Members Can Post Anonymously On This Site
The NASA Space Technology Art Challenge: Imagine Tomorrow
-
Similar Topics
-
By NASA
The NESC Mechanical Systems TDT provides broad support across NASA’s mission directorates. We are a diverse group representing a variety of sub-disciplines including bearings, gears, metrology, lubrication and tribology, mechanism design, analysis and testing, fastening systems, valve engineering, actuator engineering, pyrotechnics, mechatronics, and motor controls. In addition to providing technical support, the
TDT owns and maintains NASA-STD-5017, “Design and Development Requirements for Space Mechanisms.”
Mentoring the Next Generation
The NESC Mechanical Systems TDT actively participates in the Structures, Loads & Dynamics, Materials, and Mechanical Systems (SLAMS) Early Career Forum that mentors early-career engineers. The TDT sent three members to this year’s forum at WSTF, where early-career engineers networked with peers and NESC mentors, gave presentations on tasks they worked on at their home centers, and attended splinter sessions where they collaborated with mentors.
New NASA Valve Standard to Reduce Risk and Improve Design and Reliability
Valve issues have been encountered across NASA’s programs and continue to compromise mission performance and increase risk, in many cases because the valve hardware was not qualified in the environment as specified in NASA-STD-5017. To help address these issues, the Mechanical Systems TDT is developing a NASA standard for valves. The TDT assembled a team of subject matter experts from across the Agency representing several disciplines including mechanisms, propulsion, environmental control and life support systems, spacesuits, active thermal control systems, and materials and processes. The team has started their effort by reviewing lessons learned and best practices for valve design and hope to have a draft standard ready by the end of 2025.
Bearing Life Testing for Reaction Wheel Assemblies
The Mechanical Systems TDT just concluded a multiyear bearing life test on 40 motors, each containing a pair of all steel bearings of two different conformities or a pair of hybrid bearings containing silicon nitride balls. The testing confirmed that hybrid bearings outperformed their steel counterparts, and bearings with higher conformity (54%) outperformed bearings with lower conformity (52%). The team is disassembling and inspecting the bearings, and initial results have been surprising. The TDT was able to “recover” some of the bearings that failed during the life test and get them running as well as they did when testing began. Some bearings survived over five billion revolutions and appeared like new when they were disassembled and inspected. These results will be published once analysis is complete.
X-57 Design Assessment
The Mechanical Systems TDT was asked by the Aeronautics Mission Directorate to assess the design of the electric cruise motors installed on X-57. The team responded quickly to meet the Project’s schedule, making an onsite visit and attending numerous technical interchange meetings. After careful review of the design, the TDT identified areas for higher-level consideration and risk assessment and attended follow-on reviews to provide additional comments and advice.
CLARREO Pathfinder Inner Radial Bearing Anomaly
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder was designed to take highly accurate measurements of reflected solar radiation to better-understand Earth’s climate. During payload functional testing, engineers detected a noise as the HySICS pointing system was rotated from its normal storage orientation. Mechanical Systems TDT members reviewed the design and inspection reports after disassembly of the inner bearing unit, noticing contact marks on the bore of the inner ring and the shaft that confirmed that the inner ring of the bearing was moving on the shaft with respect to the outer ring. Lubricant applied to this interface resolved the noise problem and allowed the project to maintain schedule without any additional costs.
JPL Wheel Drive Actuator Extended Life Test Independent Review Team
A consequence of changes to its mission on Mars will require the Perseverance Rover to travel farther than originally planned. Designed to drive 20 km, the rover will now need to drive ~91 km to rendezvous and support Mars sample tube transfer to the Sample Retrieval Lander. The wheel drive actuators with integral brakes had only been life tested to 40 km, so a review was scheduled to discuss an extended life test. The OCE Science Mission Directorate Chief Engineer assembled an independent review team (IRT) that included NESC Mechanical Systems TDT members. This IRT issued findings and guidance that questioned details of the JPL assumptions and plan. Several important recommendations were made that improved the life test plan and led to the identification of brake software issues that were reducing brake life. The life test has achieved 40 km of its 137 km goal and is ongoing. In addition, software updates were sent to the rover to improve brake life.
Orion Crew Module Hydrazine Valve
When an Orion crew module hydrazine valve failed to close, the production team asked the Mechanical Systems TDT for help. A TDT member attended two meetings and then visited the valve manufacturer, where it was determined this valve was a scaled-down version of the 12-inch SLS prevalve that was the subject of a previous NESC assessment and shared similar issues. The Orion Program requested NESC materials and mechanical systems support. The Mechanical Systems TDT member then worked closely with a Lockheed Martin (LM) Fellow for Mechanisms to review all the valve vendor’s detailed drawings and assembly procedures and document any issues. A follow-on meeting was held to brief both the LM and NASA Technical Fellows for Propulsion that a redesign and requalification was recommended. These recommendations have now been elevated to the LM Vice President for Mission Success and the LM Chief Engineer for Orion.
NASA’s Perseverance Mars rover selfie taken in July 2024.
View the full article
-
By NASA
ESA (European Space Agency) astronaut Samantha Cristoforetti pictured aboard the International Space Station on Dec. 20, 2014, during Expedition 42.Credit: NASA Crew members aboard the International Space Station celebrate the holiday season in a unique way while living and working at the orbiting laboratory. Each crew member, including the current Expedition 72, spends time enjoying the view of Earth from the space station, privately communicating with their friends and families, and sharing a joint meal with their expedition crewmates, while continuing experiments and station maintenance.
This view of the rising Earth greeted the Apollo 8 astronauts William Ander, Frank Borman, and James Lovell on Dec. 24, 1968, as they approached from behind the Moon after the fourth nearside lunar orbit.Credit: NASA As the first crew to spend Christmas in space and leave Earth orbit, Apollo 8 astronauts Frank Borman, James Lovell, and William Anders, celebrated while circling the Moon in December 1968. The crew commemorated Christmas Eve by reading opening verses from the Bible’s Book of Genesis as they broadcast scenes of the lunar surface below. An estimated one billion people across 64 countries tuned in to the crew’s broadcast.
Skylab 4 astronauts Gerald Carr, Edward Gibson, and William Pogue trim their homemade Christmas tree in December 1973. Credit: NASA In 1973, Skylab 4 astronauts Gerald Carr, Edward Gibson, and William Pogue celebrated Thanksgiving, Christmas, and New Year’s in space, as the first crew to spend the harvest festival and ring in the new year while in orbit. The crew built a homemade tree from leftover food containers, used colored decals as decorations, and topped it with a cardboard cutout in the shape of a comet. Carr and Pogue conducted a seven-hour spacewalk to change out film canisters and observe the passing Comet Kohoutek on Dec. 15, 1973. Once back inside the space station, the crew enjoyed a holiday dinner complete with fruitcake, communicated with their families, and opened presents.
NASA astronaut Jeffrey Hoffman pictured with a dreidel during Hanukkah in December 1993.Credit: NASA After NASA launched the agency’s Hubble Space Telescope into Earth’s orbit in 1990, NASA sent a space shuttle crew on a mission, STS-61, to service the telescope. In 1993, NASA astronaut Jeffrey Hoffman celebrated Hanukkah after completing the third spacewalk of the servicing mission. Hoffman celebrated with a traveling menorah and dreidel.
STS103-340-036 (19-27 December 1999) — Wearing Santa hats, astronauts John M. Grunsfeld and Steven L. Smith blend with the season for a brief celebration on the mid deck of the Space Shuttle Discovery. The interruption was very brief as the two mission specialists shortly went about completing their suit-up process in order to participate in STS-103 space walk activity, performing needed work on the Hubble Space Telescope (HST).Credit: NASA As NASA continued to support another Hubble Space Telescope servicing mission, the STS-103 crew celebrated the first space shuttle Christmas aboard Discovery in 1999. NASA astronauts Curtis Brown, Scott Kelly, Steven Smith, John Grunsfeld, and Michael Foale, along with ESA (European Space Agency) astronauts Jean-François Clervoy and Claude Nicollier enjoyed duck foie gras on Mexican tortillas, cassoulet, and salted pork with lentils. Smith and Grunsfeld completed repairs on the telescope during a spacewalk on Dec. 24, 1999, and at least one American astronaut has celebrated Christmas in space every year since.
Expedition 1 crew members Yuri Gidzenko of Roscosmos, left, NASA astronaut William Shepherd, and Sergei Krikalev of Roscosmos reading a Christmas message in December 2000.
Credit: NASA In November 2000, the arrival of Expedition 1 crew members, NASA astronaut William Shepherd and Roscosmos cosmonauts Yuri Gidzenko and Sergei Krikalev, aboard the International Space Station, marked the beginning of a continuous presence in space. As the first crew to celebrate the holiday season at the laboratorial outpost, they began the tradition of reading a goodwill message to those back on Earth. Shepherd honored a naval tradition of writing a poem as the first entry of the new year in the ship’s log.
For more than 24 years, NASA has supported a continuous U.S. human presence aboard the International Space Station, through which astronauts have learned to live and work in space for extended periods of time. As NASA supports missions to and from the station, crew members have continued to celebrate the holidays in space.
Expedition 4 crew members, NASA astronauts Daniel Bursch and Carl Walz, along with Roscosmos cosmonaut Yuri Onufriyenko, pose for a Christmas photo in December 2001. Credit: NASA Expedition 8 crew members, NASA astronaut Michael Foale, left, and Roscosmos cosmonaut Aleksandr Kaleri, right, celebrate Christmas in December 2003. Credit: NASA Expedition 10 crew members, Roscosmos cosmonaut Salizhan Sharipov, left, and NASA astronaut Leroy Chiao, right, celebrate New Year’s Eve in December 2004.Credit: NASA Expedition 12 crew members, Roscosmos cosmonaut Tokarev, left, and NASA astronaut William McArthur, pose with Christmas stockings in December 2005. NASA Expedition 14 crew members, Roscosmos cosmonaut Mikhail Tyurin, left, and NASA astronauts Michael Lopez-Alegria and Suni Williams pose wearing Santa hats in December 2006.Credit: NASA Expedition 16 crew members, Roscosmos cosmonaut Yuri Malenchenko, left, and NASA astronauts Peggy Whitson and Daniel Tani, with Christmas stockings and presents in December 2007. Expedition 18 crew members enjoy Christmas dinner in December 2008. Expedition 22 crew members gather around the dinner table in December 2009.Credit: NASA Expedition 26 crew members celebrates New Year’s Eve in December 2010.Credit: NASA Expedition 30 crew members pictured in December 2011.Credit: NASA Expedition 34 crew members pictured in December 2012. Credit: NASA Expedition 42 crew members leave milk and cookies for Santa and hang stockings using the airlock as a makeshift chimney in December 2013.Credit: NASA Expedition 50 crew members celebrate New Year’s Eve in December. Credit: NASA Expedition 54 crew member NASA astronaut Mark Vande Hei pictured as an elf for Christmas in December 2017.Credit: NASA Expedition 58 crew members inspect stockings for presents in December 2018 Expedition 61 crew member NASA astronaut Jessica Meir pictured with Hanukkah-themed socks in the cupola in December 2019. Expedition 61 crew members NASA astronauts Andrew Morgan, Christina Koch, and Jessica Meir, along with ESA (European Space Agency) astronaut Luca Parmitano share a holiday message on Dec. 23, 2019, from the International Space Station.Credit: NASA NASA astronaut Kayla Barron pictured with presents she wrapped for her crewmates in December 2021.Credit: NASA Expedition 68 crew members wear holiday outfits in December 2022.Credit: NASA Expedition 70 flight engineer NASA astronaut Jasmin Moghbeli’s husband and daughters made a felt menorah for her to celebrate Hanukkah during her mission. Since astronauts can’t light real candles aboard the space station, Moghbeli pinned felt “lights” for each night of the eight-day holiday. A dreidel spun in weightlessness will continue spinning until it comes in contact with another object but can’t land on any of its four faces. Expedition 70 crew members recorded a holiday message for those back on Earth.
Expedition 70 NASA astronaut Jasmin Moghbeli’s felt menorah and dreidel that she used to celebrate Hanukkah in December 2023. Credit: NASA NASA astronauts Don Pettit and Suni Williams, Expedition 72 flight engineer and commander respectively, pose for a fun holiday season portrait while speaking on a ham radio inside the International Space Station’s Columbus laboratory module. Credit: NASA To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
Expedition 72 video holiday message from the International Space Station. Credit: NASA The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. The orbiting laboratory is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under the Artemis campaign and, ultimately, human exploration of Mars.
Go here for more holiday memories onboard the space station. To learn more about the International Space Station, its research, and its crew, at:
https://www.nasa.gov/station
News Media Contacts:
Claire O’Shea
Headquarters, Washington
202-358-1100
claire.a.o’shea@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Latha Balijepalle, a senior database administrator at NASA Ames, encourages others to take a risk and pursue challenges in their work, like trying something new that might open doors to a new opportunity.NASA/Brandon Torres Navarrete When Madhavi Latha Balijepalle noticed that her morning commute took her past NASA Ames Research Center in California’s Silicon Valley, she set a new career goal for herself: working for NASA.
“I started manifesting it, thinking about it every day as I drove by. When I started looking for a new job, I saw an opening and decided to apply,” said Balijepalle, a senior database administrator working at the Airspace Operations Laboratory (AOL) at NASA Ames.
Eight and a half years later, she supports the researchers and developers who research next-generation solutions to advance aircraft technology and air traffic management.
A journey into the unknown
Balijepalle’s journey to NASA started thousands of miles away. She grew up in a small town in southern India, studying electrical engineering in college and establishing a career in information technology, working in C++ and Python.
When her husband found a job opportunity in the United States, Balijepalle’s life took an unexpected turn.
“I never planned to move to America,” said Balijepalle. “It was not easy to come here, even though my husband had a job. I stayed in India for almost nine months, before he found a different job that would help us with my visa and documentation.”
After settling into her new country, growing her family, and developing in her new career, Balijepalle began to ponder her dream job at NASA. She and her younger daughter, a fellow space fan, enjoyed talking about the agency’s work in space, and when a Linux administrator position opened up, she jumped at the chance.
A dream job becomes reality
At the lab, Balijepalle was initially responsible for managing the lab’s Linux servers and applications. Today, she also supports researchers and developers with development, automation, and deployment of their work.
“Latha is the lifeblood of the lab,” said Jeff Homola, co-leader of the Airborne Operations Laboratory at NASA Ames. “Without her unwavering dedication to making sure our systems are safe, secure, up to date, and running smoothly, we would not be able to do what we do in the lab.”
One of Balijepalle’s proudest achievements during her NASA career is her language skills. Growing up, she spoke Telugu and Hindi, and learned English, but communication was still a challenge when she arrived at NASA.
“I spoke English when I came to America, but not as well, and not using the technical language we use at NASA,” said Balijepalle. “I’m proud that I’ve improved my communications skills.”
“Step outside your comfort zone”
Looking back on the commute that changed her life, Balijepalle says she owes it all to being up to the challenge.
“I wasn’t a risk taker, I didn’t think about stepping outside my comfort zone, but as I drove by NASA Ames each day, I started to think about astronauts. They step outside their comfort zone and leave the planet, so maybe I could take a risk, too.”
For those who also dream of working at NASA one day, Balijepalle has some advice: try doing it her way.
“Start thinking about it and manifesting your dream. Maybe it will come true, and maybe it won’t, but you might as well try.”
Share
Details
Last Updated Dec 23, 2024 Related Terms
Ames Research Center General Explore More
16 min read NASA Ames Astrogram – December 2024
Article 3 days ago 5 min read NASA’s Ames Research Center Celebrates 85 Years of Innovation
Article 3 days ago 3 min read NASA’s Webb Reveals Smallest Asteroids Yet Found in Main Asteroid Belt
Article 3 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA/Quincy Eggert NASA’s Armstrong Flight Research Center in Edwards, California, is preparing today for tomorrow’s mission. Supersonic flight, next generation aircraft, advanced air mobility, climate changes, human exploration of space, and the next innovation are just some of the topics our researchers, engineers, and mission support teams focused on in 2024.
NASA Armstrong began 2024 with the public debut of the X-59 quiet supersonic research aircraft. Through the unique design of the X-59, NASA aims to reduce the sonic boom to make it much quieter, potentially opening the future to commercial supersonic flight over land. Throughout the first part of the year, NASA and international researchers studied air quality across Asia as part of a global effort to better understand the air we breathe. Later in the year, for the first time, a NASA-funded researcher conducted an experiment aboard a commercial suborbital rocket, studying how changes in gravity during spaceflight affect plant biology.
Here’s a look at more NASA Armstrong accomplishments throughout 2024:
Our simulation team began work on NASA’s X-66 simulator, which will use an MD-90 cockpit and allow pilots and engineers to run real-life scenarios in a safe environment. NASA Armstrong engineers completed and tested a model of a truss-braced wing design, laying the groundwork for improved commercial aircraft aerodynamics. NASA’s Advanced Air Mobility mission and supporting projects worked with industry partners who are building innovative new aircraft like electric air taxis. We explored how these new designs may help passengers and cargo move between and inside cities efficiently. The team began testing with a custom virtual reality flight simulator to explore the air taxi ride experience. This will help designers create new aircraft with passenger comfort in mind. Researchers also tested a new technology that will help self-flying aircraft avoid hazards. A NASA-developed computer software tool called OVERFLOW helped several air taxi companies predict aircraft noise and aerodynamic performance. This tool allows manufacturers to see how new design elements would perform, saving the aerospace industry time and money. Our engineers designed a camera pod with sensors at NASA Armstrong to help advance computer vision for autonomous aviation and flew this pod at NASA’s Kennedy Space Center in Florida. NASA’s Quesst mission marked a major milestone with the start of tests on the engine that will power the quiet supersonic X-59 experimental aircraft. In February and March, NASA joined international researchers in Asia to investigate pollution sources. The now retired DC-8 and NASA Langley Gulfstream III aircraft collected air measurements over the Philippines, South Korea, Malaysia, Thailand, and Taiwan. Combined with ground and satellite observations, these measurements continue to enrich global discussions about pollution origins and solutions. The Gulfstream IV joined NASA Armstrong’s fleet of airborne science platforms. Our teams modified the aircraft to accommodate a next-generation science instrument that will collect terrain information of the Earth in a more capable, versatile, and maintainable way. The ER-2 and the King Air supported the development of spaceborne instruments by testing them in suborbital settings. On the Plankton, Aerosol, Cloud, ocean Ecosystem Postlaunch Airborne eXperiment mission (PACE-PAX), the ER-2 validated data collected by the PACE satellite about the ocean, atmosphere, and surfaces. Operating over several countries, researchers onboard NASA’s C-20A collected data and images of Earth’s surface to understand global ecosystems, natural hazards, and land surface changes. Following Hurricane Milton, the C-20A flew over affected areas to collect data that could help inform disaster response in the future. We also tested nighttime precision landing technologies that safely deliver spacecraft to hazardous locations with limited visibility. With the goal to improve firefighter safety, NASA, the U.S. Forest Service, and industry tested a cell tower in the sky. The system successfully provided persistent cell coverage, enabling real-time communication between firefighters and command posts. Using a 1960s concept wingless, powered aircraft design, we built and tested an atmospheric probe to better and more economically explore giant planets. NASA Armstrong hosted its first Ideas to Flight workshop, where subject matter experts shared how to accelerate research ideas and technology development through flight. These are just some of NASA Armstrong’s many innovative research efforts that support NASA’s mission to explore the secrets of the universe for the benefit of all.
Share
Details
Last Updated Dec 20, 2024 EditorDede DiniusContactSarah Mannsarah.mann@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Mobility Aeronautics C-20A DC-8 Earth Science ER-2 Flight Opportunities Program Quesst (X-59) Sustainable Flight Demonstrator Explore More
2 min read NASA, Notre Dame Connect Students to Inspire STEM Careers
Article 5 hours ago 2 min read NASA Flight Rerouting Tool Curbs Delays, Emissions
Article 5 hours ago 5 min read NASA Technologies Aim to Solve Housekeeping’s Biggest Issue – Dust
During the flight test with Blue Origin, seven technologies developed by NASA’s Game Changing Development…
Article 7 days ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Programs & Projects
Armstrong Technologies
Armstrong Capabilities & Facilities
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.