP data system engineers for their excellent support in hosting this event.
      Tom Woods
      University of Colorado, Laboratory for Atmospheric and Space Research
      tom.woods@lasp.colorado.edu
      Peter Pilewskie
      University of Colorado, Laboratory for Atmospheric and Space Research
      peter.pilewskie@lasp.colorado.edu
      Erik Richard
      University of Colorado, Laboratory for Atmospheric and Space Research
      erik.richard@lasp.colorado.edu
      Share








      Details
      Last Updated Jul 18, 2024 Related Terms
      Earth Science Uncategorized View the full article
  • Check out these Videos

×
×
  • Create New...