Members Can Post Anonymously On This Site
Just add AI for expert astronaut ultrasound
-
Similar Topics
-
By NASA
NASA astronaut and Expedition 72 Flight Engineer Nick Hague pedals on the Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), an exercise cycle located aboard the International Space Station’s Destiny laboratory module. CEVIS provides aerobic and cardiovascular conditioning through recumbent (leaning back position) or upright cycling activities.NASA Lee esta historia en español aquí.
The International Space Station is humanity’s home in space and a research station orbiting about 250 miles above the Earth. NASA and its international partners have maintained a continuous human presence aboard the space station for more than 24 years, conducting research that is not possible on Earth.
The people living and working aboard the microgravity laboratory also are part of the research being conducted, helping to address complex human health issues on Earth and prepare humanity for travel farther than ever before, including the Moon and Mars.
Here are a few frequently asked questions about how NASA and its team of medical physicians, psychologists, nutritionists, exercise scientists, and other specialized caretakers ensure astronauts’ health and fitness aboard the orbiting laboratory.
How long is a typical stay aboard the International Space Station?
A typical mission to the International Space Station lasts about six months, but can vary based on visiting spacecraft schedules, mission priorities, and other factors. NASA astronauts also have remained aboard the space station for longer periods of time. These are known as long-duration missions, and previous missions have given NASA volumes of data about long-term spaceflight and its effects on the human body, which the agency applies to any crewed mission.
During long-duration missions, NASA’s team of medical professionals focus on optimizing astronauts’ physical and behavioral health and their performance to help ensure mission success. These efforts also are helping NASA prepare for future human missions to the Moon, Mars, and beyond.
How does NASA keep astronauts healthy while in space?
NASA has a team of medical doctors, psychologists, and others on the ground dedicated to supporting the health and well-being of astronauts before, during, and after each space mission. NASA assigns physicians with specialized training in space medicine, called flight surgeons, to each crew once named to a mission. Flight surgeons oversee the health care and medical training as crew members prepare for their mission, and they monitor the crew’s health before, during, and after their mission to the space station.
How does NASA support its astronauts’ mental and emotional well-being while in space?
The NASA behavioral health team provides individually determined psychological support services for crew members and their families during each mission. Ensuring astronauts can thrive in extreme environments starts as early as the astronaut selection process, in which applicants are evaluated on competencies such as adaptability and resilience. Astronauts receive extensive training to help them use self-assessment tools and treatments to manage their behavioral health. NASA also provides training in expeditionary skills to prepare every astronaut for missions on important competencies, such as self-care and team care, communication, and leadership and followership skills.
To help maintain motivation and morale aboard the space station, astronauts can email, call, and video conference with their family and friends, receive crew care packages aboard NASA’s cargo resupply missions, and teleconference with a psychologist, if needed.
How does microgravity affect astronaut physical health?
In microgravity, without the continuous load of Earth’s gravity, there are many changes to the human body. NASA understands many of the human system responses to the space environment, including adaptations to bone density, muscle, sensory-motor, and cardiovascular health, but there is still much to learn. These spaceflight effects vary from astronaut to astronaut, so NASA flight surgeons regularly monitor each crew member’s health during a mission and individualize diet and fitness routines to prioritize health and fitness while in space.
Why do astronauts exercise in space?
Each astronaut aboard the orbiting laboratory engages in specifically designed, Earth-like exercise plans. To maintain their strength and endurance, crew members are scheduled for two and a half hours of daily exercise to support muscle, bone, aerobic, and sensorimotor health. Current equipment onboard the space station includes the ARED (Advanced Resistive Exercise Device), which mimics weightlifting; a treadmill, called T2; and the CEVIS (Cycle Ergometer with Vibration Isolation and Stabilization System) for cardiovascular exercise.
What roles do food and nutrition play in supporting astronaut health?
Nutrition plays a critical role in maintaining an astronaut’s health and optimal performance before, during, and after their mission. Food also plays a psychosocial role during an astronaut’s long-duration stay aboard the space station. Experts working in NASA’s Space Food Systems Laboratory at the agency’s Johnson Space Center in Houston develop foods that are nutritious and appetizing. Crew members also have the opportunity to supplement the menu with personal favorites and off-the-shelf items, which can provide a taste of home.
NASA astronaut and Expedition 71 Flight Engineer Tracy C. Dyson is pictured in the galley aboard the International Space Station’s Unity module showing off food packets from JAXA (Japan Aerospace Exploration Agency).NASA How does NASA know whether astronauts are getting the proper nutrients?
NASA’s nutritional biochemistry dietitians and scientists determine the nutrients (vitamins, minerals, calories) the astronauts require while in space. This team tracks what each crew member eats through a tablet-based tracking program, which each astronaut completes daily. The data from the app is sent to the dietitians weekly to monitor dietary intake. Analyzing astronaut blood and urine samples taken before, during, and after space missions is a crucial part of studying how their bodies respond to the unique conditions of spaceflight. These samples provide valuable insight into how each astronaut adapts to microgravity, radiation, and other factors that affect human physiology in space.
How do astronauts train to work together while in space?
In addition to technical training, astronauts participate in team skills training. They learn effective group living skills and how to look out for and support one another. Due to its remote and isolated nature, long-duration spaceflight can make teamwork difficult. Astronauts must maintain situational awareness and implement the flight program in an ever-changing environment. Therefore, effective communication is critical when working as a team aboard station and with multiple support teams on the ground. Astronauts also need to be able to communicate complex information to people with different professional backgrounds. Ultimately, astronauts are people living and working together aboard the station and must be able to do a highly technical job and resolve any interpersonal issues that might arise.
What happens if there is a medical emergency on the space station?
All astronauts undergo medical training and have regular contact with a team of doctors closely monitoring their health on the ground. NASA also maintains a robust pharmacy and a suite of medical equipment onboard the space station to treat various conditions and injuries. If a medical emergency requires a return to Earth, the crew will return in the spacecraft they launched aboard to receive urgent medical care on the ground.
Expedition 69 NASA astronaut Frank Rubio is seen resting and talking with NASA ISS Program Manager Joel Montalbano, kneeling left, NASA Flight Surgeon Josef Schmid, red hat, and NASA Chief of the Astronaut Office Joe Acaba, outside the Soyuz MS-23 spacecraft after he landed with Roscosmos cosmonauts Sergey Prokopyev and Dmitri Petelin in a remote area near the town of Zhezkazgan, Kazakhstan on Wednesday, Sept. 27, 2023.NASA/Bill Ingalls Learn more about NASA’s Human Health and Performance Directorate at:
www.nasa.gov/hhp
View the full article
-
By European Space Agency
Image: ESA Astronaut Reserve training kicks off at EAC View the full article
-
By NASA
Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Just Keep Roving
Image from Perseverance’s Right Navigation Camera, looking back towards rover tracks from past drives, into Jezero crater. The camera is located high on the rover mast, and here the rover is looking back in the direction of the Jezero crater floor. This image was acquired on October 4th, 2024 (Sol 1288) at the local mean solar time of 12:51:26. NASA/JPL-Caltech Throughout the past week, Perseverancehas continued marching up the Jezero crater rim. This steep ascent through the Martian regolith (soil) can prove to be slow driving for the rover, as the wheels can slip on the steepest areas. This is like trying to run up a hill of sand on a beach – with every step forward, you also slip back a little way down the hill! This just means the Science and Engineering teams work together closely to plan slow and steady drives through this tricky terrain.
Driving through the Mount Ranier quadrangle, the team identified a relatively obstacle-free path to reach the crater rim which they designated Summerland Trail, aptly named from a very popular hiking trail that ascends Mount Ranier. Perseverance is trekking to the next waypoint near an outcrop of rocks called Pico Turquino, where the science team hopes to perform its next proximity science investigations with its instruments PIXL and back-online SHERLOC.
While roving along Summerland Trail, Perseverance is constantly observing the surrounding terrain. SuperCam and Mastcam-Z have been observing rocks on the ground and on a distant hill, called Crystal Creek. In addition, during this time Perseverance can put its eyes to the sky to make observations of the sun and atmosphere. Last week, the Mastcam-Z camera captured images of Phobos (one of Mars’ two moons) transiting in front of the sun!
This image, showing Phobos transiting in front of the sun, was acquired using Perseverance’s Left Mastcam-Z camera. Acquired on September 30th, 2024 (Sol 1285) at the local mean solar time of 11:10:04. NASA/JPL-Caltech/ASU While the Mars2020 team is itching to reach the ancient stratigraphy exposed in the crater rim, for now, the focus is on documenting our surroundings while navigating the ascent.
Written by Eleanor Moreland, Ph.D. Student Collaborator at Rice University
Reference Links
Rover Tracks Image: Mars Perseverance Sol 1288: Right Navigation Camera (Navcam) Quadrangles: NASA’s Perseverance Mars Rover Mission Honors Navajo Language Hiking Trail: Summerland Trailhead (U.S. National Park Services) SHERLOC: Perseverance Matters – NASA Science Mars Moons – NASA Science Phobos Transit Image: Mars Perseverance Sol 1285 – Left Mastcam-Z Camera Crater Rim: Reaching New Heights to Unravel Deep Martian History! Share
Details
Last Updated Oct 17, 2024 Related Terms
Blogs Explore More
3 min read Sols 4334-4335: Planning with Popsicles — A Clipper Celebration!
Article
1 day ago
4 min read Sols 4331-4333: Today’s Rover ABC – Aurora, Backwards Driving, and Chemistry, with a Side of Images
Article
4 days ago
3 min read Sols 4329-4330: Continuing Downhill
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
NASA astronaut and Expedition 72 Flight Engineer Nick Hague in the space station cupola. (Credit: NASA) Students from Iowa will have the opportunity to hear NASA astronaut Nick Hague answer their prerecorded questions while he’s serving an expedition aboard the International Space Station on Monday, Oct. 21.
Watch the 20-minute space-to-Earth call at 11:40 a.m. EDT on NASA+. Students from Iowa State University in Ames, First Robotics Clubs, World Food Prize Global Youth Institute, and Plant the Moon teams will focus on food production in space. Learn how to watch NASA content on various platforms, including social media.
Media interested in covering the event must contact Angie Hunt by 5 p.m., Friday, Oct.18 at amhunt@iastate.edu or 515-294-8986.
For more than 23 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos and lesson plans highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA pilot Nils Larson, and flight test engineer and pilot Wayne Ringelberg, head for a mission debrief after flying a NASA F/A-18 at Mach 1.38 to create sonic booms as part of the Sonic Booms in Atmospheric Turbulence flight series at NASA’s Armstrong Flight Research Center in California, to study sonic boom signatures with and without the element of atmospheric turbulence.NASA/Lauren Hughes NASA research pilots are experts on how to achieve the right flight-test conditions for experiments and the tools needed for successful missions. It is that expertise that enables pilots to help researchers learn how an aircraft can fly their technology innovations and save time and money, while increasing the innovation’s readiness for use.
NASA pilots detailed how they help researchers find the right fit for experiments that might not advance without proving that they work in flight as they do in modeling, simulation, and ground tests at the Ideas to Flight Workshop on Sept. 18 at NASA’s Armstrong Flight Research Center in Edwards, California. “Start the conversation early and make sure you have the right people in the conversation,” said Tim Krall, a NASA Armstrong flight operations engineer. “What we are doing better is making sure pilots are included earlier in a flight project to capitalize on their experience and knowledge.”
Flight research is often used to prove or refine computer models, try out new systems, or increase a technology’s readiness. Sometimes, pilots guide a research project involving experimental aircraft. For example, pilots play a pivotal role on the X-59 aircraft, which will fly faster than the speed of sound while generating a quiet thump, rather than a loud boom. In the future, NASA’s pilots with fly the X-59 over select U.S. communities to gather data about how people on the ground perceive sonic thumps. NASA will provide this information to regulators to potentially change regulations that currently prohibit commercial supersonic flight over land.
Mark Russell, center, a research pilot at NASA’s Glenn Research Center in Hampton, Virginia, explains the differences in flight environments at different NASA centers. Jim Less, a NASA pilot at NASA’s Armstrong Flight Research Center in Edwards, California, left, Russell, and Nils Larson, NASA Armstrong chief X-59 aircraft pilot and senior advisor on flight research, provided perspective on flight research at the Ideas to Flight Workshop on Sept. 18 at NASA Armstrong.NASA/Genaro Vavuris “We have been involved with X-59 aircraft requirements and design process from before it was an X-plane,” said Nils Larson, NASA chief X-59 aircraft pilot and senior advisor on flight research. “I was part of pre-formulation and formulation teams. I was also on the research studies and brought in NASA pilot Jim Less in for a second opinion. Because we had flown missions in the F-15 and F-18, we knew the kinds of systems, like autopilots, that we need to get the repeatability and accuracy for the data.”
NASA pilots’ experience can provide guidance to enable a wide range of flight experiments. A lot of times researchers have an idea of how to get the required flight data, but sometimes, Larson explains, while there are limits to what an aircraft can do – like flying the DC-8 upside down, there are maneuvers that given the right mitigations, training, and approval could simulate those conditions.
Less says he’s developed an approach to help focus researchers: “What do you guys really need? A lot of what we do is mundane, but anytime you go out and fly, there is some risk. We don’t want to take a risk if we are going after data that nobody needs, or it is not going to serve a purpose, or the quality won’t work.”
Justin Hall, left, attaches the Preliminary Research Aerodynamic Design to Land on Mars, or Prandtl-M, glider onto the Carbon-Z Cub, which Justin Link steadies. Hall and Link are part of a team from NASA’s Armstrong Flight Research Center in Edwards, California, that uses an experimental magnetic release mechanism to air launch the glider.NASA/Lauren Hughes Sometimes, a remotely piloted aircraft can provide an advantage to achieve NASA’s research priorities, said Justin Hall, NASA Armstrong’s subscale aircraft laboratory chief pilot. “We can do things quicker, at a lower cost, and the subscale lab offers unique opportunities. Sometimes an engineer comes in with an idea and we can help design and integrate experiments, or we can even build an aircraft and pilot it.”
Most research flights are straight and level like driving a car on the highway. But there are exceptions. “The more interesting flights require a maneuver to get the data the researcher is looking for,” Less said. “We mounted a pod to an F/A-18 with the landing radar that was going to Mars and they wanted to simulate Martian reentry using the airplane. We went up high and dove straight at the ground.”
Another F/A-18 experiment tested the flight control software for the Space Launch System rocket for the Artemis missions. “A rocket takes off vertically and it has to pitch over 90 degrees,” Less explained. “We can’t quite do that in an F-18, but we could start at about a 45-degree angle and then push 45 degrees nose low to simulate the whole turn. That’s one of the fun parts of the job, trying to figure out how to get the data you want with the tools we have.”
NASA pilot Jim Less is assisted by life support as he is fitted with a pilot breathing monitoring system. The sensing system is attached to a pilot’s existing gear to capture real-time physiological, breathing gas, and cockpit environmental data.NASA/Carla Thomas Share
Details
Last Updated Oct 16, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Aeronautics Aeronautics Research Aeronautics Research Mission Directorate Quesst (X-59) Technology Research Explore More
3 min read Sacrifice and Success: NASA Engineer Honors Family Roots
Article 2 hours ago 4 min read Sacrificio y Éxito: Ingeniero de la NASA honra sus orígenes familiares
Article 2 hours ago 3 min read NASA Spotlight: Felipe Valdez, an Inspiring Engineer
Article 3 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Capabilities & Facilities
NASA Aircraft
Armstrong Technologies
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.