Members Can Post Anonymously On This Site
Top 5: Space for your health
-
Similar Topics
-
By Space Force
Senior uniformed officers from the Air Force and Space Force told a Senate subcommittee March 12 that each service is focused on readiness but that budget shortfalls and determined adversaries are continuing sources for concern.
View the full article
-
By European Space Agency
The European Space Agency has unveiled the ESA Space HPC, a new resource for space in Europe. ESA Director General Josef Aschbacher was joined by ESA Council Chair Renato Krpoun and ASI president Teodoro Valente to cut the ribbon at ESA’s establishment in Italy, ESRIN.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA astronaut and Expedition 72 Commander Suni Williams displays a set of BioNutrients production packs during an experiment aboard the International Space Station. The experiment uses engineered yeast to produce nutrients and vitamins to support future astronaut health.NASA NASA’s BioNutrients series of experiments is testing ways to use microorganisms to make nutrients that will be needed for human health during future long-duration deep space exploration missions. Some vital nutrients lack the shelf-life needed to span multi-year human missions, such as a mission to Mars, and may need to be produced in space to support astronaut health. To meet this need, the BioNutrients project uses a biomanufacturing approach similar to making familiar fermented foods, such as yogurt. But these foods also will include specific types and amounts of nutrients that crew will be able to consume in the future.
The first experiment in the series, BioNutrients-1, set out to assess the five-year stability and performance of a hand-held system – called a production pack – that uses an engineered microorganism, yeast, to manufacture fresh vitamins on-demand and in space. The BioNutrients-1 experiments began after multiple sets of production packs launched to the station in 2019. This collection included spare production packs as backups to be used in case an experiment needs to be re-run during the five-year study. The planned experiments concluded in January 2024 spare production packs still remaining aboard the orbiting lab and in the BioNutrients lab at NASA’s Ames Research Center in California’s Silicon Valley, where the ground team runs experiments in parallel to the crew operations.
Leaders at NASA’s International Space Station and Game Changing Development programs worked to coordinate the crew time needed to perform an additional BioNutrients-2 experiment using the spare packs. This extended the study’s timeline to almost six years in orbit, allowing valuable crew observations and data from the additional experiment run to be applied to a follow-on experiment, BioNutrients-3, which completed its analog astronaut experiment in April 2024, and is planned to launch to the station this year. Astronauts on the space station will freeze the sample and eventually it will be returned to Earth for analysis to see how much yeast grew and how much nutrient the experiment produced. This will help us understand how the shelf stability of the packets.
Share
Details
Last Updated Mar 11, 2025 Related Terms
General Explore More
2 min read NASA Ames Science Directorate: Stars of the Month – March 2025
Article 1 day ago 3 min read James Gentile: Shaping the Artemis Generation, One Simulation at a Time
Article 1 day ago 3 min read NASA Seeks Commercial Partner for Robots Aboard Space Station
Article 5 days ago Keep Exploring Discover More Topics From NASA
Ames Research Center
Bionutrients
Synthetic Biology
International Space Station
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The space shuttle Endeavour is seen on launch pad 39a as a storm passes by prior to the rollback of the Rotating Service Structure (RSS), Thursday, April 28, 2011, at Kennedy Space Center in Cape Canaveral, Fla. During the 14-day mission, Endeavour and the STS-134 crew will deliver the Alpha Magnetic Spectrometer (AMS) and spare parts including two S-band communications antennas, a high-pressure gas tank and additional spare parts for Dextre. Launch is targeted for Friday, April 29 at 3:47 p.m. EDT.NASA It is important to protect humans from unintended electrical current flow during spaceflight. The thresholds for contact electrical shock are well established, and standards and requirements exist that minimize the probability of contact electrical shock. Current thresholds were chosen (vs. voltage thresholds) because body impedance varies depending on conditions such as wet/dry, AC/DC, voltage level, large/small contact area, but current thresholds and physiological effects do not change. By addressing electrical thresholds, engineering teams are able to provide the appropriate hazard controls, usually through additional isolation (beyond the body’s impedance), current limiters, and/or modifying the voltage levels. Risk assessment determined that the probability of an event was extremely low, and the most serious consequence is expected to be involuntary muscle contraction.
Lightning strikes the Launch Pad 39B protection system as preparations for launch of NASA’s Space Launch System (SLS) rocket with the Orion spacecraft aboard continue, Saturday, Aug. 27, 2022, at NASA’s Kennedy Space Center in Florida. NASA’s Artemis I flight test is the first integrated test of the agency’s deep space exploration systems: the Orion spacecraft, SLS rocket, and supporting ground systems. Launch of the uncrewed flight test is targeted for no earlier than Aug. 29 at 8:33 a.m. ET. Photo Credit: (NASA/Bill Ingalls) Directed Acyclic Graph Files
+ DAG File Information (HSRB Home Page)
+ Electrical Shock Risk DAG and Narrative (PDF)
+ Electrical Shock Risk DAG Code (TXT)
Human System Risks Share
Details
Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
Human Health and Performance Human System Risks Explore More
1 min read Risk of Toxic Substance Exposure
Article 15 mins ago 1 min read Risk of Urinary Retention
Article 15 mins ago 1 min read Risk to Vehicle Crew Egress Capability and Task Performance as Applied to Earth and Extraterrestrial Landings
Article 14 mins ago Keep Exploring Discover More Topics From NASA
Humans In Space
Missions
International Space Station
Solar System
View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Astronauts Michael R. (Rich) Clifford and Linda M. Godwin, the assigned space-walking mission specialists for STS-76, go through a “pre-breathing” period on the Space Shuttle Atlantis’ middeck. This practice is normal procedure for space-walkers in preparation for their Extravehicular Activity (EVA) and the wearing of their Extravehicular Mobility Units (EMU). The photograph was taken with a 35mm camera by one of the crew members. Human exploration missions will require robust, flexible Extravehicular Activity (EVA) architecture protocols that include the use of a reduced-pressure cabin atmosphere enabling staged denitrogenation. Use of this atmosphere could result in compromised health and performance to the crewmember due to exposure to mild hypobaric hypoxia; of most concern are the potential effects on the increased intracranial pressure, visual impairment, cognitive performance, sensorimotor dysfunction, oxidative damage, and sleep quality. In addition to hypobaric hypoxia associated with staged denitrogenation, there are additional factors that can result in hypoxic exposure to the crewmember, such as cabin depressurization, Environmental Control, and Life Support System (ECLSS) failure, toxic exposure, or crewmember illness/injury.
Jan Zysko (left) and Rich Mizell (right) test a Personal Cabin Pressure Altitude Monitor in an altitude chamber at Tyndall Air Force Base in Florida. Zysko invented the pager-sized monitor that alerts wearers of a potentially dangerous or deteriorating cabin pressure altitude condition, which can lead to life-threatening hypoxia. Zysko is chief of the KSC Spaceport Engineering and Technology directorate’s data and electronic systems branch. Mizell is a Shuttle processing engineer. The monitor, which has drawn the interest of such organizations as the Federal Aviation Administration for use in commercial airliners and private aircraft, was originally designed to offer Space Shuttle and Space Station crew members added independent notification about any depressurizationNASA Directed Acyclic Graph Files
+ DAG File Information (HSRB Home Page)
+ Hypoxia Risk DAG and Narrative (PDF)
+ Hypoxia Risk DAG Code (TXT)
Human Research Program
+ Risk of Reduced Crew Health and Performance Due to Hypoxia
+ 2015 November Evidence Report (MSWord)
Human System Risks Share
Details
Last Updated Mar 11, 2025 EditorRobert E. LewisLocationJohnson Space Center Related Terms
Human Health and Performance Human System Risks Explore More
1 min read Risk of Renal Stone Formation
Article 16 mins ago 1 min read Risk of Reduced Physical Performance Capabilities Due to Reduced Aerobic Capacity (Aerobic Risk)
Article 17 mins ago 1 min read Risk of Spaceflight Associated Neuro-ocular Syndrome
Article 16 mins ago Keep Exploring Discover More Topics From NASA
Humans In Space
Missions
International Space Station
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.