Jump to content

Virtual Reality for body and mind


Recommended Posts

Virtual_Reality_for_body_and_mind_card_f Video: 00:05:01

ESA astronaut Andreas Mogensen explains how two experiments involving virtual reality makes on International Space Station. The first is Virtual Assistance Mental Balance (VAMB) where Andreas gets to enjoy a calm setting in nature that helps him relax. The second one is VR for Exercise, where he cycles on the Space Station’s exercise bike and through different bike routes in Denmark on the VR headset, which has quickly become a favourite for Andreas.

Access the related broadcast quality video material.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Texas High School Aerospace Scholars get a virtual view of an extravehicular activity (EVA) suit in testing at NASA’s Johnson Space Center in Houston. Photo credit: NASA/Helen Arase Vargas Explore the universe this fall without leaving your classroom through live virtual engagements with NASA space and aviation experts. NASA is offering a new lineup of stellar virtual experiences to spark STEM excitement and connect students with the agency’s missions, science, careers, and more.
      The virtual engagements, managed by NASA’s Next Gen STEM project, are free to join and open to both formal and informal education groups. These options are sure to launch your students’ love of STEM:
      NASA Back-to-School Career Day (Grades K-12)
      On Sept. 26, NASA is hosting a Back-to-School Career Day showcasing a variety of NASA careers with virtual tours of agency facilities, live Q&A with experts, and more.
      Open to K-12 formal and informal education organizations, the registration deadline is Thursday, Sept. 5. In addition to the live event, the interactive platform will be available from Monday, Sept. 23, through Friday, Sept. 27.
      Europa Clipper Launch Virtual Watch Party (All Grade Levels)
      NASA’s Europa Clipper spacecraft is scheduled to launch no earlier than Oct. 10 on a mission to investigate whether Jupiter’s icy moon, Europa, could contain the building blocks needed to support life. The launch window opens on Oct. 10 during the school day at 12:32 p.m. EDT, and your classroom can be part of this pioneering mission. Sign up to watch the launch online, visit Europa Clipper’s Participation Hub for more opportunities, and find additional resources on Europa Clipper’s Kids Resources Hub.
      NQuest Virtual Workshops (Grades 6-8)
      NQuest offers 45-minute virtual workshops every Monday and Thursday. Available on a first-come, first-served basis, these free workshops include a live presentation, captivating NASA videos, and a hands-on activity to bring STEM concepts to life. All you need is a laptop, projector, and basic classroom supplies. Workshops can be scheduled to fit your school’s bell schedule between 11:30 a.m. and 6:30 p.m. EDT. Register your class by Oct. 11.
      “Astro-Not-Yets” Virtual Classroom Connections (Grades K-4)
      Introduce your students to the Astro-Not-Yets, a series of short stories that teach students about NASA’s Commercial Crew Program. In each of these monthly virtual events, a NASA expert whose job relates to the story will read the book to students, then answer their questions.
      Wednesday, Oct. 23: The Astro-Not-Yets! Explore Sound. Students will learn how sound travels and experiment with transmitting sound through a string-cup phone. Registration deadline: Wednesday, Oct. 9. Wednesday, Nov. 20: Astro-Not-Yets! Explore Energy. Students will learn how spacecraft safely bring astronauts home from space, then design and test their own system to safely land an egg on the ground. Registration deadline: Wednesday, Nov. 6. Wednesday, Dec. 11: Astro-Not-Yets! Explore Microgravity. Students will learn all about gravity, microgravity, and the International Space Station. Registration deadline: Wednesday, Nov. 27. “First Women” Virtual Classroom Connections (Grades 5-12)
      This series introduces some of the women at NASA who have made significant achievements in STEM. Students get to hear their stories first-hand and ask them questions in a live Q&A.
      Wednesday, Oct. 16: Meet NASA’s first female launch director, Charlie Blackwell-Thompson. She led the launch team during the uncrewed Artemis I mission around the Moon in 2022. Now, she and her team are preparing for the first crewed Artemis mission, Artemis II. Registration deadline: Monday, Sept. 30. Wednesday, Nov. 6: Meet Laurie A. Grindle and learn about NASA’s first X-43A Guinness world record. Today, Grindle is deputy center director at NASA’s Armstrong Flight Research Center in Edwards, California, but in 2004, the X-43A aircraft she and her team developed set the Guinness World Record for “the fastest air-breathing aircraft” twice in one year. Registration deadline: Monday, Oct. 21. Wednesday, Dec. 4: Meet Dr. Ruth Jones, NASA’s 2024 Wings of Excellence Awardee. Jones will share her experience as a woman in STEM and tell students what it was like to become the first woman to earn a bachelor’s degree in physics from the University of Arkansas at Pine Bluff. Registration deadline: Monday, Nov. 18. Surprisingly STEM Career Explorations Virtual Events (Grades 5-12)
      The Surprisingly STEM video series highlights some of NASA’s many unexpected careers. In these events, experts from the videos discuss their unusual and exciting jobs and share their journeys that led them to NASA.
      Thursday, Oct. 24: Soft robotics engineer Jim Neilan explains the importance of soft robotics in human spaceflight and some of the role’s critical skills. Registration deadline: Friday, Oct. 18. Thursday, Nov. 14: Exploration geologist Angela Garcia takes students behind the scenes of her job training NASA astronauts to explore for the “crater” good of humanity. Registration deadline: Thursday, Nov. 7. Thursday, Dec. 12: Memory metal engineer Othmane Benafan explains how he “trains” metal to bend, stretch, and twist when prompted, and how this technology benefits NASA missions. Registration deadline: Thursday, Dec. 5. Bring NASA Experts Into the Classroom (All Grades)
      NASA recently launched NASA Engages, a new, database-driven platform designed to connect a wide range of audiences with experts from across the space agency – both virtually and in person. Available to classrooms from preschool to college, informal education organizations such as libraries and science centers, and other eligible groups, NASA Engages enables educators and group leaders to find inspirational guest speakers, knowledgeable science fair judges, and more.
      There’s More to Explore
      Find student challenges, hands-on activities, and more opportunities on the Learning Resources website managed by NASA’s Office of STEM Engagement. Visit How Do I Navigate NASA Learning Resources and Opportunities? to explore additional platforms and offerings to enhance your STEM curriculum. Subscribe to the weekly NASA EXPRESS e-newsletter to discover the latest events, resources, and other opportunities to bring NASA into your classroom. Explore More
      7 min read NASA Project in Puerto Rico Trains Students in Marine Biology
      Article 20 hours ago 3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night
      During the April 8, 2024 total solar eclipse, approximately 770 AudioMoth recording devices were used…
      Article 22 hours ago 10 min read 40 Years Ago: President Reagan Announces Teacher in Space Project
      Article 2 days ago View the full article
    • By NASA
      Northrop Grumman’s Cygnus space freighter is pictured attached to the Canadarm2 robotic arm ahead of its release from the International Space Station’s Unity module on Tuesday, July 12, 2024. Photo credit: NASA NASA invites the public to participate in virtual activities ahead of the launch of Northrop Grumman’s 21st commercial resupply services mission for the agency. 
      Mission teams are targeting 11:28 a.m. EDT Saturday, Aug. 3, for the launch of the company’s Cygnus cargo spacecraft on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Cygnus will deliver new scientific investigations, food, supplies, and equipment to the crew aboard the International Space Station. 
      Members of the public can register to attend the launch virtually. As a virtual guest, you’ll gain access to curated resources, receive schedule changes, and mission-specific information delivered straight to your inbox. Following each activity, virtual guests will receive a commemorative stamp for their virtual guest passport. 
      NASA’s live launch coverage will begin at 11:10 a.m. EDT on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA TV through a variety of platforms, including social media. 
      Learn more about the commercial resupply mission at:
      View the full article
    • By NASA
      When designing a new spacecraft or exploration vehicle, there is intense focus on its technical performance. Do its systems perform as expected? What kind of power does it need? Will it safely reach its destination?

      Equally important, however, is whether that vehicle also works for the humans inside. Can astronauts easily reach critical controls? Do the seats conform to a crew member regardless of their height and body size? Does the layout of crew workstations, translation paths, stowage, and other items support effective working and living conditions?

      Those are just a few of the questions NASA’s Center for Design and Space Architecture (CDSA) seeks to answer. Based within the Human Health and Performance Directorate at Johnson Space Center in Houston, the CDSA is NASA’s conceptual, human-centered design studio. It creates advanced concepts for spacecraft, exploration vehicles, and habitats that put crew needs first. The team provides a full spectrum of design services, from concept sketches to CAD models, to scaled mockups and virtual reality (VR), to full-size prototype fabrication.
      Carl Conlee, Evan Twyford, and Dr. Robert Howard perform a window node visibility study on the mockup of the Space Exploration Vehicle. NASA The CDSA has been an integral partner in the design of everything from dining tables for the International Space Station to ergonomic seats for the Orion spacecraft, and private sleeping bunks for the Space Exploration Vehicle (also known as the Small Pressurized Rover). The multidisciplinary team also played key roles in the design and construction of analog habitats onsite at Johnson, including the Human Exploration Research Analog (HERA) and the Crew Health And Performance Exploration Analog (CHAPEA) habitats where volunteer crews recently completed simulated Mars missions.

      Dr. Robert Howard, CDSA co-lead and habitability domain lead, explained that the current HERA habitat was initially developed as the ground-test version of a lunar habitat envisioned by the Constellation Program. The CDSA team built medical operations and suit maintenance workstations, stowage systems, cameras, and outfitting supplies for the habitat, known then as the Habitat Demonstration Unit. Later, the team added a galley, exercise and stowage space, and crew quarters to university-built inflatable upper decks. They also outfitted the interior of a hygiene module provided by the Jet Propulsion Laboratory, helped Kennedy Space Center’s plant growth team locate their experiments in the habitat, and worked with the Human Factors Engineering Laboratory to develop crew procedures for testing the habitats at Johnson and in Arizona.

      “The plan was to excess the habitat when the program ended, but CDSA realized the asset was too valuable and we campaigned to find a new owner for the mockup,” Howard said. “That led to the birth of HERA. The Human Research Program now performs the day-to-day maintenance and conducts the HERA missions.”
      Dr. Robert Howard (left) briefs Apollo astronauts Gene Cernan, Neil Armstrong, and Harrison Schmitt on the Altair lunar lander mockup. NASA For CHAPEA, the CDSA worked with NASA teams and commercial partners to determine the habitat’s necessary functions and layout, assisted with furniture installation, provided design consultation and fabrication assistance for an external airlock, and designed and built a docking node.

      Another part of the CDSA’s work is the development of NASA test units for partner-produced vehicles and spacecraft. “In the early phases of a project, these test units can help NASA understand what requirements we want to levy on the partner,” Howard explained. “Later, they can be used to emulate partner concepts and NASA can perform independent studies with them, either to assess partner capabilities or to predict the impacts of possible changes.”

      The CDSA team can also build replicas of contractor mockups for crew training or additional testing. They are currently supporting development of lunar surface logistics, a pressurized rover, and Gateway components, too. 
      Center for Design and Space Architecture team members test a Gateway habitat mockup. From left are Brett Montoya, Taylor Phillips-Hungerford, and Zachary Taylor. NASA/Robert Markowitz In addition to Howard, the CDSA team includes Maijinn Chen, the technical discipline lead for space architecture, and Nathan Moore, the technical discipline lead for fabrication, as well as nearly a dozen contractors who serve as space architects, industrial designers, mechanical engineers, and VR developers. “It is a very multidisciplinary team, so we are able to leverage different skillsets to complete our work,” Howard said. “All of the team members are well-versed in design ideation, so we can collaborate when developing concepts, whether for high-level architectures, individual vehicle assets, subsystem components, or even crew-worn items.”

      Howard explained that the CDSA almost always works as a sub-team within a larger effort. “We can support a team at any point in a spacecraft lifecycle, but it is best when we are brought in at the very beginning,” he said. “That is where human-centered design processes can have the greatest impact in improving a space system for the lowest cost. It is also very helpful in ensuring that the requirements levied on our contractors and international partners reflect the needs of the future astronaut crews.”

      Howard can trace his passion for space exploration back to his early childhood. “I feel like I was born interested! My mom said when I was three, I might not watch ‘The Electric Company,’ but I would not miss ‘Star Trek’ or ‘Space 1999,” he said. “As I got older, I would gravitate toward the space section of the library and read anything I could about NASA. I was always more interested in human spaceflight than in unmanned vehicles and I suppose that was the beginning of my path towards habitability and human-centered design.”

      For Howard, the most rewarding part of the CDSA team’s work is creating things that have never existed. “I love it when we find a way to do something that was previously considered impossible, or beyond the scope of what was considered likely,” he said. “I consider it a personal calling to find ways to make space more habitable for humanity.”
      View the full article
    • By European Space Agency
      Video: 00:14:53 In the second episode of this docu series, we take a closer look into what it took to build ESA’s Young Professional Satellite (YPSat). YPSat’s mission objectives are to capture the key moments of Ariane 6’s inaugural flight and take in-orbit pictures of Earth and space. To achieve this, the satellite requires the multiple sub-systems to work in harmony and adhere to a pre-defined mission sequence.
      This episode zooms in four of the sub-systems: the Wake-Up System (WUS), Battery, On-Board Computer (OBC) and Telecommunications.
      Running at ultra low power, the WUS circuit board was designed, tested and manufactured specifically for YPSat. Created to meet Arianespace’s requirement to be operational on the launchpad for 45 days, its function is to wake up the satellite during the launch to record the fairing separation.
      Once the WUS detects the launch, it will signal to the battery to turn on the rest of the satellite. The battery has the challenge to maintain enough charge to power the remainder of the components.
      The On-Board Computer (OBC) then takes the lead to orchestrate the rest of the mission. The OBC acts as the brain of the satellites; it sends commands to all the other sub-systems, including sending the commands to record the videos and pictures.
      Once these are captured, the Telecommunications team takes over to coordinate with the ground stations to send the data back on Earth so it can be decoded into clear images. The challenge is to ensure enough communication between the satellite and Earth so the data is properly retrieved before the YPSat disintegrates upon re-entry.
      One day prior launch, YPSat is now sitting in Ariane 6’s capsule. To get there, the satellite was subject to rigorous tests and certifications to meet the stringent standards of the European Space Agency and Arianespace. Will YPSat accomplish its mission objectives? We'll find out in the next episode.
       
      Credits:
      Directed and produced by Chilled Winston: https://chilledwinston.com/ and Emma de Cocker
      Powered by ESA - European Space Agency
      Music from Epidemic Sound
      View the full article
    • By NASA
      Augmented reality tools have helped technicians improve accuracy and save time on fit checks for the Roman Space Telescope being assembled at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. In one instance, manipulating a digital model of Roman’s propulsion system into the real telescope structure revealed the planned design would not fit around existing wiring. The finding helped avoid a need to rebuild any components. The R&D team at Goddard working on this AR project suggests broader adoption in the future could potentially save weeks of construction time and hundreds of thousands of dollars. In this photograph from Feb. 29, 2024, at NASA’s Goddard Space Flight Center in Greenbelt, Md., the Roman Space Telescope’s propulsion system is positioned by engineers and technicians under the spacecraft bus. Engineers used augmented reality tools to prepare for the assembly.NASA/Chris Gunn Technicians armed with advanced measuring equipment, augmented reality headsets, and QR codes virtually checked the fit of some Roman Space Telescope structures before building or moving them through facilities at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      “We’ve been able to place sensors, mounting interfaces, and other spacecraft hardware in 3D space faster and more accurately than previous techniques,” said NASA Goddard engineer Ron Glenn. “That could be a huge benefit to any program’s cost and schedule.” 
      Projecting digital models onto the real world allows the technicians to align parts and look for potential interference among them. The AR heads-up display also enables precise positioning of flight hardware for assembly with accuracy down to thousandths of an inch.
      Engineers wearing augmented reality headsets test the placement of a scaffolding design before it is built to ensure accurate fit in the largest clean room at NASA’s Goddard Space Flight Center in Greenbelt, Md.NASA Using NASA’s Internal Research and Development program, Glenn said his team keeps finding new ways to improve how NASA builds spacecraft with AR technology in a project aiding Roman’s construction at NASA Goddard. 
      Glenn said the team has achieved far more than they originally sought to prove. “The original project goal was to develop enhanced assembly solutions utilizing AR and find out if we could eliminate costly fabrication time,” he said. “We found the team could do so much more.”
      For instance, engineers using a robotic arm for precision measuring and 3D laser scanning mapped Roman’s complex wiring harness and the volume within the spacecraft structure.  
      “Manipulating the virtual model of Roman’s propulsion assembly into that frame, we found places where it interfered with the existing wiring harness, team engineer Eric Brune said. “Adjusting the propulsion assembly before building it allowed the mission to avoid costly and time-consuming delays.”
      Roman’s propulsion system was successfully integrated earlier this year.
      The Roman Space Telescope is a NASA mission designed to explore dark energy, exoplanets, and infrared astrophysics.
      Equipped with a powerful telescope and advanced instruments, it aims to unravel mysteries of the universe and expand our understanding of cosmic phenomena. Roman is scheduled to launch by May 2027.
      Credit: NASA’s Goddard Space Flight Center
      Download this video in HD formats from NASA Goddard’s Scientific Visualization Studio Considering the time it takes to design, build, move, redesign, and rebuild, Brune added, their work saved many workdays by multiple engineers and technicians.
      “We have identified many additional benefits to these combinations of technologies,” team engineer Aaron Sanford said. “Partners at other locations can collaborate directly through the technicians’ point of view. Using QR codes for metadata storage and document transfer adds another layer of efficiency, enabling quick access to relevant information right at your fingertips. Developing AR techniques for reverse engineering and advanced structures opens many possibilities such as training and documentation.” 
      The technologies allow 3D designs of parts and assemblies to be shared or virtually handed off from remote locations. They also enable dry runs of moving and installing structures as well as help capture precise measurements after parts are built to compare to their designs. 
      Adding a precision laser tracker to the mix can also eliminate the need to create elaborate physical templates to ensure components are accurately mounted in precise positions and orientations, Sanford said. Even details such as whether a technician can physically extend an arm inside a structure to turn a bolt or manipulate a part can be worked out in augmented reality before construction. 
      During construction, an engineer wearing a headset can reference vital information, like the torque specifications for individual bolts, using a hand gesture. In fact, the engineer could achieve this without having to pause and find the information on another device or in paper documents.  
      In the future, the team hopes to help integrate various components, conduct inspections, and document final construction. Sanford said, “it’s a cultural shift. It takes time to adopt these new tools.”  
      “It will help us rapidly produce spacecraft and instruments, saving weeks and potentially hundreds of thousands of dollars,” Glenn said. “That allows us to return resources to the agency to develop new missions.” 
      This project is part of NASA’s Center Innovation Fund portfolio for fiscal year 2024 at Goddard. The Center Innovation Fund, within the agency’s Space Technology Mission Directorate, stimulates and encourages creativity and innovation at NASA centers while addressing the technology needs of NASA and the nation.
      To learn more, visit: https://www.nasa.gov/center-innovation-fund/
      By Karl B. Hille
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAGoddard@NASA_Technology @NASAGoddard@NASA_Technology Instagram logo @NASAGoddard Share
      Details
      Last Updated Jun 20, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Technology Goddard Space Flight Center Space Technology Mission Directorate Technology View the full article
  • Check out these Videos

×
×
  • Create New...