Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The NESC Mechanical Systems TDT provides broad support across NASA’s mission directorates. We are a diverse group representing a variety of sub-disciplines including bearings, gears, metrology, lubrication and tribology, mechanism design, analysis and testing, fastening systems, valve engineering, actuator engineering, pyrotechnics, mechatronics, and motor controls. In addition to providing technical support, the
      TDT owns and maintains NASA-STD-5017, “Design and Development Requirements for Space Mechanisms.”

      Mentoring the Next Generation
      The NESC Mechanical Systems TDT actively participates in the Structures, Loads & Dynamics, Materials, and Mechanical Systems (SLAMS) Early Career Forum that mentors early-career engineers. The TDT sent three members to this year’s forum at WSTF, where early-career engineers networked with peers and NESC mentors, gave presentations on tasks they worked on at their home centers, and attended splinter sessions where they collaborated with mentors.

      New NASA Valve Standard to Reduce Risk and Improve Design and Reliability
      Valve issues have been encountered across NASA’s programs and continue to compromise mission performance and increase risk, in many cases because the valve hardware was not qualified in the environment as specified in NASA-STD-5017. To help address these issues, the Mechanical Systems TDT is developing a NASA standard for valves. The TDT assembled a team of subject matter experts from across the Agency representing several disciplines including mechanisms, propulsion, environmental control and life support systems, spacesuits, active thermal control systems, and materials and processes. The team has started their effort by reviewing lessons learned and best practices for valve design and hope to have a draft standard ready by the end of 2025.

      Bearing Life Testing for Reaction Wheel Assemblies
      The Mechanical Systems TDT just concluded a multiyear bearing life test on 40 motors, each containing a pair of all steel bearings of two different conformities or a pair of hybrid bearings containing silicon nitride balls. The testing confirmed that hybrid bearings outperformed their steel counterparts, and bearings with higher conformity (54%) outperformed bearings with lower conformity (52%). The team is disassembling and inspecting the bearings, and initial results have been surprising. The TDT was able to “recover” some of the bearings that failed during the life test and get them running as well as they did when testing began. Some bearings survived over five billion revolutions and appeared like new when they were disassembled and inspected. These results will be published once analysis is complete.
       
      X-57 Design Assessment
       The Mechanical Systems TDT was asked by the Aeronautics Mission Directorate to assess the design of the electric cruise motors installed on X-57. The team responded quickly to meet the Project’s schedule, making an onsite visit and attending numerous technical interchange meetings. After careful review of the design, the TDT identified areas for higher-level consideration and risk assessment and attended follow-on reviews to provide additional comments and advice.
      CLARREO Pathfinder Inner Radial Bearing Anomaly
      The Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder was designed to take highly accurate measurements of reflected solar radiation to better-understand Earth’s climate. During payload functional testing, engineers detected a noise as the HySICS pointing system was rotated from its normal storage orientation. Mechanical Systems TDT members reviewed the design and inspection reports after disassembly of the inner bearing unit, noticing contact marks on the bore of the inner ring and the shaft that confirmed that the inner ring of the bearing was moving on the shaft with respect to the outer ring. Lubricant applied to this interface resolved the noise problem and allowed the project to maintain schedule without any additional costs.
      JPL Wheel Drive Actuator Extended Life Test Independent Review Team
      A consequence of changes to its mission on Mars will require the Perseverance Rover to travel farther than originally planned. Designed to drive 20 km, the rover will now need to drive ~91 km to rendezvous and support Mars sample tube transfer to the Sample Retrieval Lander. The wheel drive actuators with integral brakes had only been life tested to 40 km, so a review was scheduled to discuss an extended life test. The OCE Science Mission Directorate Chief Engineer assembled an independent review team (IRT) that included NESC Mechanical Systems TDT members. This IRT issued findings and guidance that questioned details of the JPL assumptions and plan. Several important recommendations were made that improved the life test plan and led to the identification of brake software issues that were reducing brake life. The life test has achieved 40 km of its 137 km goal and is ongoing. In addition, software updates were sent to the rover to improve brake life.

      Orion Crew Module Hydrazine Valve
      When an Orion crew module hydrazine valve failed to close, the production team asked the Mechanical Systems TDT for help. A TDT member attended two meetings and then visited the valve manufacturer, where it was determined this valve was a scaled-down version of the 12-inch SLS prevalve that was the subject of a previous NESC assessment and shared similar issues. The Orion Program requested NESC materials and mechanical systems support. The Mechanical Systems TDT member then worked closely with a Lockheed Martin (LM) Fellow for Mechanisms to review all the valve vendor’s detailed drawings and assembly procedures and document any issues. A follow-on meeting was held to brief both the LM and NASA Technical Fellows for Propulsion that a redesign and requalification was recommended. These recommendations have now been elevated to the LM Vice President for Mission Success and the LM Chief Engineer for Orion.
      NASA’s Perseverance Mars rover selfie taken in July 2024.
      View the full article
    • By Amazing Space
      NASA's Parker Solar Probe Reaches Unprecedented 435000 mph Touching The Sun
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is helping the Artemis Generation learn how to power space dreams with an interactive exhibit at INFINITY Science Center.
      The engine test simulator exhibit at the official visitor center of NASA Stennis provides the chance to experience the thrill of being a NASA test engineer by guiding an RS-25 engine through a simulated hot fire test.
      “It is an exhilarating opportunity to feel what it is like to be a NASA engineer, responsible for making sure the engine is safely tested for launch,” said Chris Barnett-Woods, a NASA engineer that helped develop the software for the exhibit.
      Sitting at a console mirroring the actual NASA Stennis Test Control Center, users are immersed in the complex process of engine testing. The exhibit uses cutting-edge software and visual displays to teach participants how to manage liquid oxygen and liquid hydrogen propellants, and other essential elements during a hot fire.
      A pair of young visitors to INFINITY Science Center carry out the steps of a simulated RS-25 engine hot fire on Dec. 19. The updated engine test simulator exhibit provided by NASA’s Stennis Space Center takes users through the hot fire process just as real engineers do at NASA Stennis.NASA/Danny Nowlin INFINITY Science Center, the official visitor center for NASA’s Stennis Space Center, has unveiled a new interactive simulator exhibit that allows visitors to become the test conductor for an RS-25 engine hot fire. NASA/Danny Nowlin Users follow step-by-step instructions that include pressing buttons, managing propellant tanks, and even closing the flare stack, just as real engineers do at NASA Stennis. Once the test is complete, they are congratulated for successfully conducting their own rocket engine hot fire.
      The interactive exhibit is not just about pushing buttons. It is packed with interesting facts about the RS-25 engine, which helps power NASA’s Artemis missions as the agency explores secrets of the universe for the benefit of all. Visitors also can view real hot fires conducted at NASA Stennis from multiple angles, deepening their understanding of rocket propulsion testing and NASA’s journey back to the Moon and beyond.
      NASA is currently preparing for the Artemis II mission, the first crewed flight test of the agency’s powerful SLS (Space Launch System) rocket and the Orion spacecraft around the Moon.
      The first four Artemis missions are using modified space shuttle main engines tested at NASA Stennis. The center also achieved a testing milestone last April for engines to power future Artemis missions. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power NASA’s SLS rocket, producing more than 8.8 million pounds of total combined thrust at liftoff.
      The revitalized exhibit, previously used when the visitor center was located onsite, represents a collaborative effort. It started as an intern project in the summer of 2023 before evolving into a full-scale experience. Engineers built on the initial concept, integrating carpentry, audio, and video to create the seamless experience to educate and inspire.
      The best part might be that visitors to INFINITY Science Center can repeat the simulation as many times as they like, gaining confidence and learning more with each attempt.
      “This exhibit was a favorite in the past, and with its new upgrades, the engine test simulator is poised to capture the imaginations of the Artemis Generation at INFINITY Science Center,” said NASA Public Affairs Specialist Samone Wilson. “This is one exhibit you will not want to miss.” INFINITY Science Center is located at 1 Discovery Circle, Pearlington, Mississippi. For hours of operation and admission information, please visit www.visitinfinity.com.

      Share
      Details
      Last Updated Dec 20, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center View the full article
    • By NASA
      Photographers at NASA capture the sunset on Tuesday, Jan. 30, 2024, near the headquarters building of the agency’s Kennedy Space Center in Florida.NASA/Ben Smegelsky As NASA’s Kennedy Space Center in Florida wraps up a year that will see more than 90 government, commercial, and private missions launch from Florida’s Space Coast, a look to 2025 shows the missions, partnerships, projects, and programs at the agency’s main launch site will continue innovating, inspiring, and pushing the boundaries of exploration for the benefit of humanity.
      “The next year promises to be another exciting one at Earth’s premier spaceport,” said Kennedy Center Director Janet Petro. “We have an amazing workforce, and when we join forces with industry and our other government partners, even the sky is no limit to what we can accomplish.”
      New Year, New Missions to Space Station
      NASA’s Commercial Crew Program (CCP), based out of Kennedy, and its commercial partner SpaceX plan two crew rotation missions to the International Space Station: NASA’s SpaceX Crew-10 and Crew-11. This also means the return of the Crew-9 mission and later Crew-10 during 2025. CCP continues working with Boeing toward NASA certification of the company’s Starliner system for future crew rotations to the orbiting laboratory.
      NASA’s SpaceX Crew-10 members stand between Falcon 9 first-stage boosters at SpaceX’s HangarX facility at NASA’s Kennedy Space Center in Florida. From left are Mission Specialist Kirill Peskov of Roscosmos, Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), along with NASA astronauts Commander Anne McClain and Pilot Nichole Ayers. SpaceX “Operations in 2025 are a testament to NASA’s workforce carefully planning and preparing to safely execute a vital string of missions that the agency can depend on,” said Dana Hutcherson, CCP deputy program manager. “This is the 25th year of crewed operations for the space station, and we know that with every launch, we are sustaining a critical national asset and enabling groundbreaking research.”
      NASA also plans several Commercial Resupply Services missions, utilizing SpaceX’s Dragon cargo spacecraft, Northrop Grumman’s Cygnus spacecraft, and the inaugural flight of Sierra Space’s cargo spaceplane, Dream Chaser.  The missions will ferry thousands of pounds of supplies, equipment, and science investigations to the crew aboard the orbiting laboratory from NASA Kennedy and nearby Cape Canaveral Space Force Station.
      The SpaceX Falcon 9 rocket carrying the Dragon spacecraft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida on Tuesday, Nov. 4, on the company’s 31st commercial resupply services mission for the agency to the International Space Station. Liftoff was at 9:29 p.m. EST. SpaceX In addition to the agency’s crewed flights, Axiom Space’s fourth crewed private spaceflight mission, Axiom Mission 4 – organized in collaboration with NASA through the International Space Station Program and operated by SpaceX – will launch to the orbital outpost.  
      Reestablishing Humanity’s Lunar Presence
      Preparations for NASA’s Artemis II test flight mission are ramping up, with all major components for the SLS (Space Launch System) hardware undergoing processing at Kennedy, including the twin solid rocket boosters and 212-foot-tall core stage. Teams with EGS (Exploration Ground Systems) will continue stacking the booster segments inside the spaceport’s VAB (Vehicle Assembly Building). Subsequent integration and testing of the rocket’s hardware and Orion spacecraft will continue not only for the Artemis II mission, but for Artemis III and IV. Technicians also continue building mobile launcher 2, which will serve as the launch and integration platform for the SLS Block 1B configuration starting with Artemis IV.
      Teams with NASA’s Exploration Ground Systems transport the agency’s 212-foot-tall SLS (Space Launch System) core stage into High Bay 2 at the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Wednesday, Dec. 11, 2024. The one-of-a kind lifting beam is designed to lift the core stage from the transfer aisle to High Bay 2 where it will remain while teams stack the two solid rocket boosters on top of mobile launcher 1 for the SLS core stage.NASA/Kim Shiflett “Looking ahead to 2025, teams will embark on a transformative year as we integrate the flight hardware for Artemis II, while simultaneously developing the foundation for future Artemis missions that will reestablish humanity’s presence on the Moon,” said Shawn Quinn, EGS program manager.
      A key part of the Artemis campaign, NASA’s CLPS (Commercial Lunar Payload Services) initiative will continue leveraging commercial partnerships to quickly land scientific instruments and technology demonstrations on the Moon. Firefly Aerospace’s first lunar CLPS flight, Blue Ghost Mission 1, will carry 10 NASA science and technology instruments to the lunar surface, including the Electrodynamic Dust Shield, a technology built by Kennedy engineers. Intuitive Machines, meanwhile, will embark on its second CLPS flight to the Moon. Providing the first in-situ resource utilization demonstration on the lunar surface, IM-2 will carry the Polar Resources Ice Mining Experiment-1 (PRIME-1), which features The Regolith and Ice Drill for Exploring New Terrain from Honeybee Robotics, as well as the Mass Spectrometer Observing Lunar Operations built by Kennedy. Both flights are targeted to lift off from Kennedy’s Launch Complex 39A during the first quarter of 2025.
      As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Firefly Aerospace’s Blue Ghost Mission One lander will carry 10 NASA science and technology instruments to the Moon’s near side.Firefly Aerospace In development for Artemis IV and beyond, Gateway will be a critical platform for developing a sustained human presence beyond low Earth orbit. Deep Space Logistics (DSL) is the Gateway Program project office at Kennedy responsible for leading the development of a commercial supply chain in deep space. In 2025, DSL will continue developing the framework for the DSL-1 mission and working with commercial provider SpaceX to mature spacecraft design. Upcoming milestones include a system requirements review and preliminary design review to determine the program’s readiness to proceed with the detailed design phase supporting the agency’s Gateway Program and Artemis IV mission objectives.
      Science Missions Studying Our Solar System and Beyond
      NASA’s Launch Services Program (LSP), based at Kennedy, is working to launch three ambitious missions. Launching early in the year on a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) is a space telescope to survey the universe using visible and near-infrared light, observing more colors than ever before and allowing astronomers to piece together a three-dimensional map of the universe with stunning accuracy. Launching with SPHEREx, NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will study how the mass and energy of the Sun’s corona transition into the solar wind.
      NASA’s SPHEREx space observatory was photographed at BAE Systems in Boulder, Colorado, in November 2024 after completing environmental testing. The spacecraft’s three concentric cones help direct heat and light away from the telescope and other components, keeping them cool. BAE Systems IMAP (Interstellar Mapping and Acceleration Probe), scheduled to launch from Cape Canaveral in late 2025, will help map out thethe heliosphere – the magnetic environment surrounding and protecting our solar system. Carrying 10 instruments to make its observations, the IMAP mission is targeting the L1 Lagrange Point, an area between Earth and the Sun that is easy for spacecraft to maintain orbit, along with two Sun observing rideshare missions – NASA’s Carruthers Geocorona Observatory and the National Oceanic and Atmospheric Administration’s SWFO-L1 (Space Weather Follow-On at L1). Also launching in late 2025 on a Falcon 9 from Vandenberg is the second of two identical satellites, Sentinel-6B, which will monitor global sea levels with unprecedented precision. Its predecessor, Sentinel-6 Michael Freilich, has been delivering crucial data since it launched in 2020, and Sentinel-6B will ensure the continuation of this mission through 2030.
      “Our missions launching next year will include groundbreaking technologies to help us learn more about the universe than ever before and provide new data for researchers that will have positive benefits here on Earth,” said LSP’s Deputy Program Manager Jenny Lyons.
      NASA’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) identical dual spacecraft are inspected and processed on dollies in a high bay of the Astrotech Space Operations Facility near the agency’s Kennedy Space Center in Florida on Thursday, Aug. 22, 2024. As the first multi-spacecraft orbital science mission to Mars, ESCAPADE’s twin orbiters will take simultaneous observations from different locations around the planet and reveal the real-time response to space weather and how the Martian magnetosphere changes over time.NASA/Kim Shiflett The program’s support for small satellite missions next year includes several missions to monitor the Sun, collect climate data, and more. NASA’s ESCAPADE (Escape and Plasma Acceleration and Dynamics Explorers) mission to explore Mars’ magnetosphere will lift off from Cape Canaveral’s Launch Complex 36 on NASA’s inaugural flight of Blue Origin’s New Glenn rocket. Some of these small satellite missions are part of NASA’s CubeSat Launch Initiative, which offers the next generation of scientists, engineers, and technologists a unique opportunity to conduct scientific research and develop and demonstrate novel technologies in space.
      Building the Spaceport’s Future
      Teams expect a busy year of construction projects to accommodate new missions, hardware, and milestones. In preparation for Artemis IV, mobile launcher 2 construction and modifications in the VAB’s High Bays 3 and 4 for the larger SLS Block 1B configuration will ramp up. Teams also will upgrade the spaceport’s Converter Compressor Facility (CCF) to meet the helium needs of its commercial launch partners and the Artemis campaign, increasing efficiency, reliability, and speed of pumping helium to rockets. Upgrades to the CCF’s internal infrastructure are also part of Kennedy’s plan to earn the U.S. Green Building Council’s Leadership in Energy and Environmental Design certification, joining nine other Kennedy facilities in achieving that rating.
      Photographers at NASA capture the sunset on Tuesday, Jan. 30, 2024, near Vehicle Assembly Building at the agency’s Kennedy Space Center in Florida. The iconic Vehicle Assembly Building, currently used for assembly of NASA’s Space Launch System rocket for Artemis missions, remains the only building in which rockets were assembled that carried humans to the surface of another world. NASA/Ben Smegelsky “Kennedy’s spaceport will continue to see its launch cadence grow, and we have to meet our program and commercial partner needs in the most efficient way possible,” said Sasha Sims, deputy director of Kennedy’s Spaceport Integration and Services Directorate. “Process improvements and integrated approaches should improve the speed at which government and commercial construction takes place while also improving Kennedy’s infrastructure so that it’s robust, sustainable, and able to support America’s future in space.”
      Driving down acquisition costs, increasing competition, and using innovative contracting mechanisms for construction are just some of the initiatives to maximize efficiency and reliability in 2025. The center’s “Critical Day” policy prohibits certain types of work during launches requiring full flight range support but will no longer apply to commercial launches where minimal flight range support is required, training events, static fires, exercises, tests, rehearsals, nor other activities leading up to or supporting launches. This policy change is expected to create more flexibility and free up over 150 days annually for construction, maintenance, and other essential work needed to keep the spaceport running smoothly.
      Finally, Kennedy will continue carrying Apollo’s legacy through Artemis. Seeds that traveled aboard the Orion spacecraft during the Artemis I mission will be planted at the spaceport, honoring the legacy of the original Moon Trees that grew from seeds flown on Apollo 14. The Florida spaceport will become one of the select locations across the country where the “new generation” of Moon Trees will take root and provide living testimony to the agency’s continuing legacy of lunar exploration.
      “With so many missions and initiatives on the horizon, I’m looking forward to another banner year at Kennedy Space Center,” Petro said. “We truly are launching humanity’s future.”
      View the full article
    • By Space Force
      The mission successfully achieved a complex effort across multiple Space Force organizations to pull an existing GPS III satellite from storage, accelerate integration and launch vehicle readiness, and rapidly process for launch.

      View the full article
  • Check out these Videos

×
×
  • Create New...