Jump to content

Jennifer Krottinger: Designing Ways to Serve


NASA

Recommended Posts

  • Publishers

At NASA’s Goddard Institute for Space Studies in New York City, Jennifer Krottinger pairs her artistic vision with a passion for public service.

Name: Jennifer Krottinger
Title: Business Manager
Formal Job Classification: Business Management Specialist
Organization: Goddard Institute for Space Studies, Science and Exploration Directorate (Code 611)

Jennifer Krottinger wears a grey Artemis jacket with black pants and red shoes and smiles next to a sign that says "The White House Initiative on Asian Americans, Native Hawaiians, and Pacific Islanders." An American flag is behind her.
Jennifer Krottinger is a business management specialist at NASA’s Goddard Institute for Space Studies in New York City.
Courtesy of Jennifer Krottinger

What do you do and what is most interesting about your role here at Goddard?

I play a key role in decision making on institutional support, and provide authoritative, technical advice, and consultation on the laboratory’s grants, cooperative agreements, personnel management, and procurement actions. Because no two days are alike, and I have the honor of working alongside brilliant, awesome, and equally humble people, my role is very interesting.

What is your educational background?

In 2002, I received my undergraduate degree, a bachelor’s in business administration, from Midwestern State University in Wichita Falls, Texas. In 2008, I received my graduate degree, a master’s in public administration, specializing in analysis and research, from Portland State University in Portland, Oregon. In 2019, I received another undergraduate degree, an associate of applied science in fashion design, from Parsons School of Design, School of Fashion, in New York, New York.

Please tell us about your service in Volunteers in Service to America (VISTA).

I worked for a small business during my undergrad and continued to after graduation. I was born into a family of entrepreneurs, maternally and paternally, and small business is in my DNA. I was ready for something different, yearning to “give back.” I applied to VISTA, the domestic version of the Peace Corps. I was ultimately offered a few different positions, opting for the West Coast, leaving Texas in 2003 to begin VISTA service. I worked on economic development initiatives, in California and Oregon at the county, city, and state levels of government. I served for three-and-a-half years and fell in love with public service. Thinking I would pursue an MBA post-service, I decided to study for a master’s in public administration instead, studying full-time while working part-time as a graduate research assistant for a department chair.

After graduating with my MPA, I returned to the private sector for a few years, and decided to take another leap of faith, answering the call of international service with the Peace Corps.

Please tell us about your experience in the Peace Corps.

From 2011 to 2015, I served in the Peace Corps, and my post was Sarteneja, Belize, Central America. My primary project was Sarteneja Alliance for Conservation and Development (SACD), a non-governmental organization working on communications ranging from basic skills, such as teaching Belizeans how to use Google, to more advanced, working with the SACD Board of Directors on the development and implementation of the communications plan.

My secondary project was helping 10 women found a women-owned, -operated, and -led sewing and handicraft cooperative, Las Sartenejeñas Cooperative. They make and sell indigenous artisan work and school uniforms for the local schools. The project won the 2013 Charlotte Daniels Champions of Change award, selected from world-wide projects, from World Connect, and the cooperative is still flourishing. These women inspire me to this day.

After completing Peace Corps service, I stayed in-country working on projects, with the cooperative, as the technical business development manager, working for almost a year, post-service.

And, in the summer of 2022, while working at GISS, I participated voluntarily in the Peace Corps Virtual Service Pilot Program (VSPP), in Namibia, to capitate Ngato Vocational Training Centre staff in developing a financially, viable business plan for the center, enabling greater sustainability, an increase in student enrollment capacity, and expansion of scholarship program for youth who come from traditionally marginalized and disadvantaged communities.

What inspired you to attend Parsons School of Design?

The women at the cooperative were a great catalyst for me. Since I was five years old, I wanted to be a fashion designer, and it was time. The opportunity was presenting itself and working with the women fueled the motivation. It was the education I always wanted and deserved, and decided to go for it.

I returned to Texas in June of 2015 from Belize, and moved to New York City in July 2015. In August 2015, I started my position with the Small Business Administration Region II, New Jersey District Office, later transferring to the New York Metro District Office, and Parsons.

It was a tall order to work full time, while adapting back to the United States, let alone coming from a rural, remote village of about 3,500, to a city of about 8.7 million, and attend Parsons part time which was rigorous and grueling, with little to no fashion design experience. I loved my time at Parsons, learning a lot about myself, the grit and the gumption, including how strong I really was and how to successfully manage priorities, attaining almost straight A’s, graduating with top honors.

What did you do for the Small Business Administration (SBA)?

From 2015 to 2020, I worked at SBA, in Region II District Offices located in Newark, New Jersey, and New York City in government contracting and business development. The position as a business opportunity specialist allowed me to continue working cross-culturally with socioeconomic groups through managing portfolios of socially and economically disadvantaged small businesses, participating in federal government contract certification programs such as 8(a), Women Owned Small Business (WOSB), HUBZone, Veteran Owned Small Business (VOSB) and other certifications offered, providing technical assistance on the development of comprehensive business plans including robust financial planning. I also served as a district office technical representative for the Women’s Business Centers funded by SBA.

Why did you come to GISS?

In May 2020, I landed at GISS. NASA has always been an aspiration for me. One of my heroes is Katherine Goble Johnson, a NASA mathematician and “Hidden Figure.” One of my favorite quotes of hers is, “I’m always interested in learning something new.” I hold this quote near and dear to my heart; growth and learning are two of my values. I included this quote and explained its importance on my NASA application. If you are always learning something new, you are continuously improving and growing.

What do you do at GISS?

Every day is different, and as mentioned earlier, no two days are alike. My major duties are program management and coordination of GISS strategic planning activities, oversight of GISS partnership agreements and procurement duties as the contracting officer representative (COR). This tends to involve problem-solving, working through and undoing complexities, establishing and refining policies and procedures, providing guidance and technical assistance, implementing innovative and creative approaches, and a lot of listening. I’m also one of the founding members of the newly established GISS DEIA Committee and serve as a  vice co-chair for the Women’s Employee Resource Group and Network (WEN) at NASA’s Goddard Space Flight Center.

What is the coolest part about working at GISS?

Working at GISS is truly the coolest part, because again, NASA was an aspiration and achieving this, well sometimes I feel like pinching myself, ensuring its real. Also working directly and alongside Gavin Schmidt, the GISS director, and Ron Miller, the GISS deputy director, two incredibly brilliant and people-first leaders, who demonstrate everyday humility and humanity in leadership. For example, during the pandemic, when there was civil unrest across the country, Gavin told everyone at the weekly staff meeting that it was OK not to be OK, normalizing the taboo.

What are you currently doing for the United Nations?

The third goal of Peace Corps is to “help promote a better understanding of other peoples on the part of Americans,” bringing back the country of service, to the United States. In March 2023, I became a representative for the Economic and Social Council (ECOSOC) of the United Nations. Five Returned Peace Corps Volunteers, are voluntarily consulting on addressing worldwide poverty and the 17 Sustainable Development Goals (SDG). My focus is SDG 5 Gender Equality, SDG 8 Decent Work and Economic Growth, and SDG 10 Reduced Inequalities. The consultancy involves attending UN meetings, summits, side events, briefings, and official ECOSOC written and oral statements.  

Jennifer Krottinger (right) stands with a man and a woman in front of a faux greenery background with the UN's SDG logo
“The third goal of Peace Corps is to ‘help promote a better understanding of other peoples on the part of Americans,’ bringing back the country of service, to the United States,” said Krottinger. “In March 2023, I became a representative for the Economic and Social Council (ECOSOC) of the United Nations.”
Courtesy of Jennifer Krottinger

What do you do for fun?

In January 2023, I launched my own fashion brand of prêt-à-couture garments and accessories with a focus on creative endeavors. It’s a refinement and a lifetime work-in-progress. I lose all track of time in fashion and the creative – from mood boards, to color theory, to fashion history, to textiles, to the business aspect. Right now, I love learning about colors and am currently reading “The Secret Life of Color,” which is explaining all the different histories of color.

In October 2022, I went to École Lesage in Paris to finally study embroidery, the Lunéville hook technique, one of the techniques used in haute couture, and learn more about fashion and craftmanship through a lecture series. I was supposed to go in 2020, but the pandemic had other plans for us all.

In October 2023, returned to Paris, to continue studies of one of the greats, Christian Dior, at the maison (house) on 30 Avenue Montaigne.

Who are some of your favorite designers?

I am old school. Some of my favorites are Claire McCardell, Hubert de Givenchy, Cristobal Balenciaga, Norman Norell, and Isabel Toledo. Present day favorites include Virgil Abloh (Off White), Pierpaolo Piccioli (Valentino), Lee Alexander McQueen (Alexander McQueen), Clare Waight Keller and Maria Grazia Chiuri (Christian Dior). Well-made garment construction is appealing, and I design timeless, classic garments to last forever, having a smaller footprint on Earth.

I’m truly loving the slow fashion movement and Tissuni, based in France. A group of haute couture seamstresses from Valentino, Dior, Paris Opera, Saint Laurent, and others, banded together during the pandemic, making much needed facial masks from leftover fabric and are distributing them for free. The group has continued the movement creating zero waste couture designs.

What is your motto?

Living life with no regrets!

What is your “six-word memoir?” A six-word memoir describes something in just six words.

“The light you shed, will spread.” – RBG

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Mar 05, 2024
Editor
Madison Olson
Contact
Elizabeth M. Jarrell
Location
GISS

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      At NASA, high-end computing is essential for many agency missions. This technology helps us advance our understanding of the universe – from our planet to the farthest reaches of the cosmos. Supercomputers enable projects across diverse research, such as making discoveries about the Sun’s activity that affects technologies in space and life on Earth, building artificial intelligence-based models for innovative weather and climate science, and helping redesign the launch pad that will send astronauts to space with Artemis II. 
      These projects are just a sample of the many on display in NASA’s exhibit during the International Conference for High Performance Computing, Networking, Storage and Analysis, or SC24. NASA’s Dr. Nicola “Nicky” Fox, associate administrator for the agency’s Science Mission Directorate, will deliver the keynote address, “NASA’s Vision for High Impact Science and Exploration,” on Tuesday, Nov. 19, where she’ll share more about the ways NASA uses supercomputing to explore the universe for the benefit of all. Here’s a little more about the work NASA will share at the conference: 
      1. Simulations Help in Redesign of the Artemis Launch Environment
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      This simulation of the Artemis I launch shows how the Space Launch System rocket's exhaust plumes interact with the air, water, and the launchpad. Colors on surfaces indicate pressure levels—red for high pressure and blue for low pressure. The teal contours illustrate where water is present. NASA/Chris DeGrendele, Timothy Sandstrom Researchers at NASA Ames are helping ensure astronauts launch safely on the Artemis II test flight, the first crewed mission of the Space Launch System (SLS) rocket and Orion spacecraft, scheduled for 2025. Using the Launch Ascent and Vehicle Aerodynamics software, they simulated the complex interactions between the rocket plume and the water-based sound suppression system used during the Artemis I launch, which resulted in damage to the mobile launcher platform that supported the rocket before liftoff.
      Comparing simulations with and without the water systems activated revealed that the sound suppression system effectively reduces pressure waves, but exhaust gases can redirect water and cause significant pressure increases. 
      The simulations, run on the Aitken supercomputer at the NASA Advanced Supercomputing facility at Ames, generated about 400 terabytes of data. This data was provided to aerospace engineers at NASA’s Kennedy Space Center in Florida, who are redesigning the flame deflector and mobile launcher for the Artemis II launch.
      2. Airplane Design Optimization for Fuel Efficiency
      In this comparison of aircraft designs, the left wing models the aircraft’s initial geometry, while the right wing models an optimized shape. The surface is colored by the air pressure on the aircraft, with orange surfaces representing shock waves in the airflow. The optimized design modeled on the right wing reduces drag by 4% compared to the original, leading to improved fuel efficiency. NASA/Brandon Lowe To help make commercial flight more efficient and sustainable, researchers and engineers at NASA’s Ames Research Center in California’s Silicon Valley are working to refine aircraft designs to reduce air resistance, or drag, by fine-tuning the shape of wings, fuselages, and other aircraft structural components. These changes would lower the energy required for flight and reduce the amount of fuel needed, produce fewer emissions, enhance overall performance of aircraft, and could help reduce noise levels around airports. 
      Using NASA’s Launch, Ascent, and Vehicle Aerodynamics computational modeling software, developed at Ames, researchers are leveraging the power of agency supercomputers to run hundreds of simulations to explore a variety of design possibilities – on existing aircraft and future vehicle concepts. Their work has shown the potential to reduce drag on an existing commercial aircraft design by 4%, translating to significant fuel savings in real-world applications.
      3. Applying AI to Weather and Climate
      This visualization compares the track of the Category 4 hurricane, Ida, from MERRA-2 reanalysis data (left) with a prediction made without specific training, from NASA and IBM’s Prithvi WxC foundation model (right). Both models were initialized at 00 UTC on 2021-08-27.The University of Alabama in Huntsville/Ankur Kumar; NASA/Sujit Roy Traditional weather and climate models produce global and regional results by solving mathematical equations for millions of small areas (grid boxes) across Earth’s atmosphere and oceans. NASA and partners are now exploring newer approaches using artificial intelligence (AI) techniques to train a foundation model. 
      Foundation models are developed using large, unlabeled datasets so researchers can fine-tune results for different applications, such as creating forecasts or predicting weather patterns or climate changes, independently with minimal additional training. 
      NASA developed the open source, publicly available Prithvi Weather-Climate foundation model (Prithvi WxC), in collaboration with IBM Research. Prithvi WxC was pretrained using 160 variables from  NASA’s Modern-era Retrospective analysis for Research and Applications (MERRA-2) dataset on the newest NVIDIA A100 GPUs at the NASA Advanced Supercomputing facility. 
      Armed with 2.3 billion parameters, Prithvi WxC can model a variety of weather and climate phenomena – such as hurricane tracks – at fine resolutions. Applications include targeted weather prediction and climate projection, as well as representing physical processes like gravity waves. 
      4. Simulations and AI Reveal the Fascinating World of Neutron Stars
      3D simulation of pulsar magnetospheres, run on NASA’s Aitken supercomputer using data from the agency‘s Fermi space telescope. The red arrow shows the direction of the star’s magnetic field. Blue lines trace high-energy particles, producing gamma rays, in yellow. Green lines represent light particles hitting the observer’s plane, illustrating how Fermi detects pulsar gamma rays. NASA/Constantinos Kalapotharakos To explore the extreme conditions inside neutron stars, researchers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are using a blend of simulation, observation, and AI to unravel the mysteries of these extraordinary cosmic objects. Neutron stars are the dead cores of stars that have exploded and represent some of the densest objects in the universe.
      Cutting-edge simulations, run on supercomputers at the NASA Advanced Supercomputing facility, help explain phenomena observed by NASA’s Fermi Gamma-ray Space Telescope and Neutron star Interior Composition Explorer (NICER) observatory. These phenomena include the rapidly spinning, highly magnetized neutron stars known as pulsars, whose detailed physical mechanisms have remained mysterious since their discovery. By applying AI tools such as deep neural networks, the scientists can infer the stars’ mass, radius, magnetic field structure, and other properties from data obtained by the NICER and Fermi observatories. 
      The simulations’ unprecedented results will guide similar studies of black holes and other space environments, as well as play a pivotal role in shaping future scientific space missions and mission concepts.
      5. Modeling the Sun in Action – From Tiny to Large Scales 
      Image from a 3D simulation showing the evolution of flows in the upper layers of the Sun, with the most vigorous motions shown in red. These turbulent flows can generate magnetic fields and excite sound waves, shock waves, and eruptions. NASA/Irina Kitiashvili and Timothy A. Sandstrom The Sun’s activity, producing events such as solar flares and coronal mass ejections, influences the space environment and cause space weather disturbances that can interfere with satellite electronics, radio communications, GPS signals, and power grids on Earth. Scientists at NASA Ames produced highly realistic 3D models that – for the first time – allow them to examine the physics of solar plasma in action, from very small to very large scales. These models help interpret observations from NASA spacecraft like the Solar Dynamics Observatory (SDO). 
      Using NASA’s StellarBox code on supercomputers at NASA’s Advanced Supercomputing facility, the scientists improved our understanding of the origins of solar jets and tornadoes – bursts of extremely hot, charged plasma in the solar atmosphere. These models allow the science community to address long-standing questions of solar magnetic activity and how it affects space weather.
      6. Scientific Visualization Makes NASA Data Understandable
      This global map is a frame from an animation showing how wind patterns and atmospheric circulation moved carbon dioxide through Earth’s atmosphere from January to March 2020. The DYAMOND model’s high resolution shows unique sources of carbon dioxide emissions and how they spread across continents and oceans.NASA/Scientific Visualization Studio NASA simulations and observations can yield petabytes of data that are difficult to comprehend in their original form. The Scientific Visualization Studio (SVS), based at NASA Goddard, turns data into insight by collaborating closely with scientists to create cinematic, high-fidelity visualizations.
      Key infrastructure for these SVS creations includes the NASA Center for Climate Simulation’s Discover supercomputer at Goddard, which hosts a variety of simulations and provides data analysis and image-rendering capabilities. Recent data-driven visualizations show a coronal mass ejection from the Sun hitting Earth’s magnetosphere using the Multiscale Atmosphere-Geospace Environment (MAGE) model; global carbon dioxide emissions circling the planet in the DYnamics of the Atmospheric general circulation Modeled On Non-hydrostatic Domains (DYAMOND) model; and representations of La Niña and El Niño weather patterns using the El Niño-Southern Oscillation (ENSO) model. 
      For more information about NASA’s virtual exhibit at the International Conference for High Performance Computing, Networking, Storage and Analysis, being held in Atlanta, Nov. 17-22, 2024, visit: 
      https://www.nas.nasa.gov/SC24
      For more information about supercomputers run by NASA High-End Computing, visit: 
      https://hec.nasa.gov
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Authors: Jill Dunbar, Michelle Moyer, and Katie Pitta, NASA’s Ames Research Center; and Jarrett Cohen, NASA’s Goddard Space Flight Center
      View the full article
    • By NASA
      In the unforgiving lunar environment, the possibility of an astronaut crewmember becoming incapacitated due to unforeseen circumstances (injury, medical emergency, or a mission-related accident) is a critical concern, starting with the upcoming Artemis III mission, where two astronaut crewmembers will explore the Lunar South Pole. The Moon’s surface is littered with rocks ranging from 0.15 to 20 meters in diameter and craters spanning 1 to 30 meters wide, making navigation challenging even under optimal conditions. The low gravity, unique lighting conditions, extreme temperatures, and availability of only one person to perform the rescue, further complicate any rescue efforts. Among the critical concerns is the safety of astronauts during Extravehicular Activities (EVAs). If an astronaut crewmember becomes incapacitated during a mission, the ability to return them safely and promptly to the human landing system is essential. A single crew member should be able to transport an incapacitated crew member distances up to 2 km and a slope of up to 20 degrees on the lunar terrain without the assistance of a lunar rover. This pressing issue opens the door for innovative solutions. We are looking for a cutting-edge design that is low in mass and easy to deploy, enabling one astronaut crewmember to safely transport their suited (343 kg (~755lb)) and fully incapacitated partner back to the human landing system. The solution must perform effectively in the Moon’s extreme South Pole environment and operate independently of a lunar rover. Your creativity and expertise could bridge this critical gap, enhancing the safety measures for future lunar explorers. By addressing this challenge, you have the opportunity to contribute to the next “giant leap” in human space exploration.
      Award: $45,000 in total prizes
      Open Date: November 14, 2024
      Close Date: January 23, 2025
      For more information, visit: https://www.herox.com/NASASouthPoleSafety
      View the full article
    • By European Space Agency
      What does satellite navigation have to do with sustainable development? Quite a lot, in fact. Satnav and other positioning, navigation and timing (PNT) technologies provide critical data that support green solutions across numerous sectors. From enabling smart mobility to optimising energy grids and facilitating precision farming, the potential for PNT to drive sustainability is immense.
      View the full article
    • By NASA
      Jennifer Becerra has nearly three decades of experience in education, both in the classroom and within the NASA community. Leading a team dedicated to fostering a passion for science, technology, engineering, and mathematics (STEM), she develops programs that inspire students and educators alike.  

      Whether coordinating internships or organizing engagement events, Becerra creates educational opportunities to bring the excitement of NASA’s missions to life for students. As NASA’s Office of STEM Engagement (OSTEM) student services manager at Johnson Space Center in Houston, her efforts aim to cultivate the next generation of explorers and build a stronger, more engaged future workforce. 
      Official portrait of Jennifer Becerra. NASA/Josh Valcarcel Becerra’s responsibilities include overseeing intern recruitment, placement, and development. She leads the OSTEM Center Engagement to create impactful opportunities for students to connect with NASA’s mission and resources. Becerra also serves as the technical officer for NASA’s Teams II Engaging Affiliated Museums and Informal Institutions Community Anchor grant program. She assists in managing funded projects that advance STEM education by supporting institutions that serve as local hubs for learning and space exploration.  

      Becerra holds memberships in The National Science Teachers Association and the Science Teachers Association of Texas, further underscoring her dedication to empowering tomorrow’s innovators. 
      Student interns at Johnson Space Center hold a sign to encourage the next generation of explorers to apply to #BeAnAstronaut.NASA/Josh Valcarcel Becerra takes great pride in her work. One of her most fulfilling achievements is witnessing the spark of inspiration in students when they participate in events like astronaut graduation, the Artemis II crew announcement, or the OSIRIS-REx sample reveal. “Seeing their excitement and curiosity fuels our commitment to creating impactful experiences that encourage students to explore STEM fields,” she said. “We aim to inspire the next generation of explorers who may one day contribute to future NASA missions.” 
      Students congratulate the 23rd astronaut class at NASA’s Johnson Space Center in Houston on March 5, 2024.NASA/Josh Valcarcel Her upbringing on the Texas-Mexico border in Del Rio, Texas, deeply influences her sense of identity. She is an active member of Johnson’s Hispanic Employee Resource Group, which promotes cultural awareness and provides a platform to engage and educate the Johnson community about the richness and significance of Hispanic culture. 

      “I aim to foster a more inclusive environment where diverse perspectives are valued and celebrated,” she said. Becerra honors her culture in the workplace by embracing her authentic self every day and contributing to her team in meaningful ways.  
      Jennifer Becerra, left, receives a Group Special Act Award at Johnson Space Center. An important lesson she has learned throughout her career is the power of collaboration. “I’ve realized that it takes a collective effort to achieve our goals,” said Becerra. “I’ve come to deeply appreciate and rely on the diverse experiences and perspectives my colleagues bring to our team.” 

      Early in her career, Becerra faced imposter syndrome, but over time she overcame it by connecting with colleagues who shared her background. Today, she appreciates the inclusivity and collaboration within her teams. 
      Jennifer Becerra at NASA’s Johnson Space Center in Houston. Looking forward, Becerra is excited for the future of space exploration, especially the moment when the first woman steps onto the Moon. She hopes to inspire more girls to explore STEM and leave a lasting legacy with the Artemis Generation.  

      “Passion drives fulfillment and long-term commitment, especially at NASA,” she said. “I encourage students to seize every opportunity, build strong connections with their teams, and embrace the sense of being part of something much greater than themselves.” 
      View the full article
    • By Space Force
      The panel discussed the development and realignment of the department’s commands during an era of Great Power Competition.

      View the full article
  • Check out these Videos

×
×
  • Create New...