Members Can Post Anonymously On This Site
Class of 2015
-
Similar Topics
-
By NASA
Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 6 Min Read Newfound Galaxy Class May Indicate Early Black Hole Growth, Webb Finds
A team of astronomers sifted through James Webb Space Telescope data from multiple surveys to compile one of the largest samples of “little red dots” to date. Credits:
NASA, ESA, CSA, STScI, Dale Kocevski (Colby College). In December 2022, less than six months after commencing science operations, NASA’s James Webb Space Telescope revealed something never seen before: numerous red objects that appear small on the sky, which scientists soon called “little red dots” (LRDs). Though these dots are quite abundant, researchers are perplexed by their nature, the reason for their unique colors, and what they convey about the early universe.
A team of astronomers recently compiled one of the largest samples of LRDs to date, nearly all of which existed during the first 1.5 billion years after the big bang. They found that a large fraction of the LRDs in their sample showed signs of containing growing supermassive black holes.
“We’re confounded by this new population of objects that Webb has found. We don’t see analogs of them at lower redshifts, which is why we haven’t seen them prior to Webb,” said Dale Kocevski of Colby College in Waterville, Maine, and lead author of the study. “There’s a substantial amount of work being done to try to determine the nature of these little red dots and whether their light is dominated by accreting black holes.”
Image A: Little Red Dots (NIRCam Image)
A team of astronomers sifted through James Webb Space Telescope data from multiple surveys to compile one of the largest samples of “little red dots” to date. From their sample, they found that these mysterious red objects that appear small on the sky emerge in large numbers around 600 million years after the big bang and undergo a rapid decline in quantity around 1.5 billion years after the big bang. NASA, ESA, CSA, STScI, Dale Kocevski (Colby College). A Potential Peek Into Early Black Hole Growth
A significant contributing factor to the team’s large sample size of LRDs was their use of publicly available Webb data. To start, the team searched for these red sources in the Cosmic Evolution Early Release Science (CEERS) survey before widening their scope to other extragalactic legacy fields, including the JWST Advanced Deep Extragalactic Survey (JADES) and the Next Generation Deep Extragalactic Exploratory Public (NGDEEP) survey.
The methodology used to identify these objects also differed from previous studies, resulting in the census spanning a wide redshift range. The distribution they discovered is intriguing: LRDs emerge in large numbers around 600 million years after the big bang and undergo a rapid decline in quantity around 1.5 billion years after the big bang.
The team looked toward the Red Unknowns: Bright Infrared Extragalactic Survey (RUBIES) for spectroscopic data on some of the LRDs in their sample. They found that about 70 percent of the targets showed evidence for gas rapidly orbiting 2 million miles per hour (1,000 kilometers per second) – a sign of an accretion disk around a supermassive black hole. This suggests that many LRDs are accreting black holes, also known as active galactic nuclei (AGN).
“The most exciting thing for me is the redshift distributions. These really red, high-redshift sources basically stop existing at a certain point after the big bang,” said Steven Finkelstein, a co-author of the study at the University of Texas at Austin. “If they are growing black holes, and we think at least 70 percent of them are, this hints at an era of obscured black hole growth in the early universe.”
Contrary to Headlines, Cosmology Isn’t Broken
When LRDs were first discovered, some suggested that cosmology was “broken.” If all of the light coming from these objects was from stars, it implied that some galaxies had grown so big, so fast, that theories could not account for them.
The team’s research supports the argument that much of the light coming from these objects is from accreting black holes and not from stars. Fewer stars means smaller, more lightweight galaxies that can be understood by existing theories.
“This is how you solve the universe-breaking problem,” said Anthony Taylor, a co-author of the study at the University of Texas at Austin.
Curiouser and Curiouser
There is still a lot up for debate as LRDs seem to evoke even more questions. For example, it is still an open question as to why LRDs do not appear at lower redshifts. One possible answer is inside-out growth: As star formation within a galaxy expands outward from the nucleus, less gas is being deposited by supernovas near the accreting black hole, and it becomes less obscured. In this case, the black hole sheds its gas cocoon, becomes bluer and less red, and loses its LRD status.
Additionally, LRDs are not bright in X-ray light, which contrasts with most black holes at lower redshifts. However, astronomers know that at certain gas densities, X-ray photons can become trapped, reducing the amount of X-ray emission. Therefore, this quality of LRDs could support the theory that these are heavily obscured black holes.
The team is taking multiple approaches to understand the nature of LRDs, including examining the mid-infrared properties of their sample, and looking broadly for accreting black holes to see how many fit LRD criteria. Obtaining deeper spectroscopy and select follow-up observations will also be beneficial for solving this currently “open case” about LRDs.
“There’s always two or more potential ways to explain the confounding properties of little red dots,” said Kocevski. “It’s a continuous exchange between models and observations, finding a balance between what aligns well between the two and what conflicts.”
These results were presented in a press conference at the 245th meeting of the American Astronomical Society in National Harbor, Maryland, and have been submitted for publication in The Astrophysical Journal.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Abigail Major – amajor@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Science – Dale Kocevski (Colby College)
Related Information
3D visualization: CEERS Fly Through visualization and JADES GOODS South Fly Through visualization
Graphic: What is cosmological redshift?
Graphic: Dissecting Supermassive Black Holes
Article: Webb Science: Galaxies Through Time
Web Page: Learn more about black holes
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is a Black Hole?
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Galaxies
Black Holes
Universe
Share
Details
Last Updated Jan 14, 2025 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
Astrophysics Black Holes Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Supermassive Black Holes The Universe View the full article
-
By NASA
NASA Goddard MODIS Rapid Response Team During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA’s Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse’s shadow over the clouds in the Arctic Ocean.
Terra launched 25 years ago on Dec. 18, 1999. Approximately the size of a small school bus, the Terra satellite carries five instruments that take coincident measurements of the Earth system: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth’s Radiant Energy System (CERES), Multi-angle Imaging Spectroradiometer (MISR), Measurements of Pollution in the Troposphere (MOPITT), and Moderate Resolution Imaging Spectroradiometer (MODIS).
On Nov. 28, 2024, one of Terra’s power-transmitting shunt units failed. A response team reviewed Terra’s status and discussed potential impacts and options. Consequently, the team placed ASTER into Safe Mode. As a result, ASTER data are not currently being collected. All other instruments continue uninterrupted.
Image Credit: NASA Goddard MODIS Rapid Response Team
View the full article
-
By NASA
Terms of Service
NASA’s “MISSION: All Systems GO!” Participant Terms and Conditions
NASA’s MISSION: All Systems GO! is a set of images, videos, certificates and related materials (the “Materials”) intended for use by healthcare providers to assist in reducing the anxieties of children and other patients facing difficult treatment protocols for cancer and other maladies by comparing their challenges with those of NASA astronauts about to embark on a mission to space.
BY UTILIZING NASA’S MISSION: ALL SYSTEMS GO! MATERIALS, THE PARTICIPANT (YOU) AGREES TO THE FOLLOWING TERMS AND CONDITIONS:
“Participant” or “you” means an individual who registers to receive the Materials by [include specific instructions].
“NASA” or “Agency,” as used herein, means the National Aeronautics and Space Administration.
PARTICIPATION
Participation in this program is fully voluntary, and participants are not entitled to compensation, nor will they be considered employees, agents, independent contractors, or consultants of NASA or of the United States (U.S.) Government. Individuals who participate in the event shall engage in their personal capacity only, including identifying themselves by their own names.
NASA’s MISSION: All Systems GO! and use of Materials is intended for entities and facilities located in the United States which are engaged in providing healthcare treatment to the public.
INTELLECTUAL PROPERTY RIGHTS IN MATERIALS
The Materials are owned by NASA, and any use by you must be in strict conformance to the terms hereof and only after registering in the manner identified above. The NASA’s MISSION: All Systems GO! Resources page includes the program information including logos, fonts, and colors you must abide by when using and communicating with other about the NASA’s MISSION: All Systems GO! Materials in any form. Except for those portions of the Materials which are customizable, you shall not alter the Materials, or use them for purposes not related to preparing patients for healthcare treatments. The Materials may only be used in connection with patient experiences and shall not in any way be used by you to promote or advertise your business, facility or services. Except as used in the Materials, you shall not use “National Aeronautics and Space Administration” or “NASA” in a way that creates the impression that a product or service has the authorization, support, sponsorship, or endorsement of NASA. The NASA name and initials may be used by you in connection with the release of general information regarding your own participation in M:ASG!, but not for any promotional or advertising purpose. NASA is not liable for any use or misuse of copyrighted images/video/music in media created by you, and by agreeing to these Terms and Conditions agree to indemnify NASA for any claims or costs arising from any such use.
NASA logo use: NASA has strict restrictions that everyone must follow regarding the use of their NASA Insignia (or “meatball” logo), NASA Logotype (or “worm” logo) and other NASA identifiers. Except as they may appear in the Materials, you do not have permission to use the NASA Insignia, Logotype or other NASA identifiers. Any use of the Materials must conform to NASA’s Media Usage Guidelines (See https://www.nasa.gov/multimedia/guidelines/index.html). If you have any questions about use of Materials, please contact Al Feinberg at Al.feinberg@nasa.gov.
PUBLICITY:
Except where prohibited, registration for NASA’s MISSION: All Systems GO! constitutes your consent for NASA to use your name, the name of your facility or business, place of business, photo or likeness, and/or other publicly available information about you for informational purposes in connection with NASA’s MISSION: All Systems GO! through any form of media, worldwide, without further permission, payment, or consideration.
LIABILITY:
Use of the Materials is at the participant’s own risk. NASA is not responsible for the use of the Materials or the conduct of any activities in connection therewith. You agree to release NASA from and hold NASA harmless against any and all claims arising from or in connection with use of the Materials or participation in NASA’s MISSION: All Systems GO!
View the full article
-
By NASA
Credit: NASA Two proposals for missions to observe X-ray and far-infrared wavelengths of light from space were selected by NASA for additional review, the agency announced Thursday. Each proposal team will receive $5 million to conduct a 12-month mission concept study. After detailed evaluation of those studies, NASA expects to select one concept in 2026 to proceed with construction, for a launch in 2032.
The resulting mission will become the first in a new class of NASA astrophysics missions within the agency’s longstanding Explorers Program. The new mission class, Probe Explorers, will fill a gap between flagship and smaller-scale missions in NASA’s exploration of the secrets of the universe.
“NASA’s Explorers Program brings out some of the most creative ideas for missions that help us reveal the unknown about our universe. Establishing this new line of missions – the largest our Astrophysics program has ever competed – has taken that creativity to new heights,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Both of the selected concepts could enable ground-breaking science responsive to the top astrophysics priorities of the decade, develop key technologies for future flagship missions, and offer opportunities for the entire community to use the new observatory, for the benefit of all.”
The National Academies of Sciences, Engineering, and Medicine’s 2020 Decadal Survey, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, recommended NASA establish this new mission class, with the first mission observing either X-ray or far-infrared wavelengths of light. Mission costs for the new Probe Explorers are capped at $1 billion each, not including the cost of the rocket, launch services, or any contributions.
NASA evaluated Probe Explorers proposals based on their scientific merit in alignment with the Decadal Survey’s recommendations, feasibility of development plans, and use of technologies that could support the development of future large missions.
The selected proposals are:
Advanced X-ray Imaging Satellite
This mission would be an X-ray imaging observatory with a large, flat field-of-view and high spatial resolution. It would study the seeds of supermassive black holes; investigate the process of stellar feedback, which influences how galaxies evolve; and help determine the power sources of a variety of explosive phenomena in the cosmos. The observatory would build on the successes of previous X-ray observatories, capturing new capabilities for X-ray imaging and imaging spectroscopy. Principal investigator: Christopher Reynolds, University of Maryland, College Park Project management: NASA’s Goddard Space Flight Center in Greenbelt, Maryland Probe far-Infrared Mission for Astrophysics
This observatory would be a 5.9-foot (1.8-meter) telescope studying far-infrared wavelengths, helping bridge the gap between existing infrared observatories, such as NASA’s James Webb Space Telescope, and radio telescopes. By studying radiant energy that only emerges in the far-infrared, the mission would address questions about the origins and growth of planets, supermassive black holes, stars, and cosmic dust. Principal investigator: Jason Glenn, NASA Goddard Project management: NASA’s Jet Propulsion Laboratory in Southern California The Explorers Program is the oldest continuous NASA program designed to provide frequent, low-cost access to space using principal investigator-led space science investigations relevant to the Science Mission Directorate’s astrophysics and heliophysics programs. Since the Explorer 1 launch in 1958, which discovered Earth’s radiation belts, the Explorers Program has launched more than 90 missions, including the Uhuru and Cosmic Background Explorer missions that led to Nobel prizes for their investigators.
The Explorers Program is managed by NASA Goddard for the Science Mission Directorate, which conducts a wide variety of research and scientific exploration programs for Earth studies, space weather, the solar system and universe.
For more information about the Explorers Program, visit:
https://explorers.gsfc.nasa.gov
-end-
Alise Fisher
Headquarters, Washington
202-617-4977
alise.m.fisher@nasa.gov
Share
Details
Last Updated Oct 03, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
Science Mission Directorate Astrophysics Division Astrophysics Explorers Program View the full article
-
By NASA
Home
ASSURE 2015 has successfully concluded.
UPDATES
2015-10-05: ASSURE 2015 concluded successfully. The accepted papers appear in the SAFECOMP 2015 Workshop Proceedings. Thank you for attending! See you in 2016. 2015-06-24: Pippa Moore of the UK Civil Aviation Authority will give an invited keynote talk! 2015-06-24: The ASSURE 2015 Program has been announced. The final program is contingent on registration. If you haven’t already done so, please register for ASSURE 2015 via SAFECOMP 2015. 2015-06-15: ASSURE 2015 will be held on Tuesday, Sep. 22, 2015. The accepted papers and program will be posted here soon. 2015-06-15: Authors of accepted papers have been notified. Final, camera-ready copies and the copyright form are due on June 28, 2015 June 30, 2015. 2015-06-04: Paper submission deadlines have passed. Submission is now closed. 2015-05-28: SAFECOMP 2015 has extended all workshop deadlines, including for ASSURE 2015, by another week to June 3, 2015. 2015-05-19: ASSURE deadlines have been extended by a week to May 29, 2015. 2015-03-13: The ASSURE 2015 call for papers, and the paper submission guidelines are now available. 2015-03-12: The deadline to submit papers to ASSURE 2015 is May 22, 2015. 2015-03-05: The ASSURE 2015 website is live! Introduction
ASSURE 2015, collocated this year with SAFECOMP 2015, aims to provide an international forum for high-quality contributions on the application of assurance case principles and techniques to assure that the dependability properties of critical, software-intensive systems have been met.
The main goals of the workshop are to:
Explore techniques for the creation and assessment of assurance cases for software-intensive systems Examine the role of assurance cases in the engineering lifecycle of critical systems Identify the dimension of effective practice in the development and evaluation of assurance cases Investigate the relationship between dependability techniques and assurance cases Identify critical research challenges and define a roadmap for future development We invite original, high-quality research, practice, tools and position papers that have not been published/submitted elsewhere. See the full Call for Papers, for more details on topics. Also view the submission deadline, and guidelines.
Program
08:00 – 09:00 Registration
09:00 – 11:00 Session 1. Keynote and Foundations
09:00 – 09:10 Welcome and Introduction, ASSURE 2015 Organizers
09:10-10:00 Keynote Talk: Do We Really Want To Start From Here? Pippa Moore, UK Civil Aviation Authority
10:00-10:30 Informing Assurance Case Review through a Formal Interpretation of GSN Core Logic, Victor Bandur, and John McDermid
10:30 – 11:00 Representing Confidence in Assurance Case Evidence, Lian Duan, Sanjai Rayadurgam, Mats Heimdahl, Oleg Sokolsky, and Insup Lee
11:00 – 11:30 Morning Coffee/Tea Break
11:30-1:00 Session 2. Methodology and Patterns
11:30 – 12:00 Safe and Sec Case Patterns, Kenji Taguchi, Daisuke Souma, and Hideaki Nishihara
12:00 – 12:30 A Comprehensive Safety Lifecycle, John Knight, Jonathan Rowanhill, Anthony Aiello, and Kimberly Wasson
12:30 – 13:00 An Approach to Assure Dependability Through ArchiMate, Shuichiro Yamamoto
13:00 – 14:00 Lunch Break
14:00 – 15:30 Session 3. Tool Support and Tool Demonstrations
14:00 – 14:30 Tool Support for Assurance Case Building Blocks: Providing a Helping Hand with CAE, Kateryna Netkachova, Oleksandr Netkachov, and Robin Bloomfield
14:30 – 15:00 Safety.Lab: Model-based Domain Specific Tooling for Safety Argumentation, Daniel Ratiu, Marc Zeller, and Lennart Kilian
15:00 – 15:30 A Safety Condition Monitoring System, John Knight, Jonathan Rowanhill, and Jian Xiang
15:30 – 16:00 Afternoon Coffee/Tea Break
16:00 – 16:45 Session 4. Applications and Project Overviews
16:00 – 16:30 Fault Type Refinement for Assurance of Families of Platform-Based Systems, Sam Procter, John Hatcliff, Sandy Weininger, and Anura Fernando
16:30 – 16:37 Safety and Security Assurance in Railway Standards, Kenji Taguchi
16:37 – 16:45 Towards Assurance Arguments of Disaster Management Plans, Shuji Kinoshita
16:45 – 18:00 Session 5. Panel and Conclusion
16:45 – 18:00 PANEL: The Role of Argumentation in Certification and Safety Risk Management,
John Birch, JaguarLandRover / AVL;
Robin Bloomfield, Adelard and City University;
Chris Johnson, University of Glasgow;
Yoshiki Kinoshita, Kanagawa University; and
Pippa Moore, UK CAA.
18:00 Conclusion and Wrap-Up, ASSURE 2015 Organizers
Important Dates
EventDeadlineWorkshop Papers DueJune 3, 2015 Now ClosedNotification of AcceptanceJune 15, 2015Camera-ready Copies DueJune 28, 2015 June 30, 2015ASSURE 2015 WorkshopSeptember 22, 2015SAFECOMP 2015September 22 – 25, 2015 Call For Papers
Software plays a key role in high-risk systems, e.g., safety-, and security-critical systems. Several certification standards/guidelines now recommend and/or mandate the development of assurance cases for software-intensive systems, e.g., defense (UK MoD DS-0056), aviation (CAP 670. FAA operational approval guidance for unmanned aircraft systems), automotive (ISO 26262), and healthcare (FDA infusion pumps total product lifecycle guidance). As such, there is a need to develop models, techniques and tools that target the development of assurance arguments for software.
The goals of the 2015 Workshop on Assurance Cases for Software-intensive Systems (ASSURE 2015) are to:
explore techniques for creating/assessing assurance cases for software-intensive systems; examine the role of assurance cases in the engineering lifecycle of critical systems; identify the dimensions of effective practice in the development and evaluation of assurance cases; investigate the relationship between dependability techniques and assurance cases; and, identify critical research challenges and define a roadmap for future development. We solicit high-quality contributions: research, practice, tools and position papers on the application of assurance case principles and techniques to assure that the dependability properties of critical software-intensive systems have been met.
Papers should attempt to address the workshop goals in general.
Topics
Topics of interest include, but are not limited to:
Standards: Industry guidelines and standards are increasingly requiring the development of assurance cases, e.g., the automotive standard ISO 26262 and the FDA guidance on the total product lifecycle for infusion pumps. Certification and Regulations: The role and usage of assurance cases in the certification of critical systems, as well as to show compliance to regulations. Dependable architectures: How do fault-tolerant architectures and design measures such as diversity and partitioning relate to assurance cases? Dependability analysis: What are the relationships between dependability analysis techniques and the assurance case paradigm? Tools: Using the output from software engineering tools (testing, formal verification, code generators) as evidence in assurance cases / using tools for the modeling, analysis and management of assurance cases. Application of formal techniques to create and analyze arguments. Exploration of relevant techniques for assurance cases for real-time, concurrent, and distributed systems. Assurance issues in emerging computational paradigms, e.g., cloud, mobile, virtual, many-core architectures, and adaptive and autonomous systems. Modeling and Metamodeling: Representation of structured arguments through metamodels, such as OMG’s Structured Assurance Case Metamodel (SACM). Assurance of software quality attributes, e.g., safety, security and maintainability, as well as dependability in general, including tradeoffs, and exploring notions of the quality of assurance cases themselves. Domain-specific assurance issues, in domains such as aerospace, automotive, healthcare, defense and power. Reuse and Modularization: Contracts and patterns for improving the reuse of assurance case structures. Connections between the Goal Structuring Notation for assurance cases, and goal-orientation from the requirements engineering community. Submit
Paper submission is now closed.
Papers will be peer-reviewed by at least three members of the program committee. Accepted papers will be published in the SAFECOMP 2015 Workshop Proceedings, to be published by Springer, in the Lecture Notes in Computer Science (LNCS) Series. Authors of the best papers may be invited to submit an extended version for publication in a special journal issue (tentative).
All papers must be original work not published, or in submission, elsewhere. All papers should be submitted only in PDF. Please verify that papers can be reliably printed and/or viewed on screen before submitting. Papers should conform to the LNCS paper formatting guidelines. Regular (research, practice, or position) papers can be up to 12 pages long including figures, references, and any appendices. Tools papers can be up to 10 pages long including figures, references and any appendices. Note: Authors of accepted tools papers will be expected to give a demonstration of the tool(s) at the workshop, i.e., no screenshots. Submit your paper electronically via EasyChair by May 22, 2015 May 29, 2015 June 3, 2015. Note: After logging into EasyChair, select New Submission . Then, be sure to select the track Assurance Cases for Software-intensive Systems to submit a paper to this workshop. Committees
Workshop Chairs
Ewen Denney, SGT / NASA Ames, USA Ibrahim Habli, University of York, UK Ganesh Pai, SGT / NASA Ames, USA Program Committee (Login)
Robin Bloomfield, City University, UK Jérémie Guiochet, LAAS-CNRS, France Richard Hawkins, University of York, UK David Higham, Delphi Diesel Systems, UK Michael Holloway, NASA Langley Research Center, USA Paul Jones, U.S. Food and Drug Administration, USA Tim Kelly, University of York, UK Yoshiki Kinoshita, Kanagawa University, Japan John Knight, University of Virginia, USA Andrew Rae, Griffith University, Australia Roger Rivett, Jaguar Land Rover, UK Christel Seguin, ONERA, France Mark-Alexander Sujan, University of Warwick, UK Kenji Taguchi, AIST, Japan Alan Wassyng, McMaster University, Canada Sean White, Health and Social Care Information Centre, UK Past Workshop
ASSURE 2013, San Francisco, USA ASSURE 2014, Naples, Italy Contact Us
Contact the Organizers
If you have questions about paper topics, submission and/or about ASSURE 2015 in general, please contact the Workshop Organizers.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.