Members Can Post Anonymously On This Site
Just add AI for expert astronaut ultrasound
-
Similar Topics
-
By European Space Agency
Image: ESA Astronaut Reserve training kicks off at EAC View the full article
-
By NASA
Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Just Keep Roving
Image from Perseverance’s Right Navigation Camera, looking back towards rover tracks from past drives, into Jezero crater. The camera is located high on the rover mast, and here the rover is looking back in the direction of the Jezero crater floor. This image was acquired on October 4th, 2024 (Sol 1288) at the local mean solar time of 12:51:26. NASA/JPL-Caltech Throughout the past week, Perseverancehas continued marching up the Jezero crater rim. This steep ascent through the Martian regolith (soil) can prove to be slow driving for the rover, as the wheels can slip on the steepest areas. This is like trying to run up a hill of sand on a beach – with every step forward, you also slip back a little way down the hill! This just means the Science and Engineering teams work together closely to plan slow and steady drives through this tricky terrain.
Driving through the Mount Ranier quadrangle, the team identified a relatively obstacle-free path to reach the crater rim which they designated Summerland Trail, aptly named from a very popular hiking trail that ascends Mount Ranier. Perseverance is trekking to the next waypoint near an outcrop of rocks called Pico Turquino, where the science team hopes to perform its next proximity science investigations with its instruments PIXL and back-online SHERLOC.
While roving along Summerland Trail, Perseverance is constantly observing the surrounding terrain. SuperCam and Mastcam-Z have been observing rocks on the ground and on a distant hill, called Crystal Creek. In addition, during this time Perseverance can put its eyes to the sky to make observations of the sun and atmosphere. Last week, the Mastcam-Z camera captured images of Phobos (one of Mars’ two moons) transiting in front of the sun!
This image, showing Phobos transiting in front of the sun, was acquired using Perseverance’s Left Mastcam-Z camera. Acquired on September 30th, 2024 (Sol 1285) at the local mean solar time of 11:10:04. NASA/JPL-Caltech/ASU While the Mars2020 team is itching to reach the ancient stratigraphy exposed in the crater rim, for now, the focus is on documenting our surroundings while navigating the ascent.
Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University
Reference Links
Rover Tracks Image: Mars Perseverance Sol 1288: Right Navigation Camera (Navcam) Quadrangles: NASA’s Perseverance Mars Rover Mission Honors Navajo Language Hiking Trail: Summerland Trailhead (U.S. National Park Services) SHERLOC: Perseverance Matters – NASA Science Mars Moons – NASA Science Phobos Transit Image: Mars Perseverance Sol 1285 – Left Mastcam-Z Camera Crater Rim: Reaching New Heights to Unravel Deep Martian History! Share
Details
Last Updated Oct 17, 2024 Related Terms
Blogs Explore More
3 min read Sols 4334-4335: Planning with Popsicles — A Clipper Celebration!
Article
1 day ago
4 min read Sols 4331-4333: Today’s Rover ABC – Aurora, Backwards Driving, and Chemistry, with a Side of Images
Article
4 days ago
3 min read Sols 4329-4330: Continuing Downhill
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
NASA astronaut and Expedition 72 Flight Engineer Nick Hague in the space station cupola. (Credit: NASA) Students from Iowa will have the opportunity to hear NASA astronaut Nick Hague answer their prerecorded questions while he’s serving an expedition aboard the International Space Station on Monday, Oct. 21.
Watch the 20-minute space-to-Earth call at 11:40 a.m. EDT on NASA+. Students from Iowa State University in Ames, First Robotics Clubs, World Food Prize Global Youth Institute, and Plant the Moon teams will focus on food production in space. Learn how to watch NASA content on various platforms, including social media.
Media interested in covering the event must contact Angie Hunt by 5 p.m., Friday, Oct.18 at amhunt@iastate.edu or 515-294-8986.
For more than 23 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos and lesson plans highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA pilot Nils Larson, and flight test engineer and pilot Wayne Ringelberg, head for a mission debrief after flying a NASA F/A-18 at Mach 1.38 to create sonic booms as part of the Sonic Booms in Atmospheric Turbulence flight series at NASA’s Armstrong Flight Research Center in California, to study sonic boom signatures with and without the element of atmospheric turbulence.NASA/Lauren Hughes NASA research pilots are experts on how to achieve the right flight-test conditions for experiments and the tools needed for successful missions. It is that expertise that enables pilots to help researchers learn how an aircraft can fly their technology innovations and save time and money, while increasing the innovation’s readiness for use.
NASA pilots detailed how they help researchers find the right fit for experiments that might not advance without proving that they work in flight as they do in modeling, simulation, and ground tests at the Ideas to Flight Workshop on Sept. 18 at NASA’s Armstrong Flight Research Center in Edwards, California. “Start the conversation early and make sure you have the right people in the conversation,” said Tim Krall, a NASA Armstrong flight operations engineer. “What we are doing better is making sure pilots are included earlier in a flight project to capitalize on their experience and knowledge.”
Flight research is often used to prove or refine computer models, try out new systems, or increase a technology’s readiness. Sometimes, pilots guide a research project involving experimental aircraft. For example, pilots play a pivotal role on the X-59 aircraft, which will fly faster than the speed of sound while generating a quiet thump, rather than a loud boom. In the future, NASA’s pilots with fly the X-59 over select U.S. communities to gather data about how people on the ground perceive sonic thumps. NASA will provide this information to regulators to potentially change regulations that currently prohibit commercial supersonic flight over land.
Mark Russell, center, a research pilot at NASA’s Glenn Research Center in Hampton, Virginia, explains the differences in flight environments at different NASA centers. Jim Less, a NASA pilot at NASA’s Armstrong Flight Research Center in Edwards, California, left, Russell, and Nils Larson, NASA Armstrong chief X-59 aircraft pilot and senior advisor on flight research, provided perspective on flight research at the Ideas to Flight Workshop on Sept. 18 at NASA Armstrong.NASA/Genaro Vavuris “We have been involved with X-59 aircraft requirements and design process from before it was an X-plane,” said Nils Larson, NASA chief X-59 aircraft pilot and senior advisor on flight research. “I was part of pre-formulation and formulation teams. I was also on the research studies and brought in NASA pilot Jim Less in for a second opinion. Because we had flown missions in the F-15 and F-18, we knew the kinds of systems, like autopilots, that we need to get the repeatability and accuracy for the data.”
NASA pilots’ experience can provide guidance to enable a wide range of flight experiments. A lot of times researchers have an idea of how to get the required flight data, but sometimes, Larson explains, while there are limits to what an aircraft can do – like flying the DC-8 upside down, there are maneuvers that given the right mitigations, training, and approval could simulate those conditions.
Less says he’s developed an approach to help focus researchers: “What do you guys really need? A lot of what we do is mundane, but anytime you go out and fly, there is some risk. We don’t want to take a risk if we are going after data that nobody needs, or it is not going to serve a purpose, or the quality won’t work.”
Justin Hall, left, attaches the Preliminary Research Aerodynamic Design to Land on Mars, or Prandtl-M, glider onto the Carbon-Z Cub, which Justin Link steadies. Hall and Link are part of a team from NASA’s Armstrong Flight Research Center in Edwards, California, that uses an experimental magnetic release mechanism to air launch the glider.NASA/Lauren Hughes Sometimes, a remotely piloted aircraft can provide an advantage to achieve NASA’s research priorities, said Justin Hall, NASA Armstrong’s subscale aircraft laboratory chief pilot. “We can do things quicker, at a lower cost, and the subscale lab offers unique opportunities. Sometimes an engineer comes in with an idea and we can help design and integrate experiments, or we can even build an aircraft and pilot it.”
Most research flights are straight and level like driving a car on the highway. But there are exceptions. “The more interesting flights require a maneuver to get the data the researcher is looking for,” Less said. “We mounted a pod to an F/A-18 with the landing radar that was going to Mars and they wanted to simulate Martian reentry using the airplane. We went up high and dove straight at the ground.”
Another F/A-18 experiment tested the flight control software for the Space Launch System rocket for the Artemis missions. “A rocket takes off vertically and it has to pitch over 90 degrees,” Less explained. “We can’t quite do that in an F-18, but we could start at about a 45-degree angle and then push 45 degrees nose low to simulate the whole turn. That’s one of the fun parts of the job, trying to figure out how to get the data you want with the tools we have.”
NASA pilot Jim Less is assisted by life support as he is fitted with a pilot breathing monitoring system. The sensing system is attached to a pilot’s existing gear to capture real-time physiological, breathing gas, and cockpit environmental data.NASA/Carla Thomas Share
Details
Last Updated Oct 16, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Aeronautics Aeronautics Research Aeronautics Research Mission Directorate Quesst (X-59) Technology Research Explore More
3 min read Sacrifice and Success: NASA Engineer Honors Family Roots
Article 2 hours ago 4 min read Sacrificio y Éxito: Ingeniero de la NASA honra sus orígenes familiares
Article 2 hours ago 3 min read NASA Spotlight: Felipe Valdez, an Inspiring Engineer
Article 3 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Capabilities & Facilities
NASA Aircraft
Armstrong Technologies
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Dr. Rainee Simons (right) and Dr. Félix Miranda work together to create technology supporting heart health at NASA’s Glenn Research Center in Cleveland.Credit: NASA Prioritizing health is important on Earth, and it’s even more important in space. Exploring beyond the Earth’s surface exposes humans to conditions that can impact blood pressure, bone density, immune health, and much more. With this in mind, two NASA inventors joined forces 20 years ago to create a way to someday monitor astronaut heart health on long-duration spaceflight missions. This technology is now being used to monitor the health of patients with heart failure on Earth through a commercial product that is slated to launch in late 2024.
NASA inventors Dr. Rainee Simons, senior microwave communications engineer, and Dr. Félix Miranda, deputy chief of the Communications and Intelligent Systems Division, applied their expertise in radio frequency integrated circuits and antennas to create a miniature implantable sensor system to keep track of astronaut health in space. The technology, which was created at NASA’s Glenn Research Center in Cleveland with seed funds from the agency’s Technology Transfer Office, consists of a small bio-implanted sensor that can transmit a person’s health status from a sensor to a handheld device. The sensor is battery-less and wireless.
“You’re able to insert the sensor and bring it up to the heart or the aorta like a stent – the same process as in a stent implant,” Simons said. “No major surgery is needed for implantation, and operating the external handheld device, by the patient, is simple and easy.”
After Glenn patented the invention, Dr. Anthony Nunez, a heart surgeon, and Harry Rowland, a mechanical engineer, licensed the technology and founded a digital health medical technology company in 2007 called Endotronix, now an Edwards Lifesciences company. The company focuses on enabling proactive heart failure management with data-driven patient-to-physician solutions that detect dangers, based on the Glenn technology. The Endotronix primary monitoring system is called the Cordella Pulmonary Artery (PA) Sensor System. Dr. Nunez became aware of the technology while reading a technical journal that featured the concept, and he saw parallels that could be used in the medical technology industry.
The concept has proven to be an aid for heart failure management through several clinical trials, and patients have experienced improvements in their quality of life. Based on the outcome of Endotronix’s clinical testing to demonstrate safety and effectiveness, in June 2024 the U.S. Food and Drug Administration granted premarket approval to the Cordella PA Sensor System. The system is meant to help clinicians remotely assess, treat, and manage heart failure in patients at home with the goal of reducing hospitalizations.
“If you look at the statistics of how many people have congestive heart failure, high blood pressure… it’s a lot of people,” Miranda said. “To have the medical community saying we have a device that started from NASA’s intellectual property – and it could help people worldwide to be healthy, to enjoy life, to go about their business – is highly gratifying, and it’s very consistent with NASA’s mission to do work for the benefit of all.”
Explore More
2 min read Controlled Propulsion for Gentle Landings
A valve designed for NASA rover landings enables effective stage separations for commercial spaceflight
Article 40 mins ago 2 min read Sail Along with NASA’s Solar Sail Tech Demo in Real-Time Simulation
NASA invites the public to virtually sail along with the Advanced Composite Solar Sail System‘s space…
Article 21 hours ago 4 min read Lunar Autonomy Mobility Pathfinder: An OTPS-Sponsored Workshop
Article 1 day ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.