Members Can Post Anonymously On This Site
10 Ways Students Can Prepare to #BeAnAstronaut
-
Similar Topics
-
By NASA
NASA astronauts Don Pettit and Nick Hague are at the controls of the robotics workstation.
Credit: NASA
Students from Rocky Hill, Connecticut, will have the chance to connect with NASA astronauts Nick Hague and Don Pettit as they answer prerecorded science, technology, engineering, and mathematics-related questions from aboard the International Space Station.
Watch the 20-minute space-to-Earth call at 11:40 a.m. EST on Tuesday, Feb. 18, on NASA+ and learn how to watch NASA content on various platforms, including social media.
The event for kindergarten through 12th grade students will be hosted at Rocky Hill Library in Rocky Hill, near Hartford, Connecticut. The goal is to engage area students by introducing them to the wide variety of STEM career opportunities available in space exploration and related fields.
Media interested in covering the event must contact by 5 p.m., Thursday, Feb. 14, to Gina Marie Davies at: gdavies@rockyhillct.gov or 860-258-2530.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos and lesson plans highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Feb 11, 2025 LocationNASA Headquarters Related Terms
Humans in Space Astronauts International Space Station (ISS) Space Communications & Navigation Program View the full article
-
By NASA
5 min read
February’s Night Sky Notes: How Can You Help Curb Light Pollution?
Light pollution has long troubled astronomers, who generally shy away from deep sky observing under full Moon skies. The natural light from a bright Moon floods the sky and hides views of the Milky Way, dim galaxies and nebula, and shooting stars. In recent years, human-made light pollution has dramatically surpassed the interference of even a bright full Moon, and its effects are now noticeable to a great many people outside of the astronomical community. Harsh, bright white LED streetlights, while often more efficient and long-lasting, often create unexpected problems for communities replacing their old street lamps. Some notable concerns are increased glare and light trespass, less restful sleep, and disturbed nocturnal wildlife patterns. There is increasing awareness of just how much light is too much light at night. You don’t need to give in to despair over encroaching light pollution; you can join efforts to measure it, educate others, and even help stop or reduce the effects of light pollution in your community.
Before and after pictures of replacement lighting at the 6th Street Bridge over the Los Angeles River. The second picture shows improvements in some aspects of light pollution, as light is not directed to the sides and upwards from the upgraded fixtures, reducing skyglow. However, it also shows the use of brighter, whiter LEDs, which is not generally ideal, along with increased light bounce back from the road. City of Los Angeles Amateur astronomers and potential citizen scientists around the globe are invited to participate in the Globe at Night (GaN) program to measure light pollution. Measurements are taken by volunteers on a few scheduled days every month and submitted to their database to help create a comprehensive map of light pollution and its change over time. GaN volunteers can take and submit measurements using multiple methods ranging from low-tech naked-eye observations to high-tech sensors and smartphone apps.
Globe at Night citizen scientists can use the following methods to measure light pollution and submit their results:
Their own smartphone camera and dedicated app Manually measure light pollution using their own eyes and detailed charts of the constellations A dedicated light pollution measurement device called a Sky Quality Meter (SQM). The free GaN web app from any internet-connected device (which can also be used to submit their measurements from an SQM or printed-out star charts) Night Sky Network members joined a telecon with Connie Walker of Globe at Night in 2014 and had a lively discussion about the program’s history and how they can participate. The audio of the telecon, transcript, and links to additional resources can be found on their dedicated resource page.
Light pollution has been visible from space for a long time, but new LED lights are bright enough that they stand out from older street lights, even from orbit. The above photo was taken by astronaut Samantha Cristoforetti from the ISS cupola in 2015. The newly installed white LED lights in the center of the city of Milan are noticeably brighter than the lights in the surrounding neighborhoods. NASA/ESA DarkSky International has long been a champion in the fight against light pollution and a proponent of smart lighting design and policy. Their website (at darksky.org) provides many resources for amateur astronomers and other like-minded people to help communities understand the negative impacts of light pollution and how smart lighting policies can not only help bring the stars back to their night skies but make their streets safer by using smarter lighting with less glare. Communities and individuals find that their nighttime lighting choices can help save considerable sums of money when they decide to light their streets and homes “smarter, not brighter” with shielded, directional lighting, motion detectors, timers, and even choosing the proper “temperature” of new LED light replacements to avoid the harsh “pure white” glare that many new streetlamps possess. Their pages on community advocacy and on how to choose dark-sky-friendly lighting are extremely helpful and full of great information. There are even local chapters of the IDA in many communities made up of passionate advocates of dark skies.
DarkSky International has notably helped usher in “Dark Sky Places“, areas around the world that are protected from light pollution. “Dark Sky Parks“, in particular, provide visitors with incredible views of the Milky Way and are perfect places to spot the wonders of a meteor shower. These parks also perform a very important function, showing the public the wonders of a truly dark sky to many people who may have never before even seen a handful of stars in the sky, let alone the full, glorious spread of the Milky Way.
More research into the negative effects of light pollution on the health of humans and the environment is being conducted than ever before. Watching the nighttime light slowly increase in your neighborhood, combined with reading so much bad news, can indeed be disheartening! However, as awareness of light pollution and its negative effects increases, more people are becoming aware of the problem and want to be part of the solution. There is even an episode of PBS Kid’s SciGirls where the main characters help mitigate light pollution in their neighborhood!
Astronomy clubs are uniquely situated to help spread awareness of good lighting practices in their local communities in order to help mitigate light pollution. Take inspiration from Tucson, Arizona, and other dark sky-friendly communities that have adopted good lighting practices. Tucson even reduced its skyglow by 7% after its own citywide lighting conversion, proof that communities can bring the stars back with smart lighting choices.
Originally posted by Dave Prosper: November 2018
Last Updated by Kat Troche: January 2025
View the full article
-
By NASA
Perseus Cluster: X-ray: NASA/CXC/SAO/V. Olivares et al.; Optical/IR: DSS; H-alpha: CFHT/SITELLE; Centaurus Cluster: X-ray: NASA/CXC/SAO/V. Olivaresi et al.; Optical/IR: NASA/ESA/STScI; H-alpha: ESO/VLT/MUSE; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers have taken a crucial step in showing that the most massive black holes in the universe can create their own meals. Data from NASA’s Chandra X-ray Observatory and the Very Large Telescope (VLT) provide new evidence that outbursts from black holes can help cool down gas to feed themselves.
This study was based on observations of seven clusters of galaxies. The centers of galaxy clusters contain the universe’s most massive galaxies, which harbor huge black holes with masses ranging from millions to tens of billions of times that of the Sun. Jets from these black holes are driven by the black holes feasting on gas.
These images show two of the galaxy clusters in the study, the Perseus Cluster and the Centaurus Cluster. Chandra data represented in blue reveals X-rays from filaments of hot gas, and data from the VLT, an optical telescope in Chile, shows cooler filaments in red.
The results support a model where outbursts from the black holes trigger hot gas to cool and form narrow filaments of warm gas. Turbulence in the gas also plays an important role in this triggering process.
According to this model, some of the warm gas in these filaments should then flow into the centers of the galaxies to feed the black holes, causing an outburst. The outburst causes more gas to cool and feed the black holes, leading to further outbursts.
This model predicts there will be a relationship between the brightness of filaments of hot and warm gas in the centers of galaxy clusters. More specifically, in regions where the hot gas is brighter, the warm gas should also be brighter. The team of astronomers has, for the first time, discovered such a relationship, giving critical support for the model.
This result also provides new understanding of these gas-filled filaments, which are important not just for feeding black holes but also for causing new stars to form. This advance was made possible by an innovative technique that isolates the hot filaments in the Chandra X-ray data from other structures, including large cavities in the hot gas created by the black hole’s jets.
The newly found relationship for these filaments shows remarkable similarity to the one found in the tails of jellyfish galaxies, which have had gas stripped away from them as they travel through surrounding gas, forming long tails. This similarity reveals an unexpected cosmic connection between the two objects and implies a similar process is occurring in these objects.
This work was led by Valeria Olivares from the University of Santiago de Chile, and was published Monday in Nature Astronomy. The study brought together international experts in optical and X-ray observations and simulations from the United States, Chile, Australia, Canada, and Italy. The work relied on the capabilities of the MUSE (Multi Unit Spectroscopic Explorer) instrument on the VLT, which generates 3D views of the universe.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features composite images shown side-by-side of two different galaxy clusters, each with a central black hole surrounded by patches and filaments of gas. The galaxy clusters, known as Perseus and Centaurus, are two of seven galaxy clusters observed as part of an international study led by the University of Santiago de Chile.
In each image, a patch of purple with neon pink veins floats in the blackness of space, surrounded by flecks of light. At the center of each patch is a glowing, bright white dot. The bright white dots are black holes. The purple patches represent hot X-ray gas, and the neon pink veins represent filaments of warm gas. According to the model published in the study, jets from the black holes impact the hot X-ray gas. This gas cools into warm filaments, with some warm gas flowing back into the black hole. The return flow of warm gas causes jets to again cool the hot gas, triggering the cycle once again.
While the images of the two galaxy clusters are broadly similar, there are significant visual differences. In the image of the Perseus Cluster on the left, the surrounding flecks of light are larger and brighter, making the individual galaxies they represent easier to discern. Here, the purple gas has a blue tint, and the hot pink filaments appear solid, as if rendered with quivering strokes of a paintbrush. In the image of the Centaurus Cluster on the right, the purple gas appears softer, with a more diffuse quality. The filaments are rendered in more detail, with feathery edges, and gradation in color ranging from pale pink to neon red.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
View the full article
-
By NASA
NASA astronaut and Expedition 72 Flight Engineer Butch Wilmore works inside the International Space Station’s Columbus laboratory module to begin installing the European Enhanced Exploration Exercise Device. (Credit: NASA) Students from the Toms River School District in New Jersey will have the chance to connect with NASA astronauts Don Pettit and Butch Wilmore as they answer prerecorded science, technology, engineering, and mathematics (STEM) related questions from aboard the International Space Station.
Watch the 20-minute space-to-Earth call in collaboration with Science Friday at 10 a.m. EST on Tuesday, Jan. 14, on NASA+ and learn how to watch NASA content on various platforms, including social media.
Science Friday is a nonprofit dedicated to sharing science with the public through storytelling, educational programs, and connections with audiences. Middle school students will use their knowledge from the educational downlink to address environmental problems in their communities.
Media interested in covering the event must RSVP by 5 p.m., Friday, Jan. 10, to Santiago Florez at: sflorez@sciencefriday.com or 221-840-2244.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos and lesson plans highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
View the full article
-
By NASA
NASA astronaut and Expedition 72 Flight Engineer Don Pettit points a camera outside a window on the International Space Station’s Poisk module for a sun photography session. (Credit: NASA) Students from Hawthorne Elementary School in Boise, Idaho, will have the chance to hear NASA astronaut Don Pettit answer their prerecorded science, technology, engineering, and math (STEM) related questions from aboard the International Space Station.
Watch the 20-minute space-to-Earth call at 12:30 p.m. EST Friday, Jan. 10, on NASA+ and learn how to watch NASA content on various platforms, including social media.
Media interested in covering the event must RSVP by 5 p.m., Tuesday, Jan. 7, to
Dan Hollar at dan.hollar@boiseschools.org or 208-854-4064.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos and lesson plans highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.