Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Explore This Section Science Science Activation 2025 Aviation Weather Mission:… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   2 min read
      2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds
      The Science Activation Program’s NASA Earth Science Education Collaborative (NESEC) is working alongside the Civil Air Patrol (CAP) to launch the 2025 Aviation Weather Mission. The mission will engage cadets (students ages 11-20) and senior members to collect aviation-relevant observations including airport conditions, Global Learning and Observations to Benefit the Environment (GLOBE) Cloud observations, commercial aircraft information (including registration number and altitude), and satellite collocations provided by the NASA GLOBE Clouds team at NASA Langley Research Center. This mission results from a highly successful collaboration between NESEC and CAP as cadets and senior members collected cloud, air temperature, and land cover observations during the partial and total solar eclipses in 2023 and 2024, engaging over 400 teams with over 3,000 cadets and over 1,000 senior members in every state, Washington DC, and Puerto Rico.
      The 2025 Aviation Weather Mission will take place from April through July 2025, collecting observations over two 4-hour periods while practicing additional skills, such as flight tracking, orienteering, and data management. So far, over 3,000 cadets in 46 wings (states) have signed up to participate.
      Science Activation recently showed support for this mission through a letter of collaboration sent to CAP Major General Regena Aye in early February. NASA GLOBE Clouds and GLOBE Observer are part of the NASA Earth Science Education Collaborative (NESEC), which is led by the Institute for Global Environmental Strategies (IGES) and supported by NASA under cooperative agreement award number NNX16AE28A. NESEC is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Cadets from the Virginia wing making cloud observations as they prepare for the 2025 Aviation Weather Mission. Share








      Details
      Last Updated Mar 04, 2025 Editor NASA Climate Editorial Team Location NASA Langley Research Center Related Terms
      Science Activation Clouds Opportunities For Students to Get Involved Weather and Atmospheric Dynamics Explore More
      2 min read Sharing PLANETS Curriculum with Out-of-School Time Educators


      Article


      1 week ago
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska


      Article


      2 weeks ago
      2 min read An Afternoon of Family Science and Rocket Exploration in Alaska


      Article


      3 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      An image of a coastal marshland combines aerial and satellite views in a technique similar to hyperspectral imaging. Combining data from multiple sources gives scientists information that can support environmental management.John Moisan When it comes to making real-time decisions about unfamiliar data – say, choosing a path to hike up a mountain you’ve never scaled before – existing artificial intelligence and machine learning tech doesn’t come close to measuring up to human skill. That’s why NASA scientist John Moisan is developing an AI “eye.”
      Oceanographer John MoisanNASA Moisan, an oceanographer at NASA’s Wallops Flight Facility near Chincoteague, Virginia, said AI will direct his A-Eye, a movable sensor. After analyzing images his AI would not just find known patterns in new data, but also steer the sensor to observe and discover new features or biological processes. 
      “A truly intelligent machine needs to be able to recognize when it is faced with something truly new and worthy of further observation,” Moisan said. “Most AI applications are mapping applications trained with familiar data to recognize patterns in new data. How do you teach a machine to recognize something it doesn’t understand, stop and say ‘What was that? Let’s take a closer look.’ That’s discovery.”
      Finding and identifying new patterns in complex data is still the domain of human scientists, and how humans see plays a large part, said Goddard AI expert James MacKinnon. Scientists analyze large data sets by looking at visualizations that can help bring out relationships between different variables within the data.
      Infrared images like this one from a marsh area on the Maryland/Virginia Eastern Shore coastal barrier and back bay regions reveal clues to scientists about plant health, photosynthesis, and other conditions that affect vegetation and ecosystems.John Moisan It’s another story to train a computer to look at large data streams in real time to see those connections, MacKinnon said. Especially when looking for correlations and inter-relationships in the data that the computer hasn’t been trained to identify. 
      Moisan intends first to set his A-Eye on interpreting images from Earth’s complex aquatic and coastal regions. He expects to reach that goal this year, training the AI using observations from prior flights over the Delmarva Peninsula. Follow-up funding would help him complete the optical pointing goal.
      “How do you pick out things that matter in a scan?” Moisan asked. “I want to be able to quickly point the A-Eye at something swept up in the scan, so that from a remote area we can get whatever we need to understand the environmental scene.” 
      Moisan’s on-board AI would scan the collected data in real-time to search for significant features, then steer an optical sensor to collect more detailed data in infrared and other frequencies. 
      Thinking machines may be set to play a larger role in future exploration of our universe. Sophisticated computers taught to recognize chemical signatures that could indicate life processes, or landscape features like lava flows or craters, might offer to increase the value of science data returned from lunar or deep-space exploration. 
      Today’s state-of-the-art AI is not quite ready to make mission-critical decisions, MacKinnon said.
      “You need some way to take a perception of a scene and turn that into a decision and that’s really hard,” he said. “The scary thing, to a scientist, is to throw away data that could be valuable. An AI might prioritize what data to send first or have an algorithm that can call attention to anomalies, but at the end of the day, it’s going to be a scientist looking at that data that results in discoveries.” 
      Share
      Details
      Last Updated Feb 10, 2025 Related Terms
      Goddard Space Flight Center Artificial Intelligence (AI) Goddard Technology People of Goddard Technology Wallops Flight Facility Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      February’s Night Sky Notes: How Can You Help Curb Light Pollution?
      Light pollution has long troubled astronomers, who generally shy away from deep sky observing under full Moon skies. The natural light from a bright Moon floods the sky and hides views of the Milky Way, dim galaxies and nebula, and shooting stars. In recent years, human-made light pollution has dramatically surpassed the interference of even a bright full Moon, and its effects are now noticeable to a great many people outside of the astronomical community. Harsh, bright white LED streetlights, while often more efficient and long-lasting, often create unexpected problems for communities replacing their old street lamps. Some notable concerns are increased glare and light trespass, less restful sleep, and disturbed nocturnal wildlife patterns. There is increasing awareness of just how much light is too much light at night. You don’t need to give in to despair over encroaching light pollution; you can join efforts to measure it, educate others, and even help stop or reduce the effects of light pollution in your community. 
      Before and after pictures of replacement lighting at the 6th Street Bridge over the Los Angeles River. The second picture shows improvements in some aspects of light pollution, as light is not directed to the sides and upwards from the upgraded fixtures, reducing skyglow. However, it also shows the use of brighter, whiter LEDs, which is not generally ideal, along with increased light bounce back from the road.  City of Los Angeles Amateur astronomers and potential citizen scientists around the globe are invited to participate in the Globe at Night (GaN) program to measure light pollution. Measurements are taken by volunteers on a few scheduled days every month and submitted to their database to help create a comprehensive map of light pollution and its change over time. GaN volunteers can take and submit measurements using multiple methods ranging from low-tech naked-eye observations to high-tech sensors and smartphone apps.
      Globe at Night citizen scientists can use the following methods to measure light pollution and submit their results:
      Their own smartphone camera and dedicated app Manually measure light pollution using their own eyes and detailed charts of the constellations A dedicated light pollution measurement device called a Sky Quality Meter (SQM). The free GaN web app from any internet-connected device (which can also be used to submit their measurements from an SQM or printed-out star charts) Night Sky Network members joined a telecon with Connie Walker of Globe at Night in 2014 and had a lively discussion about the program’s history and how they can participate. The audio of the telecon, transcript, and links to additional resources can be found on their dedicated resource page.
      Light pollution has been visible from space for a long time, but new LED lights are bright enough that they stand out from older street lights, even from orbit. The above photo was taken by astronaut Samantha Cristoforetti from the ISS cupola in 2015. The newly installed white LED lights in the center of the city of Milan are noticeably brighter than the lights in the surrounding neighborhoods. NASA/ESA DarkSky International has long been a champion in the fight against light pollution and a proponent of smart lighting design and policy. Their website (at darksky.org)  provides many resources for amateur astronomers and other like-minded people to help communities understand the negative impacts of light pollution and how smart lighting policies can not only help bring the stars back to their night skies but make their streets safer by using smarter lighting with less glare. Communities and individuals find that their nighttime lighting choices can help save considerable sums of money when they decide to light their streets and homes “smarter, not brighter” with shielded, directional lighting, motion detectors, timers, and even choosing the proper “temperature” of new LED light replacements to avoid the harsh “pure white” glare that many new streetlamps possess. Their pages on community advocacy and on how to choose dark-sky-friendly lighting are extremely helpful and full of great information. There are even local chapters of the IDA in many communities made up of passionate advocates of dark skies.
      DarkSky International has notably helped usher in “Dark Sky Places“, areas around the world that are protected from light pollution. “Dark Sky Parks“, in particular, provide visitors with incredible views of the Milky Way and are perfect places to spot the wonders of a meteor shower. These parks also perform a very important function, showing the public the wonders of a truly dark sky to many people who may have never before even seen a handful of stars in the sky, let alone the full, glorious spread of the Milky Way. 
      More research into the negative effects of light pollution on the health of humans and the environment is being conducted than ever before. Watching the nighttime light slowly increase in your neighborhood, combined with reading so much bad news, can indeed be disheartening! However, as awareness of light pollution and its negative effects increases, more people are becoming aware of the problem and want to be part of the solution. There is even an episode of PBS Kid’s SciGirls where the main characters help mitigate light pollution in their neighborhood!
      Astronomy clubs are uniquely situated to help spread awareness of good lighting practices in their local communities in order to help mitigate light pollution. Take inspiration from Tucson, Arizona, and other dark sky-friendly communities that have adopted good lighting practices. Tucson even reduced its skyglow by 7% after its own citywide lighting conversion, proof that communities can bring the stars back with smart lighting choices.
      Originally posted by Dave Prosper: November 2018
      Last Updated by Kat Troche: January 2025
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The Spot the Station app was developed in collaboration with the public through a series of crowdsourcing competitions.NASA In its 25th year of operations, the International Space Station continues to symbolize discovery and cooperation for the benefit of humanity. Since 2012, observers have interacted with the space station through NASA’s Spot the Station website, a web browser-based tool that includes interactive maps for users to track the station and find viewpoints closest to their location.  
      A decade after the website’s release, NASA sought to enhance public access to this capability with a mobile app. NASA released the Spot the Station app on IOS and Android in 2023. As of Dec. 2024, it has more than 770,000 users in 227 countries and territories around the globe, according to Ensemble, who NASA contracts to maintain support of the app. 
      Revamping the Spot the Station experience was more than just an opportunity for NASA to make improvements; it allowed NASA to gather direct input from users by involving them in the development of the new app. Space Operations web and platform lead, Allison Wolff, pitched the idea to publicly crowdsource the app’s development. 
      In 2022, Wolff and her team supported the release of three separate crowdsourcing competitions, where global communities were invited to design key components of the new Spot the Station app. Participants submitted functional designs, including an augmented reality component not offered on the web version and interfaces for screens such as login and sign-up windows. Multiple winners were awarded prizes totaling $8,550 across the three challenges.  
      As the former Innovation Strategist in NASA’s Center of Excellence for Collaborative Innovation, part of the agency’s Prizes, Challenges, and Crowdsourcing program, Wolff was well acquainted with the ingenuity and results that stem from public-private collaborations. 
      “NASA strives to incorporate inclusion and innovation into how we operate. We also collaborate with minds outside the agency because the best ideas can come from very surprising places,” said Wolff. 
      Not only were the winning designs used in the final product, but the development team gained valuable feedback and worldwide perspectives from everyone who participated in the competition. 
      “When you use the power of the crowd and get a consistent message about a component or an interface, that’s a good indicator of what is user-friendly,” said Wolff. 
      Crowdsourcing continues to enhance the app’s functionality, including translating the app into six languages, including Spanish, French, and German, thanks to user contributions. In addition, the app’s code is open source, enabling anyone to modify and use the code for their own projects and support the tool’s growth. NASA will continue to update and improve the app with feedback from the public.  
      Find more opportunities: www.nasa.gov/get-involved/  
      View the full article
    • By European Space Agency
      ESA’s Proba-3 will be the first mission to create an artificial total solar eclipse by flying a pair of satellites 150 metres apart. For six hours at a time, it will be able to see the Sun’s faint atmosphere, the corona, in the hard-to-observe region between the Sun’s edge and 1.4 million kilometres from its surface. This new technology combined with the satellite pair’s unique extended orbit around Earth will allow Proba-3 to do important science, revealing secrets of the Sun, space weather and Earth’s radiation belts.  
      View the full article
  • Check out these Videos

×
×
  • Create New...