Jump to content

NASA Ames Astrogram – January/February 2024


NASA

Recommended Posts

  • Publishers
Astrogram banner
Astrogram banner

Into the Belly of the Rover: VIPER’s Final Science Instrument Installed

by Rachel Hoover

TRIDENT, designed and developed by engineers at Honeybee Robotics in Altadena, California, is the fourth and final science instrument to be installed into VIPER. NASA engineers have already successfully integrated VIPER’s three other science instruments into the rover. These include: the MSOLO (Mass Spectrometer Observing Lunar Operations), NIRVSS (Near-Infrared Volatiles Spectrometer System), and NSS (Neutron Spectrometer System). 

A team of engineers prepares to integrate TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – into the belly of NASA’s first robotic Moon rover, VIPER (Volatiles Investigating Polar Exploration Rover). 

jsc2024e006254.webp?w=2000
A team of engineers prepares to integrate TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – into the belly of NASA’s first robotic Moon rover, VIPER – short for the Volatiles Investigating Polar Exploration Rover.
Credit: NASA/Bill Stafford

Shortly after TRIDENT was integrated in the clean room at NASA’s Johnson Space Center in Houston, the team also successfully tested its ability to power on, release the locks that hold the drill in place during launch, extend to its full depth of more than three feet (one meter), perform percussive drilling, and return to its stowed position inside the rover.

TRIDENT will dig up soil from below the lunar surface using a rotary percussive drill – meaning it both spins to cut into the ground and hammers to fragment hard material for more energy-efficient drilling. In addition to being able to measure the strength and compactedness of the lunar soil, the drill also carries a temperature sensor to take readings below the surface. VIPER will launch to the Moon aboard Astrobotic’s Griffin lunar lander on a SpaceX Falcon Heavy rocket as part of NASA’s Commercial Lunar Payload Services initiative. It will reach its destination at Mons Mouton near the Moon’s South Pole. Scientists will work with these four instruments to better understand the origin of water and other resources on the Moon, which could support human exploration as part of NASA’s Artemis campaign.

NASA Unveils the X-59 Supersonic Aircraft

On January 12, in Palmdale, California, the NASA unveiled the X-59, a quiet supersonic aircraft, to the world. The aircraft is the centerpiece of NASA’s Quesst mission, the agency, and Lockheed Martin. Quesst is NASA’s mission to demonstrate how the X-49 can fly supersonic without generating loud sonic booms and then survey what people hear when it flies overhead. Reaction to the quieter sonic “thumps” will be shared with regulators who will then consider writing new sound-based rules to lift the ban on the faster-than-sound flight over land. .

quesst-X59-plane
NASA Quesst’s Mission’s X-59 Supersonic Aircraft.

Members of the Quesst mission team are located at all four NASA field centers, all of which have traditionally been associated with the agency’s historic aeronautical research. The team at Ames has spent many hours working on computational fluid dynamics simulations, wind tunnel testing, systems engineer, and test component manufacturing, helping to shape not just the ingenuity of the aircraft, but the Quesst mission entirely. To learn more about the X-59’s impact on the future of aviation and the tradition of rollout ceremonies at NASA, click here

Nahum Alem Receives Modern Day Technology Leader Award

Nahum Alem received a 2024 Modern-Day Technology Leader Award at the 2024 BEYA STEM DTX Conference in Baltimore, Maryland. This is one of the industry’s most important honors in science, technology, enginering, and math (STEM). Alem was recognized at the Technology Recognition Luncheon featuring Modern-Day Technology Leaders and Science Spectrum Trailblazers on Feb. 16. This year’s theme was, “People, Process, Technology.”

image-50445569.jpg?w=2048
Nahum Alem with the Black Engineer of the Year Modern Day Technology Leaders Award during the BEYA STEM DTX Conference in Baltimore, Maryland on Feb. 16.

The BEYA STEM DTX Conference recognition program is more critical than ever before. One landmark study projects the number of jobs in science, technology, engineering, and math (STEM) in the United States is set to increase in the coming years. According to the National Science Foundation, underrepresented minorities—Hispanic, Black, and American Indian or Alaska Native individuals—made up a higher share of the skilled technical workforce (32%) in 2021 than of workers who were employed in STEM occupations with at least a bachelor’s degree (16%). The conference highlights the importance of not only celebrating the achievements of STEM leaders and professionals but shifting the narrative towards an action-driven strategy to increase the number of minorities with STEM educations and careers. 

Nahum Alem
Nahum Alem award announcement on the digital sign in front of NASA Ames as one drives into the gate.

According to Tyrone D. Taborn, chairman of the BEYA STEM DTX Conference, “Nahum was selected because he is among an extraordinary group of forward-thinking STEM experts. This year the candidates were the strongest and represented the most diverse collection of executive professionals we have had the pleasure of evaluating. From machine learning to medical breakthroughs, this year’s BEYA STEM awardees stand out as superior authorities in their respective fields.”

For nearly four decades, awards presented at the BEYA STEM Conference have honored excellence in STEM and underscored the serious under-representation of minorities in STEM and at senior levels in all disciplines. For 38 years, employers committed to inclusion have chosen the BEYA STEM Conference to exchange best practices and strategies on how to attract and keep diverse talent in scientific and technical fields. 

The 2024 BEYA STEM DTX Conference hosted multiple award presentation events throughout the conference, where Nahum was recognized in addition to all 2024 award recipients for their significant accomplishments in STEM.

Over the three-day event, the conference provided forums on the retention of diverse talent in STEM, continuous improvement, and networking.

The BEYA STEM Awards is a prestigious recognition platform that celebrates the accomplishments of engineers in the STEM fields. For nearly four decades, BEYA has empowered, mentored, and inspired countless individuals, solidifying its position as a beacon of excellence and innovation. https://www.beya.org

Cast of Broadway’s ‘The Wiz’ “Ease on Down the Road” Visits NASA Ames

Members of the cast and crew of “The Wiz” pose inside the National Full-Scale Aerodynamic Complex 40 by 80 foot wind tunnel at NASA’s Ames Research Center in Silicon Valley.
Members of the cast and crew of “The Wiz” pose inside the National Full-Scale Aerodynamic Complex 40 by 80 foot wind tunnel at NASA’s Ames Research Center in Silicon Valley.
Credit: NASA Ames/Brandon Torres

Members of the cast and crew of Broadway production “The Wiz,” currently on tour at San Francisco’s Golden Gate Theatre, visited NASA Ames on Jan. 29 to learn more about the center’s work in air and space.

The group met with center leadership and members of Ames employee advisory groups and toured the Vertical Motion Simulator (VMS), the National Full-Scale Aerodynamics Complex (NFAC), and observed progress on the Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) robots, which use pre-fabricated modular blocks to build structures autonomously, before following the yellow brick road back “home” to Oz. 

NASA Leader Casey Swails Learns About Wildfire Work at NASA Ames

by Abby Tabor

NASA Deputy Associate Administrator Casey Swails views a demonstration on screen in the Airspace Operations Laboratory at NASA Ames. Researchers presented the diverse, long-running efforts in aeronautics at Ames that have helped lay the foundation for agency work related to wildfire response.

NASA Deputy Associate Administrator Casey Swails
NASA Deputy Associate Administrator Casey Swails

These include a project to help integrate drones into the airspace with Unmanned Aircraft Systems Traffic Management, their application to disaster response with the Scalable Traffic Management for Emergency Response Operations project, and how those informed NASA’s newest effort to make wildfire response more targeted and adaptable, the Advanced Capabilities for Emergency Response Operations project.

Michael Falkowski, program manager for the Applied Sciences Wildland Fire program at NASA Headquarters presented wildfire efforts happening under NASA’s Science Mission Directorate, such as the FireSense project, led out of Ames.

The importance of collaborations within NASA and with partner agencies was also highlighted. Wildfires are complex phenomena and tackling their challenges will require the work of many, for the benefit of all.

NASA Astronomer Sees Power in Community, Works to Build More

by Abby Tabor

Science is often portrayed as a solitary affair, where discoveries are made by lone geniuses toiling in isolation. But Dr. Natasha Batalha, an astronomer at NASA Ames says solving problems with the people around her is one of the best parts of her job.

Dr. Natasha Batalha, an astronomer at NASA’s Ames Research Center in California’s Silicon Valley, says collaborating with her teams is one of the best parts of her job.
Dr. Natasha Batalha, an astronomer at NASA Ames says collaborating with her teams is one of the best parts of her job.

 “Oh, man, working with people is all I do!” said Batalha, whose current research involves using NASA’s James Webb Space Telescope to study exoplanets, planets outside our solar system that orbit other stars.

Batalha’s work explores hot, Jupiter-like exoplanets; smaller, rocky exoplanets more similar to Earth; and brown dwarfs, mysterious objects smaller than a star but huge compared to the biggest planets. A single question has driven her since she was a kid: “Does life exist beyond Earth?”

It’s a lofty question, bigger than any one scientist. And that’s the point.

“I love being part of a larger community,” she said, “We’re working together to try to solve this question that people have been asking for centuries.”

However, the particular joy of belonging wasn’t always present in Batalha’s life.

When she was 10, her family moved from Brazil to the U.S., where she was met with culture shock, pressure to assimilate, and a language barrier. She thinks the latter is partly why she gravitated toward the universal language of math.

Eventually, her interests and strengths took shape around astronomy. When she chose to study physics in college, followed by a dual PhD in astronomy and astrobiology, her parents – who are also scientists – helped fill in for the community she was otherwise lacking.

“In high school, I watched female students drop out of my physics classes,” Batalha said. “The honors physics track in college was devoid of women and people of color. I didn’t feel I had a community in my college classes.”

Her mother, Natalie Batalha, is an astronomer who served as project scientist for NASA’s Kepler space telescope– the mission that taught us there are more planets than stars. Natasha’s father is a LatinX physicist. Both her parents had already faced similar challenges in their careers, and having their example to look at of people who had successfully overcome those barriers helped her push on.  

“I identify as female and LatinX, which are both underrepresented groups in STEM,” she said, “but I also have a ton of privilege because my parents are in the field. That gave me a dual perspective on how powerful community is.”

Dr. Natasha Batalha has been hooked on the search for life beyond Earth since elementary school. UC Santa Cruz, UC Regents
Dr. Natasha Batalha has been hooked on the search for life beyond Earth since elementary school. UC Santa Cruz, UC Regents

Since then, empowering her own science community has been a focus of Batalha’s work.

She builds open-source tools, like computer programs for interpreting data, that are available to all. They help scientists use Webb’s exoplanet data to study what climates they may have, the behavior of clouds in their atmospheres, and the chemistry at work there.

“I saw how limiting closed toolsets could be for the community, when only an ‘inner circle’ had access to them,” Batalha said. “So, I wanted to create new tools that would put everyone on the same footing.”

Batalha herself recently used Webb to explore the skies of exoplanet WASP-39 b, a hot gas giant orbiting a star 700 light-years away. She is part of the team that found carbon dioxide and sulfur dioxide there, marking the first time either was detected in an exoplanet atmosphere. Now, she is turning to the difficult-to-discern characteristics of smaller, cooler planets.

Batalha says she’s exactly where her 6th-grade self imagined she would be. In elementary school, she read a biography of NASA astronaut Sally Ride and was hooked by an idea it contained: that in 20 years the kids reading those words could be the ones pioneering the search for life on Mars.

Today’s youth belong to the Artemis Generation, who will explore farther than people have ever gone before. The Artemis program will send the first woman and first person of color to the lunar surface. Missions over time will build a presence at the Moon to unlock a new era of science and prepare for human missions to Mars and beyond. Along the way, scientists will continue to search for signs of life beyond Earth, an endeavor building on the work of many generations and relying on those in the future to carry on the search. 

“That’s something really rewarding about my work at NASA,” she said. “These questions have been asked throughout human history and, by joining the effort to answer them, you’re taking the baton for a while, before passing it on to someone else.”

Ames Employees Gather for Day of Remembrance Ceremony

by Abby Tabor

On Thursday, Jan. 25, Ames employees gathered for the center’s in-person Day of Remembrance Ceremony in front of N200. Also in attendance were former Center Director Scott Hubbard, and former Deputy Center Director Bill Berry. Every year, we take this important opportunity to honor the memories of those who bravely gave their lives in the pursuit of exploration and discovery and to celebrate their contribution to NASA’s missions. This is a solemn moment to reflect and learn from our history and consider our strong culture of safety as we pursue bold advances in our work here at Ames. 

acd24-0011-006.jpg?w=2048
NASA Ames employees gather at the flagpole in front of N200 to honor the lives lost in human spaceflight and the 17 fallen crew members from Apollo I, the space shuttles Challenger and Columbia.
Credit: NASA Ames/Don Richey

We honor those lost in test flights, missions, and research throughout our history: the Apollo 1 crew – Virgil “Gus” Grissom, Edward White, and Roger Chaffee – who lost their lives at the start of NASA’s pursuit of landing humans on the moon, on January 27, 1967.  We remember the determination of the Challenger crew, who tragically perished 73 seconds into their flight on January 28, 1986 – Michael J. Smith, Dick Scobee, Ronald McNair, Elison Onizuka, Gregory Jarvis, Judith Resnick, and Christa McAuliffe, the first “teacher in space” who leaves a legacy of STEM education that continues today.  We remember the bravery and inspiration of the crew of Columbia – Rick Husband, William McCool, Michael Anderson, Ilan Ramon, David Brown, Laurel Clark, and Ames’ own Kalpana Chawla, friend and coworker of many here, who we lost during a failed shuttle reentry on February 1, 2003.  We also honor the others who gave their lives pursuing the missions of N-A-C-A and NASA research in aerospace and space exploration, whose commitment and courage leave a lasting legacy across our agency and nation. 

During the ceremony, Scott Hubbard, who served on the Columbia Accident Investigation Board (CAIB), spoke about how the accident changed him and what he learned. When sharing a key takeaway from the CAIB report, Hubbard said, “NASA must be a learning agency, and we can’t shy away from our failures or tragedies. We can’t assign them to history so we must learn from them so that [accidents] never occur.” 

As we work to return humans to the moon, and onto Mars, we must reflect on the importance and value of the work we do here at Ames to help ensure the health and safety of those who risk their lives for exploration and the pursuit of knowledge. One example, after the successful return of the Orion capsule from the Artemis 1 test flight a little over a year ago, we discovered that we needed to learn more about the heat shield and its performance during Earth entry from the Moon. Our aero-thermal-dynamics, thermal protection systems, and other experts, along with our arc jet testing team have worked tirelessly to prepare for the first crewed flight of Artemis 2 coming up in 2025.   

Many in our current workforce were not working at the agency when we experienced these unfortunate losses. But we continue to carry the memory of our fallen colleagues and the lessons we’ve learned through our work today. When we look back on the tragedies of the past, we have an opportunity to apply lessons we’ve learned and continue to enforce a safety culture that encourages every voice to be heard and keeps everyone safe. 

Safety is one of NASA’s core values and there’s a reason why it’s listed as NASA’s first core value. We are committed to sustaining a culture that encourages speaking out and sharing concerns. On or off duty, we have a responsibility to keep safety at the center of our work and daily lives – owning and learning from our mistakes and being open to speaking up about concerns with others – to protect our employees, our community, and ourselves. 

Thank you to all those who were able to join us in this moment of reflection. Please take time to look back on NASA’s history, remember our fallen, and consider your health and safety. We cannot do the work that we do without you and your well-being is important us. Know that we have resources available to support you through things that happen at work and beyond. Our community is strong, and let’s continue to care for one another. 

Thank you to those who helped to put our ceremony together, including Lynda Haines, our communications team, and our protective services professionals who keep us safe and secure each and every day. 

Japan Aerospace Exploration Agency (JAXA) Leader Visits Ames to Discuss Space Science and Spaceflight

by Abby Tabor

acd24-0016-009-c3b2e7.jpg?w=2048
Left to right: Institute of Space and Astronautical Science (ISAS) Management and Integration Department Mr. Nobuhiro Takahashi, Center Director Dr. Eugene Tu, and Vice President and Director General (ISAS) Dr. Hitoshi Kuninaka in the N200 Committee Room following an overview of the history and accomplishments of Ames Research Center.
Credit: NASA Ames/Don Richey

Daniel Andrews, project manager for NASA’s Volatiles Investigating Polar Exploration Rover (VIPER) (left), stands next to a full-scale model of the rover alongside visitors from the Japan Aerospace Exploration Agency (JAXA): Dr. Hitoshi Kuninaka, Vice President of JAXA and Director General of JAXA’s Institute of Space and Astronautical Science (ISAS); Nobuhiro Takahashi of the ISAS Management and Integration Department; and Shintaro Chofuku, a JAXA engineer on detail to NASA’s Ames Research Center in California’s Silicon Valley (right), during a visit to Ames on Feb. 1, 2024. 

acd24-0016-016-b6494b.jpg?w=2048
Left to Right: Project Manager of the Volatiles Investigating Polar Exploration Rover (VIPER) Dan Andrews, Vice President and Director General, Institute of Space and Astronautical Science (ISAS) and Japan Aerospace Exploration Agency (JAXA) Dr. Hitoshi Kuninaka, ISAS Management and Integration Department Nobuhiro Takahashi, and Shintaro Chofuku with the VIPER model in the lobby of N232.
Credit: NASA Ames/Don Richey

Following briefings about both agencies’ space science and spaceflight missions, Kuninaka toured several Ames facilities supporting NASA and JAXA’s exploration of the solar system. The heat shield for JAXA’s Hayabusa2 mission, which delivered a sample of an asteroid to Earth in 2020, was tested in the center’s arc jet facility, and a portion of that sample is now being studied by Ames researchers. An upcoming JAXA mission to study the two moons of Mars, called Martian Moons eXploration (MMX), was also tested in the arc jet.

Present and future exploration of the Moon was a focus of the day, including a stop at Ames’ Lunar Imaging Lab following the VIPER briefing.  

acd24-0016-020.jpg?w=2048
Representatives from the Japan Aerospace Exploration Agency (JAXA) visited Ames on Feb. 1. Here they are seen with the Black Swift S2 UAS in the lobby of N232. Left to right: Vice President and Director General Institute of Space and Astronautical Science (ISAS) and JAXA Dr. Hitoshi Kuninaka; Associate Director for Science and Strategy of the Science Directorate at NASA Ames Ryan Spackman; and ISAS Management and Integration Department Nobuhiro Takahashi.
Credit: NASA Ames/Don Richey

VIPER will be delivered to Mons Mouton near the Moon’s South Pole in late 2024 to map water and other potential resources and explore the characteristics of the lunar environment where NASA plans to send future astronauts as part of the Artemis campaign.

Last month, JAXA’s Smart Lander for Investigating Moon (SLIM) arrived on the lunar surface, after reaching its targeted landing site with great accuracy. The mission aimed to demonstrate accurate lunar landing techniques by a small explorer, to help accelerate study of the Moon and planets using lighter exploration systems.

Japan is a significant partner for NASA and for Ames, specifically,” said Center Director Eugene Tu. “From testing with our teams the X-59 quiet supersonic aircraft design to JAXA’s contributions to Artemis and Gateway, where astronauts on future lunar missions will stay, our work together runs broad and deep. We look forward to many more fruitful collaborations.”

Faces of NASA

Rodney Martin – Deputy Discovery & Systems Health Technical Area Lead at Ames

“[In] everyone’s life, they have a pivotal moment when they ask the question, ‘What am I really doing? What am I here for?’ … I’m reminded of a credo that I came up [with] through the evolution of my engagement of a whole bunch of recreational pursuits [including being a marathoner, ultrarunner, and Ironman triathlete] … as well as my professional pursuits. It’s threefold, and here’s what it is:

“[First,] I’m here because I want to be able to challenge myself, to see how much I can squeeze out of me – whatever that is, whatever ‘me’ is. [For example,] I applied to the astronaut candidate program twice, but I failed to make it to the second round. I figured I’d give a go at throwing my hat in the ring! Like with [an earlier career experience of failing out of] the Navy Nuclear Power Training Program, failure in one domain just means that you have to pick yourself up, dust yourself off, and find a new direction – often pursuing stretch goals that are outside of your comfort zone.

rodneymartin-acd23-0133-010
Dr. Rodney Martin, Deputy Discovery and Systems Health Technical Area Lead, NASA’s Ames Research Center
Credit: NASA Ames/Brandon Torres

“[Second,] I want to serve others. I want to find a way to be of use to others, whether it’s in a structured manner or unstructured manner, whether it’s volunteering or just being a civil servant. I really focus on this service aspect; I did become a supervisor about three years ago, and I really take that role seriously. I really have a service-based leadership philosophy. … That’s why I think [mentoring student interns] represented such a [career] highlight for me, because I felt like I was serving their needs. I was helping to really educate them and [provide] knowledge that I want to … transfer to them, to really inspire that next generation of folks.

“… And the third – which I think NASA fits beautifully – is, ‘How do I build the future? How do I help build the future?’

“So again, it’s challenge, service, and building the future. If I don’t do anything else in my entire life except for those three things, I’m at least getting something right. I might be getting everything else entirely wrong, but I can at least work toward those three things.”

Math, Mentorship, Motherhood: Behind the Scenes with NASA Engineers

by Arezu Sarvestani

Engineering is a huge field with endless applications. From aerospace to ergonomics, engineers play an important role in designing, building, and testing technologies all around us.

We asked three engineers at NASA’s Ames Research Center in California’s Silicon Valley to share their experiences, from early challenges they faced in their careers to the day-to-day of being a working engineer.

Give us a look behind the curtain – what is it like being an engineer at NASA?

acosta-daughter-vms-igted.webp?w=1536
In her early days at NASA, Diana Acosta visited her aeronautics research and development team during her maternity leave and her daughter got her first introduction to flight simulation technology.

Diana Acosta: I remember working on my first simulations. We were developing new aircraft with higher efficiency that could operate in new places, such as shorter runways. My team was putting together control techniques and introducing new algorithms to help pilots fly these new aircraft in a safer way. We were creating models and testing, then changing things and testing again. 

We had a simulator that worked on my laptop, and we had a lab with a pilot seat and controls. Every week, I made it my goal to finish my modeling or controls work and put that into the lab environment so that I could fly the aircraft. Every Friday afternoon, I would fly the aircraft in simulation and try out the changes I’d made to see if we were going in a good direction. We’d later integrate that into the Vertical Motion Simulator at Ames (which was used to train all the original space shuttle pilots) so that we could do a full motion test with a collection of pilots to get feedback. 

When simulation time came around, it was during my maternity leave and my team had to take the project to simulation without me. It’s hard to get out of the house with a newborn, but sometimes I’d come by with my daughter and bring brownies to the team. I have two daughters now, and they’ve both been in simulators since a young age.

Diana Acosta is Chief of the Aerospace Simulation and Development Branch at NASA’s Ames Research Center. She has worked at NASA for 17 years.

What’s a challenge you’ve overcome to become an engineer?

acd12-0073-004.webp?w=2000
Savvy Verma (standing) reviews simulation activity with Gus Guerra in the Terminal Tactical Separation Assured Flight Environment at NASA’s Ames Research Center in California’s Silicon Valley.
Credit: NASA Ames/Dominic Hart

Savvy Verma: One of the biggest challenges when I started working was that I was sometimes the only woman in a group of men, and I was also much younger. It was sometimes a challenge to get my voice through, or to be heard. I had mentors who taught me to speak up and say things the way I saw them, and that’s what helped me. A good mentor will back you up and support you when you’re in big meetings or giving presentations. They’ll stand up and corroborate you when you’re right, and that goes a long way toward establishing your credibility. It also helped build my confidence, it made me feel like I was on the right track and not out of line. I had both male and female mentors. The female mentor I had always encouraged me to speak my mind. She said the integrity of the experimental result is more important than trying to change things because someone doesn’t like it or doesn’t want to express it a certain way. 

I have a lot more women coworkers now, things have changed a lot. In my group there are four women and three men. 

Savvy Verma is an aerospace engineer at NASA’s Ames Research Center. She has worked at NASA for 22 years.

Can you become an engineer if you struggle with math in school?

Dorcas Kaweesa
Dorcas Kaweesa

Dorcas Kaweesa: When I introduce myself as an engineer, people always say, “You must be good at math,” and I say, “Oh, I work at it.”

When you want to become an engineer, you must remain adaptable, hardworking, and always willing to learn something new. We’re constantly learning, critically thinking, and problem solving. Most of the time we apply mathematical concepts to the engineering problems we’re solving and not every problem is the same. If you struggle with math, my advice is to maintain the passion for learning, especially learning from your mistakes. It comes down to practicing and challenging yourself to think beyond the immediate struggle. There are so many types of math problems and if you’re not good at one, maybe you’re good at another. Maybe it’s just a hiccup. Also, seek help when you need it, there are instructors and peers out there willing to support you.

Personally, I sought help from my instructors, peers, and mentors, in the math and engineering classes that I found challenging. I also practiced a great deal to improve my problem solving and critical thinking skills. In my current role, I am constantly learning new things based on the task at hand. Learning never ends! If you’re struggling with a math concept, don’t give up. Keep trying, keep accepting the challenge, and keep practicing, you’ll steadily make progress. 

Dorcas Kaweesa is mechanical engineer and structures analyst at NASA’s Ames Research Center. She has worked at NASA for more than two years.

SMA Spotlight: Mission Support Creates Career Satisfaction for Zarchi

Each month, the NASA Safety Center profiles a member of the Safety and Mission Assurance (SMA) community, providing insight into their background and highlighting the ways they contribute to the NASA mission. The SMA workforce is made up of a diverse group of professionals who operate across a range of disciplines to assure the safety of NASA personnel and enhance the success of the agency’s portfolio of programs and projects. In January, Kerry Zarchi, division chief, System Safety and Mission Assurance at NASA Ames earned the SMA spotlight recognition.

Zarchi has worked in her SMA role for nearly three years but has been a member of the NASA family for 18 years. Prior to her SMA duties, Zarchi was a computational analyst and supervisor working on heat shields in Ames’ Entry Systems and Technology division.

Zarchi’s supervisory and engineering background has served her well in her SMA role at Ames, which she describes as a “jack-of-all-trades” facility.

Kerry Zarchi, division chief, System Safety and Mission Assurance at NASA Ames earned the SMA spotlight recognition in January.
Kerry Zarchi, division chief, System Safety and Mission Assurance at NASA Ames earned the SMA spotlight recognition in January.

“I am never bored! Because Ames is small, we kind of do it all,” she said. “We have a lot of ‘do-no-harm’ missions, as well as high-risk missions, and we have a lot of critical facilities here.”

Zarchi’s group supports a varied roster of Ames projects, including Volatiles Investigating Polar Exploration Rover (VIPER), Arc Jet Modernization, HelioSwarm, the creation of a procurement Quality Assurance capability, and facilities like wind tunnels and the Vertical Motion Simulator.

In addition to her supervisory duties, Zarchi is enjoying the long-term work of building new leadership roles within her division to give her staff more opportunities.

 “I want to see them go in the different directions they choose,” she said. “Enabling them in their careers is my proudest achievement.”

Throughout her career in multiple roles and levels of responsibility, Zarchi said the best learning experiences she’s had are failures.

“Any time there’s some kind of adversity or challenge, it requires reflection and homework,” she said.

She advises early career employees to embrace those hard situations and not be afraid to ask questions to expand their skills and knowledge.

“The best way to get understanding is by asking questions and speaking up,” she said. “A vital ability that we all need to have, regardless of our role, is the ability to communicate.”

Zarchi believes the SMA community will continue to see funding challenges as well as requirements tailoring support.

“Reliance on funding from projects is a challenge,” she said. “A lot of thought needs to go into making sure we are maintaining our independence, even though we are charging to projects. There’s also a lot of work to be done codifying the tailoring of SMA support to high-risk projects.”

Throughout these challenges, Zarchi encourages her SMA colleagues to understand just how important their roles are to the NASA community.

“I want SMA to know that they’re crucial to NASA’s mission, even if they don’t hear it often or get that feeling,” she said. “It’s vital that this community stays healthy and supportive of each other. I love how everyone I encounter in SMA is so supportive. I admire that and want to embody that as well.”

Zarchi said that the opportunity to have a direct impact on NASA missions is what made her SMA role most appealing.

“What we do is really important, and I appreciate the gravity of the role,” she said. “We touch nearly everything. I want to help spread the word on the importance of SMA and why people should care about it.”

Robot Team Builds High-Performance Digital Structure for NASA

by Gianine Figliozzi

Greater than the sum of its parts: NASA tests the capability of a system that includes simple robots, structural building blocks, and smart algorithms to build functional, high-performance large-scale structures, ultimately enabling autonomous deep-space infrastructure.

acd22-0057-093.webp?w=2000
Research engineer Christine Gregg inspects a Mobile Metamaterial Internal Co-Integrator (MMIC-I) builder robot. These simple robots are part of a hardware and software system NASA researchers are developing to autonomously build and maintain high-performance large space structures comprised of building blocks. MMIC-I works by climbing though the interior space of building blocks and bolting them to the rest of the structure during a build or unbolting during disassembly.
Credit: NASA Ames/Dominic Hart

If they build it, we will go – for the long-term.

Future long-duration and deep-space exploration missions to the Moon, Mars, and beyond will require a way to build large-scale infrastructure, such as solar power stations, communications towers, and habitats for crew. To sustain a long-term presence in deep space, NASA needs the capability to construct and maintain these systems in place, rather than sending large pre-assembled hardware from Earth. 

NASA’s Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) team is developing a hardware and software system to meet that need. The system uses different types of inchworm-like robots that can assemble, repair, and reconfigure structural materials for a variety of large-scale hardware systems in space. The robots can do their jobs in orbit, on the lunar surface, or on other planets – even before humans arrive.

Researchers at NASA’s Ames Research Center in California’s Silicon Valley recently performed a laboratory demonstration of the ARMADAS technology and analyzed the system’s performance. During the tests, three robots worked autonomously as a team to build a meters-scale shelter structure – roughly the size of a shed – using hundreds of building blocks.  The team published their results today in Science Robotics.

Research engineer Taiwo Olatunde, left, and intern Megan Ochalek, right, observe as robots move and assemble composite building blocks into a structure.
Research engineer Taiwo Olatunde, left, and intern Megan Ochalek, right, observe as robots move and assemble composite building blocks into a structure. The robots worked on their own to complete the structure in a little over 100 hours of operations. To facilitate the team’s watchful monitoring of the robots’ performance, the demonstration was split over several weeks of regular working hours.
Credit: NASA Ames/Dominic Hart

“The ground assembly experiment demonstrated crucial parts of the system: the scalability and reliability of the robots, and the performance of structures they build. This type of test is key for maturing the technology for space applications,” said Christine Gregg, ARMADAS chief engineer at NASA Ames.  

The high strength, stiffness, and low mass of the structural product is comparable to today’s highest-performance structures, like long bridges, aircraft wings, and space structures – such as the International Space Station’s trusses. Such performance is a giant leap for the field of robotically reconfigurable structures. 

A Scaling Omnidirectional Lattice Locomoting Explorer (SOLL-E) builder robot c
A Scaling Omnidirectional Lattice Locomoting Explorer (SOLL-E) builder robot carries a soccer ball-sized building block called a voxel – short for volumetric pixel – during a demonstration of NASA’s Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) technology at NASA’s Ames Research Center in Silicon Valley. The voxels are made of strong and lightweight composite materials formed into a shape called a cuboctahedron.
Credit: NASA Ames/Dominic Hart

A Reliable System Relies on Building Blocks

Building blocks are also key to the robotic system autonomy and reliability. 

“Generally, it’s very hard to develop robust autonomous robots that can operate in unstructured environments, like a typical construction site. We turn that problem on its head by making very simple and reliable robots that operate in an extremely structured lattice environment,” said Gregg.  

For the demonstration, the ARMADAS team provided plans for the structure, but they didn’t micromanage the robots’ work. Software algorithms did the job of planning the robots’ tasks. The system practiced the build sequence in simulation before the actual run started. 

While in operation, two robots – stepping inchworm style – walked on the exterior of the structure, moving one soccer ball-sized voxel at a time. One robot fetched the voxels from a supply station and passed them to the second robot that, in turn, placed each voxel on its target location. 

A third robot followed these placements, climbing though the interior space of the voxels and bolting each new voxel to the rest of the structure. 

screenshot-2024-02-29-at-4.50.53-pm.png?
Screenshot from a time-lapse showing robots working autonomously as a team, to assemble a meters-scale shelter structure using hundreds of building blocks during a technology demonstration at NASA’s Ames.
Credit: NASA

“Because the robots align each small step to the structure in what is essentially a 3D grid, simple algorithms with low computation and sensing requirements can achieve high-level autonomy goals. The system builds and error-corrects on its own with no machine vision or external means of measurement,” said Gregg. 

Future work will expand the library of voxel types that the robots work with, to include solar panels, electrical connections, shielding, and more. Each new module type will dramatically expand the possible applications because the robots can mix and match them to meet specific needs and locations. The ARMADAS team is also working on new robot capabilities, such as inspection tools, to ensure that autonomously constructed facilities are safe and sound before astronauts arrive. 

ARMADAS’ technology approach increases what we can do with equipment sent for most deep space exploration missions, and how long we can use them. When a mission completes, robots can disassemble space structures, repurpose the building blocks, and construct designs of the future.

Illustration of an astronaut in a spacesuit standing on the lunar surface near structures being built by small robots.
This artist’s concept shows the autonomous assembly of critical infrastructure needed for a long-duration human presence on the Moon. Here robots are using modular building blocks to construct structures (left, center) that can protect crew, science facilities, or equipment from space radiation and micrometeoroids. Robots are building a large antenna atop a tower (right) as part of a lunar communications network.NASA

In Memoriam

Senior Research Scientist Dr. Andrzej Pohorille Dies

It is with great sadness that we share the news of the passing of our friend and colleague Dr. Andrzej (Andrew) Pohorille, on January 6, 2024.  Andrew was a member of the Exobiology Branch at Ames for more than 27 years.
 

Dr. Andrzej (Andrew) Pohorille
Dr. Andrzej (Andrew) Pohorille

Andrew received his Ph.D. in theoretical physics (with specialty in biophysics) from the University of Warsaw. He did his postdoctoral work with Professor Bernard Pullman at the Institut de Biologie Physico-Chimique in Paris. In 1992, he became a professor of Chemistry and Pharmaceutical Chemistry at the University of California San Francisco, and in 1996 he joined the staff at NASA Ames, where he directed the NASA Center for Computational Astrobiology. In 2000, he received a NASA Group Award for Astrobiology, and in 2002 he was awarded the NASA Exceptional Scientific Achievement Medal. In 2005, he was named Distinguished Lecturer at the Centre for Mathematical Modeling and the National Centre for Space Research in the U.K., and the H. Julian Allen Award at Ames in 2010. Most recently, in December 2023, Andrew was awarded the NASA Exceptional Service Medal for “distinguished service and sustained contributions to NASA’s establishment of Astrobiology as a vibrant, rigorous, and accessible scientific discipline.”

Andrew’s main interests were focused on modeling the origins of life, computer simulations of biomolecular systems, modeling genetic and metabolic networks, and statistical mechanics of condensed phases. He also worked on the development of novel computational methods for parallel and distributed computing. Andrew had worked on developing concepts and designing instruments for microbiology experiments on small satellites and in the lunar environment, and on new ways to organize scientific information.

In recent years, Andrew has served as a co-lead on two large projects: Evolutionary processes that drove the emergence and early distribution of life (EPDEL) and Center for Life Detection Research and Service (CLD/RS). In the latter, his main accomplishment was to lead the design, deployment, and upgrades of the Life Detection Knowledge Base.  Andrew coauthored more than 120 peer-reviewed publications.

The nomination for Andrew’s Exceptional Service Medal included the statement, “Through his wide-ranging technical contributions, tireless community organizing, and one-on-one mentorship of many, he exemplifies the meaning of “exceptional service”. 

Andrew will be truly missed by all of us.

Statistical Summary of Activities of the Protective Service Division’s Security/Law Enforcement and Fire Protection Services Units for Period Ending December 2023

Oct-Dec2023SecurityChart
Oct-Dec2023SecurityChart
Oct-Dec2023FireChart
Oct-Dec2023FireChart

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from The University of California, Santa Barbara won the $1 million grand prize in NASA’s Watts on the Moon Challenge. Their team developed a low-mass, high efficiency cable and featured energy storage batteries on both ends of their power transmission and energy storage system. Credit: NASA/GRC/Sara Lowthian-Hanna NASA has awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the agency’s Watts on the Moon Challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish long-term human presence on the Moon.
      This two-phase competition has challenged U.S. innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. The final phase of the challenge concluded with a technology showcase and winners’ announcement ceremony Friday at Great Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland.
      “Congratulations to the finalist teams for developing impactful power solutions in support of NASA’s goal to sustain human presence on the Moon,” said Kim Krome-Sieja, acting program manager for NASA Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These technologies seek to improve our ability to explore and make discoveries in space and could have implications for improving power systems on Earth.”
      The winning teams are:
      First prize ($1 million): H.E.L.P.S.  (High Efficiency Long-Range Power Solution) of Santa Barbara, California Second prize ($500,000): Orbital Mining Corporation of Golden, Colorado Four teams were invited to refine their hardware and deliver full system prototypes in the final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn. The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole. The simulation required the teams’ power systems to demonstrate operability over six hours of solar daylight and 18 hours of darkness with the user three kilometers (nearly two miles) away from the power source.
      During this competition stage, judges scored the finalists’ solutions based on a Total Effective System Mass (TESM) calculation, which measures the effectiveness of the system relative to its size and weight – or mass – and the total energy provided by the power source. The highest-performing solution was identified based on having the lowest TESM value – imitating the challenges that space missions face when attempting to reduce mass while meeting the mission’s electrical power needs.
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara, won the grand prize for their hardware solution, which had the lowest mass and highest efficiency of all competitors. The technology also featured a special cable operating at 800 volts and an innovative use of energy storage batteries on both ends of the transmission system. They also employed a variable radiation shield to switch between conserving heat during cold periods and disposing of excess heat during high power modes. The final 48-hour test proved their system design effectively met the power transmission, energy storage, and thermal challenges in the final phase of competition.
      Orbital Mining Corporation, a space technology startup, received the second prize for its hardware solution that also successfully completed the 48-hour testwith high performance. They employed a high-voltage converter system coupled with a low-mass cable and a lithium-ion battery.
      “The energy solutions developed by the challenge teams are poised to address NASA’s space technology priorities,” said Amy Kaminski, program executive for Prizes, Challenges, and Crowdsourcing in NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “These solutions support NASA’s recently ranked civil space shortfalls, including in the top category of surviving and operating through the lunar night.”
      During the technology showcase and winners’ announcement ceremony, NASA experts, media, and members of the public gathered to see the finalist teams’ technologies and hear perspectives from the teams’ participation in the challenge. After the winners were announced, event attendees were also welcome to meet NASA astronaut Stephen Bowen.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall Space Flight Center manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA contracted HeroX to support the administration of this challenge.
      For more information on NASA’s Watts on the Moon Challenge, visit:
      https://www.nasa.gov/wattson
      -end-

      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Lane Figueroa 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034
      lane.e.figueroa@nasa.gov 
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-469-9726
      Brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Sep 20, 2024 LocationGlenn Research Center Related Terms
      Science Mission Directorate View the full article
    • By NASA
      4 Min Read NASA Data Helps Protect US Embassy Staff from Polluted Air
      This visualization of aerosols shows dust (purple), smoke (red), and sea salt particles (blue) swirling across Earth’s atmosphere on Aug. 23, 2018, from NASA’s GEOS-FP (Goddard Earth Observing System forward processing) computer model. Credits:
      NASA’s Earth Observatory United States embassies and consulates, along with American citizens traveling and living abroad, now have a powerful tool to protect against polluted air, thanks to a collaboration between NASA and the U.S. State Department.
      Since 2020, ZephAir has provided real-time air quality data for about 75 U.S. diplomatic posts. Now, the public tool includes three-day air quality forecasts for PM2.5, a type of fine particulate matter, for all the approximately 270 U.S. embassies and consulates worldwide. These tiny particles, much smaller than a grain of sand, can penetrate deep into the lungs and enter the bloodstream, causing respiratory and cardiovascular problems.
      “This collaboration with NASA showcases how space-based technology can directly impact lives on the ground,” said Stephanie Christel, climate adaptation and air quality monitoring program lead with the State Department’s Greening Diplomacy Initiative. “This is not something the State Department could have done on its own.” For instance, placing air quality monitors at all U.S. diplomatic posts is prohibitively expensive, she explained.
      “NASA’s involvement brings not only advanced technology,” she added, “but also a trusted name that adds credibility and reliability to the forecasts, which is invaluable for our staff stationed abroad.”
      The forecasts, created using NASA satellite data, computer models, and machine learning, are crucial for U.S. embassies and consulates, where approximately 60,000 U.S. citizens and local staff work. Many of these sites are in regions with few local air quality monitors or early warning systems for air pollution.
      “ZephAir’s new forecasting capability is a prime example of NASA’s commitment to using our data for societal benefit,” said Laura Judd, an associate program manager for Health and Air Quality at NASA. “Partnering with the State Department allows us to extend the reach of our air quality data, providing embassies and local communities worldwide with vital information to protect public health.”
      Enhancing Health, Safety with NASA Air Quality Data
      To manage air pollution exposure, the tool can assist diplomatic staff with decisions on everything from building ventilation to outdoor activities at embassy schools.
      For many embassies, especially in regions with severe air pollution, having reliable air quality forecasts is crucial for safeguarding staff and their families, influencing both daily decisions and long-term planning. “Air quality is a top priority for my family as we think about [our next assignment], so having more information is a huge help,” said Alex Lewis, a political officer at the U.S. embassy in Managua, Nicaragua.
      A screenshot of the ZephAir web dashboard featuring air quality forecasts for Managua, Nicaragua. U.S. Department of State Previously, ZephAir only delivered data on current PM2.5 levels using air quality monitors on the ground from about 75 U.S. diplomatic locations and about 50 additional sources. Now, the enhanced tool provides PM2.5 forecasts for all sites, using the Goddard Earth Observing System forward processing (GEOS-FP), a weather and climate computer model. It incorporates data on tiny particles or droplets suspended in Earth’s atmosphere called aerosols from MODIS (Moderate-resolution Imaging Spectroradiometer) on NASA’s Terra and Aqua satellites.
      Aerosols are tiny airborne particles that come from both natural sources, like dust, volcanic ash, and sea spray, and from human activities, such as burning fossil fuels. PM2.5 refers to particles or droplets that are 2.5 micrometers or smaller in diameter — about 30 times smaller than the width of a human hair.
      “We use the GEOS-FP model to generate global aerosol forecasts,” said Pawan Gupta, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the lead scientist on the project. “Then we calibrate the forecasts for embassy locations, using historical data and machine learning techniques.”
      As of August 2024, the forecasting feature is available on the ZephAir web and mobile platforms.
      The new forecasts are about more than just protecting U.S. citizens and local embassy staff; they are also contributing to global action on air quality. The State Department engages with local governments and communities to raise awareness about air quality issues. “These forecasts are a critical part of our strategy to mitigate the impacts of air pollution not only for our personnel but also for the broader community in many regions around the world,” Christel said.
      Officials with the Greening Diplomacy Initiative partnered with NASA through the Health and Air Quality Applied Sciences Team  to develop the new forecasts and will continue the collaboration through support from the Satellite Needs Working Group.
      Looking ahead, the team aims to expand ZephAir’s capabilities to include ground-level ozone data, another major pollutant that can affect the health of embassy staff and local communities.
      By Emily DeMarco
      NASA’s Earth Science Division, Headquarters
      Share








      Details
      Last Updated Sep 20, 2024 Editor Rob Garner Contact Rob Garner rob.garner@nasa.gov Location Goddard Space Flight Center Related Terms
      Aqua Benefits Back on Earth Earth Earth’s Atmosphere Goddard Space Flight Center Terra View the full article
    • By European Space Agency
      On 18–19 September, Europe’s space industry from start-up companies to large system integrators gathered at ESA–ESTEC in the Netherlands for Industry Space Days 2024.
      View the full article
    • By NASA
      18 Min Read The Marshall Star for September 18, 2024
      Marshall Welcomes NASA Chief Scientist for Climate, Science Town Hall
      NASA Chief Scientist and Senior Climate Advisor Kate Calvin, center left, joins team members at the agency’s Marshall Space Flight Center for a Climate and Science Town Hall on Sept. 17 in Activities Building 4316. Calvin took part in a question-and-answer session during her visit that was live streamed agencywide. Joining her in the session were, from left, Rahul Ramachandran, research scientist and senior data science strategist for the Science Research and Project Division at Marshall; Marshall Earth Science Branch Chief Andrew Molthan; Marshall Chief Scientist Renee Weber; Marshall Center Director Joseph Pelfrey; and Marshall Science and Technology Office Manager Julie Bassler, who moderated the panel. (NASA/Krisdon Manecke)
      Molthan answers a question during the Climate Town Hall. Topics discussed during the town hall included the response by NASA and Marshall to climate change, the effects of climate change on NASA and Marshall objectives, and how NASA and Marshall are helping organizations around the world respond to climate change. (NASA/Krisdon Manecke)
      › Back to Top
      Space Station Payload Operations Director at Marshall Carries on Family Legacy
      By Celine Smith
      Jacob Onken remembers his father, Jay Onken, waking him up one morning at 3 a.m. when he was 9 years old to watch the International Space Station fly overhead. At the time, his dad was a POD – a payload operations director – at NASA’s Marshall Space Flight Center leading flight controllers who support science experiments aboard the orbiting laboratory 24 hours a day, 365 days a year.
      Jacob Onken is a second-generation payload operations director at NASA’s Marshall Space Flight Center. His father, Jay Onken, also served in the role in 1999. The father and son are the first family members at Marshall to both hold that position. NASA/Danielle Burleson Now, the younger Onken has started a new chapter in his career as a POD at Marshall, following in his father’s footsteps. The father and son are the first family members to serve in this role at Marshall. Onken said that happened by chance, despite growing up NASA-adjacent.
      Jacob Onken began his aerospace career with an internship at Teledyne Brown Engineering while earning a bachelor’s degree in computer science at Auburn University in Alabama. The internship took him to Marshall’s Payload Operations Integration Center – a place his father had worked and often taken him when he was younger. Colleagues warmly remembered the veteran POD and welcomed to the role.
      After graduating with a bachelor’s degree in computer science in 2018, Onken worked as a contractor with Teledyne for NASA. As a data management coordinator (DMC) he sat console and learned to operate data and video systems aboard the space station.
      “I really found myself out here, and I loved it,” he said. “Working in space flight operations is insanely cool and beneficial to humanity.”
      A young Jacob Onken smiles for a family photo while visiting Marshall with his father, Jay Onken, and sister, Elizabeth Onken, in 1998. Photo courtesy of Jacob Onken After training for over a year, he earned his DMC certification and later was assigned as the lead DMC for space station Expeditions 62 and 63. He later served as the DMC training lead, preparing new flight controllers for certification. In this role, he trained 13 DMCs for certification, using a people-based leadership approach he learned from his father.
      Well before the space station flew, Jay Onken was an aerospace engineer whose early career assignments included orbit analysis for the space shuttle and attitude selection for several Spacelab missions. He later was one of the first flight directors for NASA’s Chandra X-Ray Observatory, and following its launch, joined the first group of space station PODs. 
      He went on to become the director of Marshall’s Mission Operations Laboratory in 2005, deputy chief engineer for the Space Launch System in 2014, and director of Marshall’s Space Systems Department in 2016. He retired in 2018 and died in 2021 after battling cancer.
      Jacob Onken continues Jay Onken’s legacy. Colleagues say he embodies similar traits. He often reflects on his father’s advice.
      From left, Jacob Onken during his payload operations director (POD) certification ceremony with former PODs Carrie Olsen, Sam Digesu, Pat Patterson, and Tina Melton in the Payload Operations Center at Marshall. NASA/Craig Cruzen “I was lucky to have my dad, who understood the environment that I was working in,” he said. “I knew his work meant a lot to him. We were always close, but we got even closer. Bonding over the same things was special.”
      In 2022, Onken became the DMC flight operations lead, supporting real-time console and planning operations for that team. In 2023, he joined the Operations Directors Office. After another rigorous training curriculum, he completed his POD certification in January 2024.
      “It’s rewarding and heartwarming to know that the future of space flight operations is in good hands with the new generation,” said Craig Cruzen, the POD training lead who oversaw Onken’s instruction and certification.
      Onken leads a team that communicates with astronauts about the scientific experiments they’re performing on the space station and ensures their safety from the ground.
      As a payload operations director at NASA’s Marshall Space Flight Center, Jacob Onken leads flight controllers in the International Space Station Payload Operations and Integration Team, following in his father’s footsteps. Onken and his father, Jay Onken, are the first family members to both serve in the role at Marshall. (NASA) “My role requires teamwork, trust, and communication,” he said. “I ask myself, ‘How can we work together effectively to get the job done?’”
      While he holds the same position his father held, the space station has evolved, becoming a convergence of science, technology, and innovation. “Jay Onken was a POD when the International Space Station was just beginning,” said former POD Carrie Olsen, now manager of NASA’s Next Gen STEM K-12 education project and a family friend to the Onkens. “The challenge the space station faced back then was its newness,” Olsen explained. “We were still figuring out how to best work with Johnson Space Center, scientists around the world, international partners, and the space station program.”
      Though Marshall had a rich operations history working programs like Apollo, Space Shuttle, Skylab, and Chandra, the space station was truly unlike anything that had come before.
      “Jay’s leadership qualities and integrity helped to build trust across the organization and the agency. This allowed Marshall’s operations team to excel and be recognized as the premier space station science operations center across the globe,” said his former colleague Sam Digesu, currently technical manager of the Payload and Mission Operations Division. “Jacob is on the that same path.”
      Jacob Onken says one of his career goals is to support payload operations on the lunar surface for the Artemis missions. “My dad was around when it started, and hopefully, I’m around to see it through.”
      › Back to Top
      NASA Hosts Observe the Moon Night at U.S. Space & Rocket Center
      The Science Wizard, David Hagerman, right center, entertains the crowd with one of his shows Sept. 14 during Observe the Moon Night at the U.S. Space & Rocket Center in Huntsville. The free public event was part of International Observe the Moon Night, a worldwide celebration encouraging observation, appreciation, and understanding of the Moon and its connection to NASA exploration and discovery. NASA’s Planetary Missions Program Office hosted the event at the rocket center. The Planetary Missions Program Office is located at NASA’s Marshall Space Flight Center. (NASA/Lane Figueroa)
      Audience members react during one of Hagerman’s demonstrations at Observe the Moon Night. (NASA/Lane Figueroa)
      Attendees visit a NASA display during the Observe the Moon Night event. (NASA/Daniel Horton)
      › Back to Top
      ‘Legacy of the Invisible’ Event to Celebrate Marshall’s Contributions to Astrophysics
      The public is invited to join NASA’s Marshall Space Flight Center for a special celebration of art and astronomy in downtown Huntsville on Sept. 20 from 6 to 8 p.m. The event will include a dedication of Huntsville’s newest art installation, “No Straight Lines,” by local artist Float. 
      The celebratory event, “Legacy of the Invisible,” will take place at the corner of Clinton Avenue and Washington Street, coinciding with the 25th anniversary of NASA’s Chandra X-ray Observatory. Attendees will have a chance to meet and hear from NASA experts, as well as meet Float, the artist behind “No Straight Lines,” which aims to honor Huntsville’s rich scientific legacy in astrophysics and highlight the groundbreaking discoveries made possible by Huntsville scientists and engineers.
      Enjoy live music, art vendors, food, and more.
      Learn more about Chandra’s 25th Anniversary.
      › Back to Top
      SLS Program Manager John Honeycutt Delivers Keynote at National Space Club Breakfast
      John Honeycutt, front center, manager of NASA’s SLS (Space Launch System) Program at the agency’s Marshall Space Flight Center, delivers the keynote address at the National Space Club Breakfast on Sept. 17 in Huntsville. Honeycutt provided a detailed presentation to the audience with insight into the operations, accomplishments, and future goals for the SLS Program. The SLS rocket is a powerful, advanced launch vehicle for a new era of human exploration beyond Earth’s orbit. “All elements of the SLS Block I for the first crewed lunar mission of the 21st century are either complete and ready for stacking or are nearing completion,” Honeycutt said. “For more than 60 years, this town – this community – has led the effort to explore space. We aren’t done. SLS and Artemis are the next chapter in that legacy. Led and enabled by folks in this room, at Marshall, and here in North Alabama, we will launch missions to the Moon that will re-write history books, lead to scientific discoveries, and pave the way to Mars.” (NASA/Serena Whitfield)
      › Back to Top
      NASA’s Lunar Challenge Participants to Showcase Innovations During Awards
      NASA‘s Watts on the Moon Challenge, designed to advance the nation’s lunar exploration goals under the Artemis campaign by challenging United States innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions, concludes Sept. 20 at the Great Lakes Science Center in Cleveland, Ohio.
      The Sun rises above the Flight Research Building at NASA’s Glenn Research Center in Cleveland.Credit: NASA “For astronauts to maintain a sustained presence on the Moon during Artemis missions, they will need continuous, reliable power,” said Kim Krome-Sieja, acting program manager, Centennial Challenges at NASA’s Marshall Space Flight Center. “NASA has done extensive work on power generation technologies. Now, we’re looking to advance these technologies for long-distance power transmission and energy storage solutions that can withstand the extreme cold of the lunar environment.”
      The technologies developed through the Watts on the Moon Challenge were the first power transmission and energy storage prototypes to be tested by NASA in an environment that simulates the extreme cold and weak atmospheric pressure of the lunar surface, representing a first step to readying the technologies for future deployment on the Moon. Successful technologies from this challenge aim to inspire, for example, new approaches for helping batteries withstand cold temperatures and improving grid resiliency in remote locations on Earth that face harsh weather conditions.
      During the final round of competition, finalist teams refined their hardware and delivered a full system prototype for testing in simulated lunar conditions at NASA’s Glenn Research Center. The test simulated a challenging power system scenario where there are six hours of solar daylight, 18 hours of darkness, and the user is three kilometers from the power source.
      “Watts on the Moon was a fantastic competition to judge because of its unique mission scenario,” said Amy Kaminski, program executive, Prizes, Challenges, and Crowdsourcing, Space Technology Mission Directorate at NASA Headquarters. “Each team’s hardware was put to the test against difficult criteria and had to perform well within a lunar environment in our state-of-the-art thermal vacuum chambers at NASA Glenn.”
      Each finalist team was scored based on Total Effective System Mass (TESM), which determines how the system works in relation to its mass. At the awards ceremony, NASA will award $1 million to the top team who achieves the lowest TESM score, meaning that during testing, that team’s system produced the most efficient output-to-mass ratio. The team with the second lowest mass will receive $500,000. The awards ceremony stream live on NASA Glenn’s YouTube channel and NASA Prize’s Facebook page.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA has contracted HeroX to support the administration of this challenge.
      › Back to Top
      Technicians Work to Prepare Europa Clipper for Propellant Loading
      NASA’s Europa Clipper mission moves closer to launch as technicians worked Sept. 11 inside the Payload Hazardous Servicing Facility to prepare the spacecraft for upcoming propellant loading at the agency’s Kennedy Space Center. 
      Technicians work to complete operations before propellant load occurs ahead of launch for NASA’s Europa Clipper spacecraft inside the Payload Hazardous Servicing Facility at the agency’s Kennedy Space Center on Sept. 11.NASA/Kim Shiflett The spacecraft will explore Jupiter’s icy moon Europa, which is considered one of the most promising habitable environments in the solar system. The mission will research whether Europa’s subsurface ocean could hold the conditions necessary for life. Europa could have all the “ingredients” for life as we know it: water, organics, and chemical energy.
      Europa Clipper’s launch period opens Oct. 10. It will lift off on a SpaceX Falcon Heavy rocket from Kennedy’s Launch Complex 39A. The spacecraft then will embark on a journey of nearly six years and 1.8 billion miles before reaching Jupiter’s orbit in 2030.
      The spacecraft is designed to study Europa’s icy shell, underlying ocean, and potential plumes of water vapor using a gravity science experiment alongside a suite of nine instruments including cameras, spectrometers, a magnetometer, and ice-penetrating radar. The data Europa Clipper collects could improve our understanding of the potential for life elsewhere in the solar system.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with APL for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission.
      Learn more about the mission here.
      › Back to Top
      Marshall to Present 2024 Small Business Awards Sept. 19
      NASA’s Marshall Space Flight Center will host its annual Small Business Industry and Advocate Awards ceremony Sept. 19. The awards recognize small businesses and small business champions from government and industry for their outstanding achievements in fiscal year 2024.
      The ceremony will take place during the 38th meeting of Marshall’s Small Business Alliance, from 8 a.m. to 12:30 p.m. CDT at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration in Huntsville. The event will also highlight new opportunities for small businesses to take part in NASA’s procurement processes. Afterward, attendees will have the open opportunity to network with NASA officials, prime contractors, and other members of Marshall’s small business community. Exhibitors will provide valuable information to support their business.
      NASA speakers include:
      Dwight Deneal, assistant administrator, Office of Small Business Programs, NASA Headquarters Joseph Pelfrey, center director, NASA Marshall John Cannaday, director, Office of Procurement, NASA Marshall Davey Jones, strategy lead, NASA Marshall David Brock, small business specialist, Office of Small Business Programs, NASA Marshall For 17 years, the Marshall Small Business Alliance has aided small businesses in pursuit of NASA procurement and subcontracting opportunities. Its primary focus is to inform, educate, and advocate on behalf of the small business community. At each half day meeting, businesses will gain valuable insight to guide them in their marketing endeavors.
      Learn more about Marshall’s small business initiatives.
      › Back to Top
      Printed Engines Propel Next Industrial Revolution
      In the fall of 2023, NASA hot fire tested an aluminum 3D printed rocket engine nozzle. Aluminum is not typically used for 3D printing because the process causes it to crack, and its low melting point makes it a challenging material for rocket engines. Yet the test was a success.
      Printing aluminum engine parts could save significant time, money, and weight for future spacecraft. Elementum 3D Inc., a partner on the project, is now making those benefits available to the commercial space industry and beyond.
      A rocket engine nozzle 3D printed from Elementum 3D’s A6061 RAM2 aluminum alloy undergoes hot fire testing at NASA’s Marshall Space Flight Center.Credit: NASA The hot fire test was the culmination of a relationship between NASA and Elementum that began shortly after the company was founded in 2014 to make more materials available for 3D printing. Based in Erie, Colorado, the company infuses metal alloys with particles of other materials to alter their properties and make them amenable to additive manufacturing. This became the basis of Elementum’s Reactive Additive Manufacturing (RAM) process.
      NASA adopted the technology, qualifying the RAM version of a common aluminum alloy for 3D printing. The agency then awarded funding to Elementum 3D and another company to print the experimental Broadsword rocket engine, demonstrating the concept’s viability.
      Meanwhile, a team at NASA’s Marshall Space Flight Center was working to adapt an emerging technology to print larger engines. In 2021, Marshall awarded an Announcement of Collaborative Opportunity to Elementum 3D to modify an aluminum alloy for printing in what became the Reactive Additive Manufacturing for the Fourth Industrial Revolution project.
      The project also made a commonly used aluminum alloy available for large-scale 3D printing. It is already used in large satellite components and could be implemented into microchip manufacturing equipment, Formula 1 race car parts, and more. The alloy modified for the Broadsword engine is already turning up in brake rotors and lighting fixtures. These various applications exemplify the possibilities that come from NASA’s collaboration and investment in industry. 

      Read more here.
      › Back to Top
      Hubble Finds More Black Holes than Expected in Early Universe
      With the help of NASA’s Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      This is a new image of the Hubble Ultra Deep Field. The first deep imaging of the field was done with Hubble in 2004. The same survey field was observed again by Hubble several years later, and was then reimaged in 2023. By comparing Hubble Wide Field Camera 3 near-infrared exposures taken in 2009, 2012, and 2023, astronomers found evidence for flickering supermassive black holes in the hearts of early galaxies. The survey found more black holes than predicted. NASA, ESA, Matthew Hayes (Stockholm University); Acknowledgment: Steven V.W. Beckwith (UC Berkeley), Garth Illingworth (UC Santa Cruz), Richard Ellis (UCL); Image Processing: Joseph DePasquale (STScI) Currently, scientists do not have a complete picture of how the first black holes formed not long after the big bang. It is known that supermassive black holes, that can weigh more than a billion suns, exist at the center of several galaxies less than a billion years after the big bang.
      “Many of these objects seem to be more massive than we originally thought they could be at such early times – either they formed very massive or they grew extremely quickly,” said Alice Young, a PhD student from Stockholm University and co-author of the study  published in The Astrophysical Journal Letters.
      Black holes play an important role in the lifecycle of all galaxies, but there are major uncertainties in our understanding of how galaxies evolve. In order to gain a complete picture of the link between galaxy and black hole evolution, the researchers used Hubble to survey how many black holes exist among a population of faint galaxies when the universe was just a few percent of its current age.
      Initial observations of the survey region were re-photographed by Hubble after several years. This allowed the team to measure variations in the brightness of galaxies. These variations are a telltale sign of black holes. The team identified more black holes than previously found by other methods.
      The new observational results suggest that some black holes likely formed by the collapse of massive, pristine stars during the first billion years of cosmic time. These types of stars can only exist at very early times in the universe, because later-generation stars are polluted by the remnants of stars that have already lived and died. Other alternatives for black hole formation include collapsing gas clouds, mergers of stars in massive clusters, and “primordial” black holes that formed (by physically speculative mechanisms) in the first few seconds after the big bang. With this new information about black hole formation, more accurate models of galaxy formation can be constructed.
      “The formation mechanism of early black holes is an important part of the puzzle of galaxy evolution,” said Matthew Hayes from the Department of Astronomy at Stockholm University and lead author of the study. “Together with models for how black holes grow, galaxy evolution calculations can now be placed on a more physically motivated footing, with an accurate scheme for how black holes came into existence from collapsing massive stars.”
      Astronomers are also making observations with NASA’s James Webb Space Telescope to search for galactic black holes that formed soon after the big bang, to understand how massive they were and where they were located.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      NASA’s Marshall Space Flight Center was the lead field center for the design, development, and construction of the space telescope.
      › Back to Top
      View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy (left) and Center Director at NASA’s Ames Research Center Eugene Tu (right) hear from Ames employees Sept. 16, 2024.NASA/Brandon Torres Navarrete NASA Deputy Administrator Pam Melroy spent time at NASA’s Ames Research Center in California’s Silicon Valley, on Sept. 16, 2024, engaging with center leaders and employees to discuss strategies that could drive meaningful changes to ensure NASA remains the preeminent institution for research, technology, and engineering, and to lead science, aeronautics, and space exploration for humanity. Melroy’s visit also provided an opportunity to meet with early- and mid-career employees, who shared their perspectives and feedback.

      View the full article
  • Check out these Videos

×
×
  • Create New...