Jump to content

Splashdown 101: Joint Team to Recover Crew, Orion After Moon Missions


NASA

Recommended Posts

  • Publishers
NASA's Artemis II crew members and U.S. Navy personnel exit a mockup of the Orion spacecraft onto an inflatable “front porch”
NASA’s Artemis II crew members are assisted by U.S. Navy personnel as they exit a mockup of the Orion spacecraft onto an inflatable “front porch” while NASA’s Exploration Ground System’s Landing and Recovery team and partners from the Department of Defense aboard the USS San Diego practice recovery procedures using the Crew Module Test Article, during Underway Recovery Test 11 (URT-11) off the coast of San Diego, California on Sunday, Feb. 25, 2024.
NASA/Jamie Peer

When Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen return to Earth after a nearly 10-day mission around the Moon, a joint NASA and Department of Defense team led by NASA’s Exploration Ground Systems Program will be ready to retrieve them from the Orion spacecraft and ferry them onto a naval ship in the Pacific Ocean.

As Orion enters Earth’s atmosphere, the capsule will keep the crew safe as it slows from nearly 25,000 mph to about 300 mph, when its system of 11 parachutes will deploy in a precise sequence to help slow the capsule and crew to a relatively gentle 20 mph for splashdown about 60 miles off the coast of California, weather permitting.

Prior to splashdown, a team from NASA’s Johnson Space Center in Houston, called Sasquatch, will map where elements jettisoned from Orion such as the forward bay cover, drogue parachutes, and mortars, will land in the Ocean so the boats and helicopters supporting recovery stay clear of those areas.

ksc-20240225-ph-kaa01-0071orig.jpg?w=204
NASA Artemis II crew members are assisted by U.S. Navy personnel as they exit a mockup of the Orion spacecraft in the Pacific Ocean during Underway Recovery Test 11 (URT-11) on Feb. 25, 2024, while his crewmates look on. URT-11 is the eleventh in a series of Artemis recovery tests, and the first time NASA and its partners put their Artemis II recovery procedures to the test with the astronauts.
NASA/Kenny Allen

Once it is safe to approach the capsule, helicopters, and a team of Navy divers in small boats, along with NASA’s open water lead, will begin making their way to the capsule. The Navy divers then will assess the environment surrounding the capsule to make sure there are no hazards present.

Teams will stabilize Orion before the crew exits the capsule in the open water by installing an inflatable collar. To safely retrieve the astronauts, the divers also will install an inflatable raft, called the front porch, under Orion’s side hatch to aid in astronaut retrieval from the capsule.

“Our highly choreographed recovery operations will help ensure the final phase of NASA’s first crewed mission to the Moon in more than 50 years ends as a success,” said Lili Villareal, NASA’s landing and recovery director.

When all four crew members are out of the capsule, the front porch is repositioned about 100 yards from Orion to allow the astronauts to be individually lifted into a helicopter and returned to the ship. Two helicopters will be deployed to retrieve the crew. The helicopters will each retrieve two crewmembers and deliver them to the deck of the naval ship.

Once on the ship, the astronauts will be transported to a medical bay for a post-mission evaluation before flying on a helicopter from the ship back to shore and then to Johnson. Teams expect to recover the crew and deliver them to the medical bay within two hours of splashdown. If the crew returns to Earth at night, teams expect the recovery activities to take a bit longer but still must meet a requirement to have the crew in the medical bay within two hours.

With the crew safely out of the capsule, teams will work on towing Orion into the well deck of the ship, using procedures similar to those used during Artemis I. Navy divers will secure a system of lines to the capsule via several connection points on a collar to help tow Orion inside the ship.

NASA’s Artemis II crew members descend the well deck of the USS San Diego as NASA’s Exploration Ground System’s Landing and Recovery team and partners from the Department of Defense.
NASA’s Artemis II crew members (front to back) NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen descend the well deck of the USS San Diego as NASA’s Exploration Ground System’s Landing and Recovery team and partners from the Department of Defense aboard the ship practice recovery procedures using the Crew Module Test Article, during Underway Recovery Test 11 (URT-11) off the coast of San Diego, California on Sunday, Feb. 25, 2024.

When Orion is close to the vessel, an additional line attached to a pneumatic winch will be affixed to the capsule by the divers. These ropes all work together to ensure the capsule is stable as it is slowly pulled inside the ship.  A team of sailors and NASA recovery personnel inside the ship will begin manually pulling some of the lines to help align Orion with the stand it will be placed on once back on the ship.

As the sailors are pulling on the lines, NASA technicians will operate a main winch line attached to the capsule to help bring Orion inside making for a safe and precise recovery. After Orion is on a stand, the well deck will be drained of water and the ship will begin making its way back to Naval Base San Diego. Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      Crews at NASA’s Stennis Space Center work Jan. 21-22, 2020, to install the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand for a Green Run test series. Operations required crews to lift the massive core stage from a horizontal position into a vertical orientation, a procedure known as “break over.” Once the stage was oriented in a horizontal position on the night of Jan. 21, crews tied it in place to await favorable wind conditions. The following morning, crews began the process of raising, positioning, and securing the stage on the stand. NASA/Stennis The future is now at NASA’s Stennis Space Center near Bay St. Louis, Mississippi – at least when it comes to helping power the next great era of human space exploration.  
      NASA Stennis is contributing directly to the agency’s effort to land the first woman, the first person of color, and its first international partner astronaut on the Moon – for the benefit of all humanity. Work at the nation’s largest – and premier – propulsion test site will help power SLS (Space Launch System) rockets on future Artemis missions to enable long-term lunar exploration and prepare for the next giant leap of sending the first astronauts to Mars.  
      “We play a critical role to ensure the safety of astronauts on future Artemis missions,” NASA Stennis Space Center Director John Bailey said. “Our dedicated workforce is excited and proud to be part of NASA’s return to the Moon.”  
      NASA Stennis achieved an RS-25 testing milestone in April at the Fred Haise Test Stand. Completion of the successful RS-25 certification series provided critical data for L3Harris (formerly known as Aerojet Rocketdyne) to produce new RS-25 engines, using modern processes and manufacturing techniques. The engines will help power SLS rockets beginning with Artemis V.   
      The first four Artemis missions are using modified space shuttle main engines also tested at NASA Stennis. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS rocket to produce more than 8.8 million pounds of total combined thrust at liftoff.   
      NASA’s powerful SLS rocket is the only rocket that can send the Orion spacecraft, astronauts, and cargo to the Moon on a single mission.   
      Following key test infrastructure upgrades near the Fred Haise Test Stand, NASA Stennis will be ready for more RS-25 engine testing. NASA has awarded L3Harris contracts to provide 24 new engines, supporting SLS launches for Artemis V through Artemis IX.  
      “Every RS-25 engine that launches Artemis to space will be tested at NASA Stennis,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “We take pride in helping to power this nation’s human space exploration program. We also take great care in testing these engines because they are launching astronauts to space. We always have safety in mind.” 
      NASA’s Stennis Space Center conducts a successful hot fire of the first flight core stage of NASA’s powerful SLS (Space Launch System) rocket on the B-2 side of the Thad Cochran Test Stand on March 18, 2021. NASA employees, as well as NASA astronauts Jessica Meir and Zena Cardman, watched the milestone moment. The hot fire of more than eight minutes marked the culmination of a Green Run series of tests on the stage and its integrated systems.  NASA/Stennis In addition to RS-25 testing, preparations are ongoing at the Thad Cochran Test Stand (B-2) for future testing of the agency’s new exploration upper stage. The more powerful SLS second stage, which will send astronauts and cargo to deep space aboard the Orion spacecraft, is being built at NASA’s Michoud Assembly Facility in New Orleans.   
      Before its first flight, the NASA Stennis test team will conduct a series of Green Run tests on the new stage’s integrated systems to demonstrate it is ready to fly. Crews completed installation of a key component for testing the upper stage in October. The lift and installation of the 103-ton interstage simulator component, measuring 31 feet in diameter and 33 feet tall, provided crews best practices for moving and handling the actual flight hardware when it arrives to NASA Stennis.   
      The exploration upper stage Green Run test series will culminate with a hot fire of the stage’s four RL10 engines, made by L3Harris, the lead SLS engines contractor.  
      “All of Mississippi shares in our return to the Moon with the next great era of human space exploration going through NASA Stennis,” Bailey said. “Together, we can be proud of the state’s contributions to NASA’s great mission.”   
      For information about NASA’s Stennis Space Center, visit:  
      Stennis Space Center – NASA  
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 13 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      Contrary to the popular saying, work conducted by the propulsion test team at NASA’s Stennis Space Center is rocket science – and requires all the talent, knowledge, and expertise the term implies. 
      Rocket science at NASA Stennis, located near Bay St. Louis, Mississippi, has helped safely power American space dreams for almost 60 years ago. The accumulated knowledge and skills of the site’s test team continue to benefit NASA and commercial aerospace companies, thanks to new generations of skilled engineers and operators. 
      “The innovative, can-do attitude started with the founding of the south Mississippi site more than six decades ago,” said NASA Stennis Director John Bailey. “The knowledge, skills, and insight of a versatile team continue supporting NASA’s mission and goals of commercial aerospace companies by routinely conducting successful propulsion testing at NASA Stennis.” 
      Test team personnel perform facility data review following completion of a liquid oxygen cold-flow activation activity on the E-1 Test Stand at NASA’s Stennis Space Center on March 23, 2016. Activation of the test cell was in preparation for testing L3Harris’ (then known as Aerojet Rocketdyne) AR1 rocket engine pre-burner and main injector. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities for NASA and commercial projects. NASA/Stennis Operators at NASA’s High Pressure Gas Facility conduct a critical stress test Oct. 18-19, 2018, to demonstrate the facility’s readiness to support testing of the core stage of NASA’s powerful SLS (Space Launch System) rocket. The High Pressure Gas Facility was critical in producing and delivering gases needed for SLS core stage testing ahead of the successful launch of Artemis I. NASA/Stennis Test control center crews at NASA’s Stennis Space Center’s simulate full operations of core stage testing Dec. 13, 2019, for NASA’s powerful SLS (Space Launch System) rocket on the Thad Cochran Test Stand (B-2). NASA Stennis conducted SLS core stage testing in 2020-21 ahead of the successful Artemis I mission. NASA/Stennis A sitewide stress test at NASA’s Stennis Space Center on Dec. 13, 2019, simulates full operations needed during SLS (Space Launch System) core stage testing. The 24-hour exercise involved crews across NASA Stennis, including at the High Pressure Water Facility that provided needed generator power and water flow to the Thad Cochran Test Stand (B-2) during testing.NASA/Stennis The NASA Stennis team exhibits a depth and breadth of experience and expertise likely unsurpassed anywhere in the world. 
      The depth is built on decades of propulsion test experience. Veteran team members of today learned from those working during the Apollo era, who overcame various engineering, technical, communications, and mechanical difficulties in testing the Saturn V rocket stages that powered humans to the Moon. During 43 stage firings, the team accumulated an estimated 2,475 years of rocket engine test expertise.  
      Members of the Apollo test team then joined with new engineers and operators to test main engines that powered 30 years of space shuttle missions. From 1975 to 2009, the team supported main engine development, certification, acceptance, and anomaly testing with over 2,300 hot fires and more than 820,000 seconds of accumulated hot-fire time.  
      “NASA Stennis is unique because of the proven test operations expertise passed from generation to generation,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “It is expertise you can trust to deliver what is needed.”
      A member of the Fred Haise Test Stand (formerly the A-1 Test Stand) operations team examines the progress of a cold-shock test on May 1, 2014. The test marked a milestone in preparing the stand to test RS-25 rocket engines that will help power NASA’s SLS (Space Launch System) rocket.NASA/Stennis In addition to depth, the site team also has a breadth of experience that gives it unparalleled versatility and adaptability. 
      Part of that comes from the nature of the center itself. NASA Stennis is the second largest NASA center in terms of geography, but the civil servant workforce is small. As a result, test team members work on a range of propulsion projects, from testing components on smaller E Test Complex cells to firing large engines and even rocket stages on the heritage Apollo-era stands. 
      “Our management have put us in a position to be successful,” said NASA engineer Josh Greiner. “They have helped move us onto the test stands and given us a huge share of the responsibility of leading projects early in our career, which provides us the confidence and opportunity to conduct tests.” 
      In addition, center leaders made a deliberate decision more than a decade ago to return test stand operations to the NASA team. Prior to that time, stand operations were in the hands of contractors under NASA supervision. The shift allowed the civil servant test team to fine-tune its skill set even as it continued to work closely with contractor partners to support both government and commercial aerospace propulsion projects. 
      An image from October 2022 shows NASA engineers preparing for the next RS-25 engine test series at NASA’s Stennis Space Center by monitoring the reload of propellant tanks to the Fred Haise Test Stand (formerly the A-1 Test Stand). RS-25 engines are powered by a mix of liquid hydrogen and liquid oxygen.NASA/Stennis An image from October 2022 shows test team personnel ensuring pressures and flow paths are set properly for liquid oxygen to be transferred to the Fred Haise Test Stand (formerly the A-1 Test Stand), pictured in the background.NASA/Stennis An image from August 2023 shows test team personnel inspecting a pump during an initial chill down activity at the E-3 Test Complex. The versatile four-stand E Test Complex includes 12 active test cell positions capable of various component, engine, and stage test activities for NASA and commercial programs and projects. NASA/Stennis An image from September 2023 shows test team personnel preparing for future SLS (Space Launch System) exploration upper stage testing that will take place on the B-2 side of the Thad Cochran Test Stand. NASA’s new upper stage is being built as a more powerful SLS second stage to send the Orion spacecraft and heavier payloads to deep space. It will fly on the Artemis missions following a series of Green Run tests of its integrated systems at NASA Stennis. The test series will culminate with a hot fire of the four RL10 engines that will power the upper stage.NASA/Stennis An image from September 2023 shows test team personnel preparing for future SLS (Space Launch System) exploration upper stage testing by conducting a liquid hydrogen flow procedure. NASA’s new upper stage is being built as a more powerful SLS second stage to send the Orion spacecraft and heavier payloads to deep space. The upper stage will undergo a series of Green Run tests of its integrated systems on the B-2 side of the Thad Cochran Test Stand at NASA Stennis.NASA/Stennis The evolution and performance of the NASA Stennis team was illustrated in stark fashion in June/July 2018 when a blended team of NASA, Defense Advanced Research Projects Agency, Aerojet Rocketdyne, Boeing, and Syncom Space Services engineers and operators test fired an AR-22 rocket engine 10 times in a 240-hour period. 
      The campaign marked the first time a large liquid oxygen/liquid hydrogen engine had been tested so often in such a short period of time. The test team overcame a variety of challenges, including a pair of lightning strikes that threatened to derail the entire effort. Following completion of the historic series, a NASA engineer who helped lead the campaign recounted one industry observer who repeatedly characterized the site’s test team as nothing less than a national asset. 
      The experienced site workforce now tests RS-25 engines and propulsion systems for NASA’s Artemis campaign, including those that will help power Artemis missions to the Moon for scientific discovery and economic benefits. The NASA Stennis team also supports a range of commercial aerospace propulsion test activities, facilitating continued growth in capabilities. For instance, the team now has experience working with oxygen, hydrogen, methane, and kerosene propellants.  
      “The NASA and contractor workforce at NASA Stennis is second to none when it comes to propulsion testing,” Schuyler said. “Many of the current employees have been involved in rocket engine testing for over 30 years, and newer workers are being trained under these seasoned professionals.”
      For information about NASA’s Stennis Space Center, visit: 
      Stennis Space Center – NASA 
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 13 mins ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
    • By NASA
      Skywatching Skywatching Home Eclipses What’s Up Explore the Night Sky Night Sky Network More Tips and Guides FAQ 24 Min Read The Next Full Moon Will Be the Last of Four Consecutive Supermoons
      Guardians of Traffic statue in Cleveland, Ohio, in front of the supermoon that was visible on Sept. 17, 2024. On this day, the full moon was a partial lunar eclipse; a supermoon; and a harvest moon. Credits:
      NASA/GRC/Sara Lowthian-Hanna The Next Full Moon is a Supermoon; the Beaver, Frost, Frosty, or Snow Moon; Kartik Purnima; Loy Krathong; the Bon Om Touk (”Boat Racing Festival”) Moon, the Tazaungdaing Festival Moon; and Ill Poya.
      The next full Moon will be Friday afternoon, November 15, 2024, at 4:29 PM EST. This will be early Saturday morning from Kamchatka and Fiji Time eastwards to the International Date Line. The Pleiades star cluster will appear near the full Moon. The Moon will appear full for about 3 days around this time, from a few hours before sunrise on Thursday morning to a few hours before sunrise on Sunday morning.
      This full Moon will be the last of four consecutive supermoons, slightly closer and brighter than the first of the four in mid-August.
      The Maine Farmers’ Almanac began publishing Native American names for full Moons in the 1930s. Over time these names have become widely known and used. According to this almanac, as the full Moon in November this is the Beaver Moon, the Frost or Frosty Moon, or the Snow Moon. For the Beaver Moon, one interpretation is that mid-Fall was the time to set beaver traps before the swamps freeze to ensure a supply of warm winter furs. Another interpretation suggests that the name Beaver Moon came from how active the beavers are in this season as they prepare for winter. The Frost, Frosty, or Snow Moon names come from the frosts and early snows that begin this time of year, particularly in northeastern North America.
      This is Kartik Purnima (the full Moon of the Hindu lunar month of Kartik) and is celebrated by Hindus, Jains, and Sikhs (each for different reasons).
      In Thailand and nearby countries this full Moon is Loy Krathong, a festival that includes decorating baskets and floating them on a river.
      In Cambodia this full Moon corresponds with the 3-day Bon Om Touk (“Boat Racing Festival”), the Cambodian Water Festival featuring dragon boat races.
      In Myanmar this is the Tazaungdaing Festival, a festival that predates the introduction of Buddhism and includes the launching of hot air balloons (sometimes flaming or laden with fireworks).
      In Sri Lanka this is Ill (or Il) Poya, commemorating the Buddha’s ordination of sixty disciples as the first Buddhist missionaries.
      In many traditional Moon-based calendars the full Moons fall on or near the middle of each month. This full Moon is near the middle of the tenth month of the Chinese year of the Dragon, Marcheshvan in the Hebrew calendar, a name often shortened to Cheshvan or Heshvan, and Jumādā al-ʾŪlā, the fifth month of the Islamic year.
      As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full Moon. Get ready for winter, visit a local river (particularly if there are any festivals or boat races), but please don’t launch flaming hot air balloons filled with fireworks (some online videos make it quite clear why this is a bad idea), especially in areas subject to wildfires!
      The next month or two should be a great time for Jupiter and Saturn watching. Both will continue to shift westward each night, gradually making them easier to see earlier in the evening sky.
      Gordon Johnston
      Retired NASA Program Executive
      As for other celestial events between now and the full Moon after next (with specific times and angles based on the location of NASA Headquarters in Washington, DC):
      As Autumn continues the daily periods of sunlight continue shortening.
      On Friday, November 15, (the day of the full Moon), morning twilight will begin at 5:51 AM EST, sunrise will be at 6:51 AM, solar noon will be at 11:53 AM when the Sun will reach its maximum altitude of 32.4 degrees, sunset will be at 4:54 PM, and evening twilight will end at 5:55 PM.
      Our 24-hour clock is based on the average length of the solar day. The day of the winter solstice is sometimes called the “shortest day of the year” (because it has the shortest period of sunlight). But it could also be called the “longest day of the year” because the longest solar day is on or just after the solstice. Because the solar days are longer, the earliest sunset of the year occurs before the solstice and the latest sunrise of the year (ignoring Daylight Savings Time) occurs after the solstice. For the Washington, DC area, the sunsets on Friday and Saturday, December 6 and 7, 2024, are tied for the earliest sunsets. On Friday, morning twilight will begin at 6:10 AM EST, sunrise will be at 7:13 AM, solar noon will be at 11:59 AM when the Sun will reach its maximum altitude of 28.5 degrees, sunset will be at 4:45:50 PM, and evening twilight will end at 5:49 PM. On Saturday, morning twilight will begin at 6:11 AM EST, sunrise will be at 7:14 AM, solar noon will actually be at noon (12:00 PM) when the Sun will reach its maximum altitude of 28.4 degrees, sunset will be at 4:45:50 PM, and evening twilight will end at 5:49 PM.
      By Sunday, December 15, (the day of the full Moon after next), morning twilight will begin at 6:16 AM EST, sunrise will be at 7:20 AM, solar noon will be at 12:04 PM when the Sun will reach its maximum altitude of 27.8 degrees, sunset will be at 4:47 PM, and evening twilight will end at 5:51 PM.
      The next month or two should be a great time for Jupiter and Saturn watching, especially with a backyard telescope. Saturn was at its closest and brightest on September 7 and is high in the southern sky as evening twilight ends. Jupiter will be shifting into the evening sky during this lunar cycle. On November 15 Jupiter will be rising about a half hour after evening twilight ends. Jupiter will be at its closest and brightest on December 7, rising around sunset and setting around sunrise. By the full Moon after next on December 15, Jupiter will be 19 degrees above the horizon as evening twilight ends. Both Jupiter and Saturn will continue to shift westward each night, gradually making them easier to see earlier in the evening sky (and friendlier for backyard stargazing, especially if you have young ones with earlier bedtimes). With clear skies and a telescope you should be able to see Jupiter’s four bright moons, Ganymede, Callisto, Europa, and Io, noticeably shifting positions in the course of an evening. For Saturn, you should be able to see Saturn’s rings and its bright moon Titan. The rings are appearing thinner and will be edge-on to the Earth in March 2025. We won’t get the “classic” view of Saturn showing off its rings until 2026.
      Comets
      Of the two comets described in my last Moon Missive, one remains visible through large binoculars or a telescope during this lunar cycle. The sungrazing Comet C/2024 S1 (ATLAS) disintegrated during its very close pass by the Sun and is no longer visible. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be in the evening sky, fading from visual magnitude 8 to 10.3 as it moves away from the Earth and Sun.
      In addition, comet 33P/LINEAR should be visible with large binoculars or a telescope in November and December, shining at about magnitude 10 around its perihelion on November 29 and closest approach to Earth on December 9. The next comet that we anticipate might be visible to the unaided eye is C/2024 G3 (ATLAS), which will reach its closest to the Sun and Earth in mid January 2025. It is another sungrazing comet that might put on a good show or might break apart and vanish.
      Meteor Showers
      Unfortunately, one of the three major meteor showers of the year, the Geminids (004 GEM), will peak the morning of December 14, with the light of the nearly full Moon interfering. According to the International Meteor Organization, observers south of about 30 degrees north might be able to see these meteors for an hour or so between moonset and the first light of dawn (although the radiant for this meteor shower is at 33 degrees north latitude, so observers too far south of the equator will also have limited visibility). In a good year, this shower can produce 150 visible meteors per hour under ideal conditions, but this will not be a good year. For the Washington, DC area the MeteorActive app predicts that at about 2 AM EST on the morning of December 14, under bright suburban sky conditions, the peak rate from the Geminids and all other background sources might reach 20 meteors per hour.
      If the weather cooperates by being clear with no clouds or hazes and you do go looking for meteors, try to find a place as far as possible from light sources that has a clear view of a wide expanse of the sky. Give your eyes plenty of time to adapt to the dark. Your color vision (cone cells), concentrated in the center of your field of view, will adapt to darkness in about 10 minutes. Your more sensitive night vision rod cells will continue to improve for an hour or more (with most of the improvement in the first 35 to 45 minutes). The more sensitive your eyes are, the more chance you will have of seeing meteors. Since some meteors are faint, you will tend to see more meteors from the “corner of your eye.” Even a short exposure to light (from passing car headlights, etc.) will start the adaptation over again (so no turning on a light or your cell phone to check what time it is).
      In addition, a number of relatively minor meteor showers will peak during this lunar cycle. The light of the waning Moon will interfere with the Leonids (013 LEO) on November 17, α-Monocerotids (246 AMO) on November 21, and November Orionids (250 NOO) on November 28. The Phoenicids (254 PHO), best seen from the Southern Hemisphere, may peak around December 1. Models predict low rates and faint meteors this year but not much is known about this meteor shower. Most years the rates are low, but as reported by the International Meteor Organization, significant activity was observed in 2014. Once, in 1956, the Phoenicids reached an estimated rate of 100 visible meteors per hour. Another Southern Hemisphere shower is the Puppid-Velids (301 PUP), expected to peak sometime around December 4 at about 10 meteors per hour (under ideal conditions). The Monocerotids (019 MON) and σ-Hydrids (016 HYD) are both expected to peak on December 9 at 3 meteors per hour and 7 meteors per hour, respectively. These rates are low enough that seeing them from our light-polluted urban areas will be unlikely.
      Evening Sky Highlights
      On the evening of Friday, November 15 (the evening of the full Moon), as twilight ends (at 5:55 PM EST), the rising Moon will be 14 degrees above the east-northeastern horizon with the Pleiades star cluster 5 degrees to the lower left. The brightest planet in the sky will be Venus at 12 degrees above the southwestern horizon. Next in brightness will be Mercury at less than a degree above the west-southwestern horizon. Saturn will be 38 degrees above the south-southeastern horizon. Comet C/2023 A3 (Tsuchinshan-ATLAS) will be 39 degrees above the west-southwestern horizon, with its current brightness curve predicting it will have faded to magnitude 8, too faint to see with the unaided eye. The bright star closest to overhead will be Deneb at 79 degrees above the northwestern horizon. Deneb (visual magnitude 1.3) is the 19th brightest star in our night sky and is the brightest star in the constellation Cygnus the swan. One of the three bright stars of the “Summer Triangle” (along with Vega and Altair). Deneb is about 20 times more massive than our Sun but has used up its hydrogen, becoming a blue-white supergiant about 200 times the diameter of the Sun. If Deneb were where our Sun is, it would extend to about the orbit of the Earth. Deneb is about 2,600 light years from us.
      As this lunar cycle progresses, Saturn and the background of stars will appear to shift westward each evening (as the Earth moves around the Sun). Bright Venus will shift to the left and higher in the sky along the southwestern horizon. Mercury, shining brighter than Saturn, will initially shift left along the southwestern horizon until November 19, after which it will shift to the right. On November 22 Jupiter will join the planets Venus, Mercury and Saturn in the sky as twilight ends, shining brighter than Mercury. November 24 will be the last evening Mercury will be above the horizon as evening twilight ends, although it will remain visible in the glow of dusk for a few more evenings as it dims and shifts towards its passage between the Earth and the Sun on December 5. Jupiter will be at its closest and brightest for the year on December 7. The waxing Moon will pass by Venus on December 4, Saturn on December 7, and the Pleiades on December 13.
      By the evening of Saturday, December 14 (the start of the night of the December 15 full Moon), as twilight ends (at 5:50 PM EST), the rising Moon will be 19 degrees above the east-northeastern horizon with bright planet Jupiter 6 degrees to the right and the bright star Aldebaran father to the right. The brightest planet visible will be Venus at 21 degrees above the southwestern horizon. Next in brightness will be Jupiter. Saturn will be 43 degrees above the southern horizon. The bright star closest to overhead will still be Deneb at 61 degrees above the west-northwestern horizon.
      Morning Sky Highlights
      On the morning of Friday, November 15 (the morning of the full Moon after next), as twilight begins (at 5:51 AM EST), the setting full Moon will be 7 degrees above the west-northwestern horizon. The brightest planet in the sky will be Jupiter at 35 degrees above the western horizon. Mars will be at 68 degrees above the southwestern horizon. Comet C/2024 S1 (ATLAS) will not be visible, even with a telescope, as it broke apart into pieces too small to see as it passed its closest to the Sun on October 28. The bright star appearing closest to overhead will be Pollux at 69 degrees above the west-southwestern horizon (higher than Mars by about a half degree). Pollux is the 17th brightest star in our night sky and the brighter of the twin stars in the constellation Gemini. It is an orange tinted star about 34 lightyears from Earth. Pollux is not quite twice the mass of our Sun but about 9 times the diameter and 33 times the brightness.
      As this lunar cycle progresses, Jupiter, Mars, and the background of stars will appear to shift westward each evening, with Mars passing near the Beehive star cluster in early December. The waning Moon will pass by the Pleiades star cluster on November 16, Jupiter on November 17, Mars and Pollux on November 20, appear on the other side of Mars on November 21, Regulus on November 22 and 23, and Spica on November 27 (passing in front of Spica for parts of the USA and Canada). Jupiter will be at its closest and brightest on December 7, rising around sunset and setting around sunrise. December 12 will be the first morning Mercury will be above the east-southeastern horizon as morning twilight begins, though it will be visible in the glow of dawn for a few days before.
      By the morning of Sunday, December 15 (the morning of the full Moon after next), as twilight begins (at 6:16 AM EST), the setting full Moon will be 15 degrees above the west-northwestern horizon. The brightest planet in the sky will be Jupiter, appearing below the Moon at 5 degrees above the horizon. Second in brightness will be Mars at 46 degrees above the western horizon, then Mercury at 4 degrees above the east-southeastern horizon. The bright star appearing closest to overhead will be Regulus at 55 degrees above the southwestern horizon, with Arcturus a close second at 52 degrees above the east-southeastern horizon. Regulus is the 21st brightest star in our night sky and the brightest star in the constellation Leo the lion. The Arabic name for Regulus translates as “the heart of the lion.” Although we see Regulus as a single star, it is actually four stars (two pairs of stars orbiting each other). Regulus is about 79 light years from us. Arcturus is the brightest star in the constellation Boötes the herdsman or plowman and the 4th brightest star in our night sky. It is 36.7 light years from us. While it has about the same mass as our Sun, it is about 2.6 billion years older and has used up its core hydrogen, becoming a red giant 25 times the size and 170 times the brightness of our Sun. One way to identify Arcturus in the night sky is to start at the Big Dipper, then follow the arc of the handle as it “arcs towards Arcturus.”
      Detailed Daily Guide
      Here for your reference is a day-by-day listing of celestial events between now and the full Moon on December 15, 2024. The times and angles are based on the location of NASA Headquarters in Washington, DC, and some of these details may differ for where you are (I use parentheses to indicate times specific to the DC area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app set for your location or a star-watching guide from a local observatory, news outlet, or astronomy club.
      Thursday morning, November 14, at 6:18 EST, the Moon will be at perigee, its closest to the Earth for this orbit.
      As mentioned above, the full Moon will be Friday afternoon, November 15, 2024, at 4:29 PM EST. This will be early Saturday morning from Kamchatka and Fiji Time eastwards to the International Date Line. It will be the last of four consecutive supermoons. The Pleiades star cluster will appear near the full Moon. The Moon will appear full for about 3 days around this time, from a few hours before sunrise Thursday morning to a few hours before sunrise Sunday morning.
      Friday evening into Saturday morning, November 15 to 16, the Pleiades star cluster will appear near the full Moon. This may best be viewed with binoculars, as the brightness of the full Moon may make it hard to see the stars in this star cluster. As evening twilight ends (at 5:55 PM EST), the Pleiades will appear 5 degrees to the lower left of the full Moon. By the time the Moon reaches its highest for the night (Saturday morning at 12:07 AM), the Pleiades will be 2 degrees to the upper left. The Moon will pass in front of the Pleiades in the early morning hours. By the time morning twilight begins (at 5:52 AM) the Pleiades will be a degree to the lower right of the Moon.
      Saturday, November 16, will be when the planet Mercury reaches its greatest angular separation from the Sun as seen from the Earth for this apparition (called greatest elongation). Because the angle between the line from the Sun to Mercury and the line of the horizon changes with the seasons, the date when Mercury and the Sun are farthest apart as seen from the Earth is not always the same as when Mercury appears highest above the southwestern horizon as evening twilight ends, which will occur three evenings later, on November 19.
      Saturday night into Sunday morning, November 16 to 17, the planet Uranus will be at its closest and brightest for the year, called “opposition” because on Saturday night it will be opposite the Earth from the Sun. At opposition Uranus can be bright enough to see with the unaided eye (under very clear, dark sky conditions). From our light-polluted urban locations you will need binoculars or a telescope.
      Also on Saturday night into Sunday morning, November 16 to 17, the planet Jupiter will appear near the full Moon. As Jupiter rises on the east-northeastern horizon (at 6:14 PM EST) it will be 10 degrees to the lower left of the Moon. The Moon will reach its highest for the night about 7 hours later (at 1:09 AM), with Jupiter 7.5 degrees to the lower left. By the time morning twilight begins (at 5:52 AM) Jupiter will be 6 degrees to the left of the Moon.
      Tuesday night into Wednesday morning, November 19 to 20, the bright star Pollux and the bright planet Mars will appear near the waning gibbous Moon. As the Moon rises on the northeastern horizon (at 8:20 PM EST), Pollux will be 2.5 degrees to the upper left of the Moon. By the time the Moon reaches its highest in the sky (at 4:11 AM) Pollux will be 5 degrees to the upper right of the Moon, with Mars 7.5 degrees to the lower left of the Moon, such that these three appear aligned. By the time morning twilight begins (at 5:55 AM) Mars will be 7 degrees to the upper left and Pollux 5.5 degrees to the lower right.
      Wednesday night into Thursday morning, November 20 to 21, the waning gibbous Moon will have shifted to the other side of Mars. As the Moon rises on the east-northeastern horizon (at 9:29 PM EST) Mars will be 4 degrees to the upper right of the Moon. By the time the Moon reaches its highest for the night (at 5:03 AM) Mars will be 7 degrees to the right of the Moon. Morning twilight will begin less than an hour later (at 5:56 AM) with Mars 7 degrees to the lower right of the Moon.
      Friday evening, November 22, will be the first evening the bright planet Jupiter will be above the east-northeastern horizon as evening twilight ends (at 5:51 PM EST).
      Also on Friday evening, the waning Moon will appear half-full as it reaches its last quarter at 8:28 PM EST (when we can’t see it).
      Friday night into Saturday morning, November 22 to 23, the bright star Regulus will appear near the waning half-Moon. As Regulus rises on the east-northeastern horizon (at 11:29 PM EST) it will be 9 degrees below the Moon, with Mars farther to the upper right and Pollux beyond Mars. By the time the Moon reaches its highest for the night (at 5:49 AM) Regulus will be 7 degrees to the lower left, and morning twilight will begin 8 minutes later (at 5:57 AM).
      Saturday night into Sunday morning, November 23 to 24, the waning crescent Moon will have shifted to the other side of Regulus. When the Moon rises on the east-northeastern horizon (at 11:38 PM EST) Regulus will be 4 degrees to the upper right of the Moon. The pair will separate as the night progresses. By the time morning twilight begins (at 5:58 AM) Regulus will be 6.5 degrees to the upper right of the Moon.
      Sunday evening, November 24, will be the last evening the planet Mercury will be above the west-southwestern horizon as evening twilight ends, although it should remain visible in the glow of dusk before twilight ends for a few more evenings as it dims and shifts towards its passage between the Earth and the Sun on December 5.
      Tuesday morning, November 26, at 6:57 AM EST, the Moon will be at apogee, its farthest from the Earth for this orbit.
      On Wednesday morning, November 27, the bright star Spica will appear near the waning crescent Moon. As Spica rises on the east-southeastern horizon (at 3:41 AM EST) it will be a degree below the Moon. As morning progresses the Moon will shift towards Spica, and for much of the Eastern USA and Canada the Moon will block Spica from view. See http://www.lunar-occultations.com/iota/bstar/1127zc1925.htm for a map and information on the areas that will be able to see this eclipse. Times will vary by location, but for the Washington, DC area, Spica will vanish behind the illuminated limb of the Moon at 5:34 AM and the Moon will still be blocking Spica from sight as morning twilight begins at 6:02 AM.
      Early Sunday morning, December 1, at 1:22 AM EST, will be the new Moon, when the Moon passes between the Earth and the Sun and will not be visible from the Earth.
      The day of or the day after the New Moon marks the start of the new month for most moon-based calendars. The eleventh month of the Chinese year of the Dragon starts on Sunday, December 1. Sundown on Sunday, December 1, marks the start of Kislev in the Hebrew calendar. Hanukkah will begin towards the end of Kislev. In the Islamic calendar the months traditionally start with the first sighting of the waxing crescent Moon. Many Muslim communities now follow the Umm al-Qura Calendar of Saudi Arabia, which uses astronomical calculations to start months in a more predictable way. Using this calendar, sundown on Sunday, December 1, will probably mark the beginning of Jumādā ath-Thāniyah, also known as Jumādā al-ʾĀkhirah.
      Wednesday evening, December 4, the bright planet Venus will appear 3 degrees to the upper right of the waxing crescent Moon. The Moon will be 15 degrees above the southwestern horizon as evening twilight ends (at 5:49 PM EST). The Moon will set 2 hours later (at 7:46 PM).
      Thursday evening, December 5, the planet Mercury will be passing between the Earth and the Sun as seen from the Earth, called inferior conjunction. Planets that orbit inside of the orbit of Earth can have two types of conjunctions with the Sun, inferior (when passing between the Earth and the Sun) and superior (when passing on the far side of the Sun as seen from the Earth). Mercury will be shifting from the evening sky to the morning sky and will begin emerging from the glow of dawn on the eastern horizon in less than a week.
      Saturday afternoon, December 7, the planet Jupiter will be at its closest and brightest for the year, called “opposition” because it will be opposite the Earth from the Sun, effectively a “full” Jupiter. Jupiter will be 12 degrees above the east-northeastern horizon as evening twilight ends (at 5:49 PM EST), will reach its highest in the sky right around midnight (11:59 PM), and will be 11 degrees above the west-northwestern horizon as morning twilight begins (Sunday morning at 6:11 AM). Only planets that orbit farther from the Sun than the Earth can be seen at opposition.
      Saturday evening, December 7, the planet Saturn will appear to the upper left of the waxing crescent Moon. They will be 6 degrees apart as evening twilight ends (at 5:49 PM EST). Saturn will appear to shift clockwise and closer to the Moon, so that by the time the Moon sets 5.5 hours later (at 11:18 PM) Saturn will be 3.5 degrees above the Moon on the west-southwestern horizon. For a swath in the Pacific Ocean off the coast of Asia the Moon will actually block Saturn from view, see http://lunar-occultations.com/iota/planets/1208saturn.htm for a map and information on the locations that can see this eclipse.
      Sunday morning, December 8, the Moon will appear half-full as it reaches its first quarter at 10:27 AM EST (when we can’t see it).
      Thursday morning, December 12, will be the first morning the planet Mercury will be above the east-southeastern horizon as morning twilight begins (at 6:14 AM EST).
      Thursday morning, December 12, at 8:18 AM EST, the Moon will be at perigee, its closest to the Earth for this orbit.
      Friday evening into Saturday morning, December 13 to 14, the Pleiades star cluster will appear near the full Moon. This may best be viewed with binoculars, as the brightness of the full Moon may make it hard to see the stars in this star cluster. As evening twilight ends (at 5:50 PM EST), the Pleiades will appear 4 degrees to the upper right of the full Moon. By the time the Moon reaches its highest for the night (at 10:49 PM), the Pleiades will be 6 degrees to the right. By about 2 AM the Pleiades will be 8 degrees to the lower right of the Moon and they will continue to separate as the morning progresses.
      As mentioned above, one of the three major meteor showers of the year, the Geminids (004 GEM), will peak Saturday morning, December 14. The light of the nearly full Moon will interfere. In a good year, this shower can produce 150 visible meteors per hour under ideal conditions, but this will not be a good year. For the Washington, DC area the MeteorActive app predicts that at about 2 AM EST on the morning of December 14, under bright suburban sky conditions, the peak rate from the Geminids and all other background sources might reach 20 meteors per hour. See the meteor summary above for suggestions for meteor viewing.
      Saturday morning, December 14, the full Moon, the bright planet Jupiter, and the bright star Aldebaran will form a triangle. As Aldebaran sets on the west-northwestern horizon (at 6:10 AM EST) it will be 9 degrees to the lower left of the Moon with Jupiter 7 degrees to the upper left of the Moon. Morning twilight will begin 6 minutes later.
      Saturday evening, December 15, the full Moon will have shifted to the other side of Jupiter. Jupiter will be 6 degrees to the right of the Moon as evening twilight ends (at 5:50 PM EST) and the pair will separate as the night progresses.  
      The full Moon after next will be Sunday morning, December 15, 2024, at 4:02 AM EST. This will be Saturday evening from Alaska Time westwards to the International Date Line. The Moon will appear full for about 3 days around this time, from Friday evening through Monday morning, making this a full Moon weekend.
      Share








      Details
      Last Updated Nov 13, 2024 Related Terms
      Earth’s Moon Skywatching Skywatching Tips Supermoons Keep Exploring Discover More Topics From NASA
      Moon Phases



      Moon Viewing Guide



      Asteroids, Comets & Meteors



      Planets


      View the full article
    • By NASA
      Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 22 min read
      Summary of the Second OMI–TROPOMI Science Team Meeting
      Introduction
      The second joint Ozone Monitoring Instrument (OMI)–TROPOspheric Monitoring Instrument (TROPOMI) Science Team (ST) meeting was held June 3–6, 2024. The meeting used a hybrid format, with the in-person meeting hosted at the National Center for Atmospheric Research (NCAR) in Boulder, CO. This was the first OMI meeting to offer virtual participation since the COVID-19 travel restrictions. Combining the onsite and virtual attendees, the meeting drew 125 participants – see Photo.
      OMI flies on NASA’s Earth Observing System (EOS) Aura platform, launched July 15, 2004. TROPOMI flies on the European Space Agency’s (ESA)–Copernicus Sentinel-5 Precursor platform. OMI has collected nearly 20 years of data and TROPOMI now has amassed 5 years of data. 
      Meeting content was organized around the following four objectives:
      discussion of the final reprocessing of OMI data (called Collection 4) and of data preservation; discussion of OMI data continuity and enhancements using TROPOMI measurements; development of unique TROPOMI products [e.g., methane (CH4)], applications (e.g., tracking emissions – and using them as indicators of socioeconomic and military activities), and new focus regions (e.g., Africa); and leverage synergies between atmospheric composition (AC) and greenhouse gas (GHG) missions, which form the international constellation of low Earth orbit (LEO) and geostationary orbit (GEO) satellites. The remainder of this article summarizes the highlights from each day of the meeting.
      Photo. Group photo of the in-person participants at the OMI–TROPOMI Science Team meeting. Photo credit: Shaun Bush/NCAR’s Atmospheric Chemistry Observations & Modeling DAY ONE
      The topics covered on the first day of the meeting included OMI instrument performance, calibration, final Collection 4 reprocessing, and plans for data preservation.
      OMI and Data Products Update
      Pieternel Levelt [Royal Netherlands Meteorological Institute (KNMI)—OMI Principal Investigator (PI) and NCAR’s Atmospheric Chemistry Observations & Modeling (ACOM) Laboratory—Director] began her presentation by dedicating the meeting to the memory of Johan de Vries, whose untimely death came as a shock to the OMI and TROPOMI teams – see In Memoriam: Johan de Vries for a celebration of his accomplishments and contributions to the OMI-TROPOMI team. She then went on to give a status update on OMI, which is one of two currently operating instruments on EOS Aura [the other being the Microwave Limb Sounder (MLS)]. OMI is the longest operating and stable ultraviolet–visible (UV-VIS) spectrometer. It continues to “age gracefully” thanks to its design, contamination control measures undertaken after the launch, and stable optical bench temperature. Lessons learned during integration of OMI on the Aura spacecraft (e.g., provide additional charged couple device shielding) and operations (i.e., monitor partial Earth-view port blockages) guided the development and operations of the follow-on TROPOMI mission.
      Continued monitoring of OMI performance is crucial for extending science- and trend-quality OMI records to the end of the Aura mission (currently expected in 2026). Antje Ludewig [KNMI] described the new OMI Level-1B (L1B) processor (Collection 4), which is based on TROPOMI data flow and optimized calibrations. The processor has been transferred to the U.S. OMI ST, led by Joanna Joiner [NASA’s Goddard Space Flight Center (GSFC)]. Matthew Bandel [Science Systems and Applications, Inc. (SSAI)] described NASA’s new OMI monitoring tools.
      Sergey Marchenko [SSAI] discussed OMI daily spectral solar irradiance (SSI) data, which are used for monitoring solar activity and can be compared with the dedicated Total and Spectral Solar Irradiance Sensor (TSIS-1) on the International Space Station. Continuation of OMI measurements will allow comparisons with the upcoming NASA TSIS-2 mission. Antje Inness [European Centre for Medium-range Weather Forecasts (ECMWF)] described operational assimilation of OMI and TROPOMI near-real time data into the European Copernicus Atmosphere Monitoring Service (CAMS) daily analysis/forecast and re-analysis – see Figure 1.
      In Memoriam: Johan de Vries
      Johan de Vries
      June 10, 1956 – May 8, 2024 Johan de Vries [Airbus Netherlands—Senior Specialist Remote Sensing] passed away suddenly on May 8, 2024, after a distinguished career. As a member of the Ozone Monitoring Instrument (OMI)–TROPOspheric Monitoring Instrument (TROPOMI) program, Johan conceptualized the idea of using a two-dimensional (2D) charged couple detector (CCD) for the OMI imaging spectrometer. This “push-broom” design led to high-spatial resolution spectra combined with high-spatial resolution and daily global coverage capability. His pioneering design for OMI has now been repeated on several other U.S. and international atmospheric composition measuring instruments – in both low and geostationary orbits – that are either in orbit or planned for launch soon. This achievement ensures that Johan’s legacy will live on for many years to come as these push-broom Earth observing spectrometers result in unprecedented data for environmental research and applications. The OMI and TROPOMI teams express their deepest condolences to de Vries family and colleagues over this loss. 
      Figure 1. An example of TROPOMI pixel nitrogen dioxide (NO2) observations over Europe on September 8, 2018 [top] and the corresponding super observations [bottom] for a model grid of 0.5 x 0.5o. Cloudy locations are colored grey. TROPOMI super observations are tested for use in the European Centre for Medium Range Weather Forecasting (ECMWF) Copernicus Atmosphere Monitoring Service (CAMS) data assimilation framework and will also be used for combined OMI–TROPOMI gridded datasets. Figure credit: reprinted from a 2024 paper posted on EGUSphere. Updates on OMI and TROPOMI Level-2 Data Products
      The U.S. and Netherlands OMI STs continue to collaborate closely on reprocessing and improving OMI and TROPOMI L2 science products. During the meeting, one or more presenters reported on each product, which are described in the paragraphs that follow.
      Serena Di Pede [KNMI] discussed the latest algorithm updates to the Collection 4 OMI Total Column Ozone (O3) product, which is derived using differential absorption spectroscopy (DOAS). She compared results from the new algorithm with the previous Collection 3 and with both the TROPOMI and OMI NASA O3 total column (Collection 3) algorithms. Collection 4 improved on previous versions by reducing the retrieval fit error and the along-track stripes of the product.
      Juseon “Sunny” Bak and Xiong Liu [both from Smithsonian Astrophysical Observatory (SAO)] gave updates on the status of the Collection 4 O3 profile products.
      Lok Lamsal [GSFC/University of Maryland, Baltimore County (UMBC)] and Henk Eskes [KNMI] compared Collection 3 and Collection 4 of the nitrogen dioxide (NO2) products.  
      Zolal Ayzpour [SAO] discussed the status of the OMI Collection 4 formaldehyde (HCHO) product.
      Hyeong-Ahn Kwon [SAO] presented a poster that updated the Glyoxal product.
      Omar Torres [GSFC] and Changwoo Ahn [GSFC/SSAI] presented regional trend analyses using the re-processed OMI Collection 4 absorbing aerosol product – see Figure 2.
      Figure 2. Reprocessed OMI records (from Collection 4) of monthly average aerosol optical depth (AOD) at 388 nm derived from the OMI aerosol algorithm (OMAERUV) over Western North America (WNA): 30°N–50°N, 110°W–128°W) [top] and over Eastern China (EC): 25°N–43°N, 112°E–124°E) [bottom]. A repeatable annual cycle over WNA occurred with autumn minimum at around 0.1 and a spring maximum in the vicinity of 0.4 during the 2005–2016 period. After 2017 much larger AOD maxima in the late summer are associated with wildfire smoke occurrence. Over EC (bottom) the 2005–2014 AOD record depicts a large spring maxima (0.7 and larger) due to long-range transport of dust and secondary pollution aerosols followed by late autumn minima (around 0.3). A significant AOD decrease is observed starting in 2015 with reduced minimum and maximum values to about 0.2 and 0.5 respectively. The drastic change in AOD load over this region is associated with pollution control measures enacted over the last decade. Figure credit: Changwoo Ahn/GSFC/SSAI and Omar Torres/GSFC Updates on EOS Synergy Products
      Several presenters and posters during the meeting gave updates on EOS synergy products, where OMI data are combined with data from another instrument on one of the EOS flagships. These are described below.
      Brad Fisher [SSAI] presented a poster on the Joint OMI–Moderate Resolution Imaging Spectroradiometer (MODIS) cloud products.
      Wenhan Qin [GSFC/SSAI] presented a poster on the MODIS–OMI Geometry Dependent Lambertian Equivalent Surface Reflectivity (GLER) product.
      Jerry Ziemke [GSFC and Morgan State University (MSU)] presented on the OMI–MLS Tropospheric Ozone product that showed post-COVID tropospheric O3 levels measured using this product, which are consistent with similar measurements obtained using other satellite O3 data – see Figure 3.
      Figure 3. Anomaly maps of merged tropospheric column O3 (TCO) satellite data (Dobson Units) for spring–summer 2020–2023. In this context, an anomaly is defined as deseasonalized O3 data. The anomaly maps are derived by first calculating seasonal climatology maps for 2016–2019 (i.e., pre-COVID pandemic) and then subtracting these climatology maps from the entire data record. 
      Note: The sensors used in this analysis include: the Ozone Mapping and Profiler Suite (OMPS)/ Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) and Cross-track Infrared Sounder (CrIS) on the Joint Polar Satellite System (JPSS) missions, which currently include the joint NASA–NOAA Suomi National Polar-orbiting Partnership (Suomi NPP), NOAA-20, and NOAA-21; the Earth Polychromatic Imaging Camera (EPIC)/MERRA-2 on the Deep Space Climate Observatory (DSCOVR); the Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS), both on EOS Aura; the Infrared Atmospheric Sounding Interferometer (IASI)/ Fast Optimal Retrievals on Layers (FORLI), IASI/SOftware for Fast Retrievals of IASI Data (SOFRID), and IASI/Global Ozone Monitoring Experiment–2 (GOME2). IASI flies on the European MetOp-A, -B, and -C missions. The OMPS/MERRA-2 and EPIC/MERRA-2 products subtract coincident MERRA-2 stratospheric column O3 from total O3 to derive tropospheric column O3. Figure credit: Jerry Ziemke/GSFC and Morgan State University (MSU)  Updates on Multisatellite Climate Data Records
      The OMI ST also discussed refining and analyzing multisatellite climate data records (CDRs) that have been processed with consistent algorithms. Several presenters reported on this work, who are mentioned below.
      Jenny Stavrakou [Koninklijk Belgisch Instituut voor Ruimte-Aeronomie, Royal Belgian Institute for Space Aeronomy (BIRA–IASB)], reported on work focusing on the OMI and TROPOMI HCHO CDR and Huan Yu [BIRA–IASB)] reported harmonized OMI and TROPOMI cloud height datasets based on improved O2-O2 absorption retrieval algorithm.
      Lok Lamsal [GSFC/UMBC, Goddard Earth Sciences Technology and Research (GESTAR) II], Henk Eskes, and Pepijn Veefkind [KNMI] reported on the OMI and TROPOMI NO2 CDRs – see Figure 4. 
      Si-Wan Kim [Yonsei University, South Korea] reported on OMI and TROPOMI long-term NO2 trends.
      Figure 4. OMI nitrogen dioxide (NO2) time series bridging the first GOME mission (which flew on the European Remote Sensing Satellite–2 (ERS–2) from 1995–2011 with limited coverage after 2003) and measurements from the two currently operating missions – OMI (2004–present) and TROPOMI (2017–present) – offer consistent climate data records that allow for studying long-term changes. This example shows tropospheric NO2 column time series from three instruments over Phoenix, AZ. The overlap between the OMI and TROPOMI missions allows for intercomparison between the two, which is crucial to avoid continuity-gaps in multi-instrument time series. The ERS-2 (GOME) had a morning equator crossing time (10:30 AM), while Aura (OMI) and Metop (TROPOMI) have afternoon equator crossing times of 1:45 PM and 1:30 PM respectively. Figure credit: Lok Lamsal/GSFC/University of Maryland, Baltimore County (UMBC) Update on Aura’s Drifting Orbit
      Bryan Duncan [GSFC—Aura Project Scientist] closed out the first day with a presentation summarizing predictions of Aura’s drifting orbit. Overall, the impact of Aura’s drift is expected to be minor, and the OMI and MLS teams will be able to maintain science quality data for most data products. He thanked the OMI/TROPOMI ST and user community for expressing their strong support for continuing Aura observations until the end of the Aura mission in mid–2026.
      DAY TWO
      The second day of the meeting focused on current and upcoming LEO and GEO Atmospheric Composition (AC) missions.
      TROPOMI Mission and Data Product Updates
      Veefkind presented an update on the TROPOMI mission, which provides continuation and enhancements for all OMI products. Tobias Borssdorf [Stichting Ruimte Onderzoek Nederland (SRON), or Netherlands Institute for Space Research] explained how TROPOMI, with its innovative shortwave infrared (SWIR) spectrometer, measures CH4 and carbon monoxide (CO). This approach continues measurements that began by the Measurements of Pollution in the Troposphere (MOPITT) instrument on Terra.
      Hiren Jethva [NASA Airborne Science Program] and Torres presented new TROPOMI near-UV aerosol products, including a new aerosol layer optical centroid height product, which takes advantage of the TROPOMI extended spectral range – see Figure 5.
      Figure 5. Global gridded (0.10° x 0.10°) composite map of aerosol layer optical centroid height (AH) retrieved from TROPOMI O2-B band observations from May–September 2023. Figure credit: Hiren Jethva/NASA Airborne Science Program GEMS–TEMPO–Sentinel-4 (UVN): A Geostationary Air Quality Constellation
      TROPOMI global observations serve as a de facto calibration standard used to homogenize a new constellation of three missions that will provide AC observations for most of the Northern Hemisphere from GEO. Two of the three constellation members are already in orbit. Jhoon Kim [Yonsei University—PI] discussed the Geostationary Environmental Monitoring Spectrometer (GEMS), launched on February 19, 2020 aboard the Republic of Korea’s GEO-KOMPSAT-2B satellite. It is making GEO AC measurements over Asia. The GEMS team is working on validating measurements of NO2 diurnal variations using ground-based measurements from the PANDORA Global Network over Asia and aircraft measurements from the ASIA–AQ field campaign.
      Liu discussed NASA’s Tropospheric Emission Monitoring of Pollution (TEMPO) spectrometer, launched on April 7, 2023, aboard a commercial INTELSAT 40E satellite. From its GEO vantage point, TEMPO can observe the Continental U.S., Southern Canada, Mexico, and the coastal waters of the Northwestern Atlantic and Northeastern Pacific oceans.
      Gonzales Abad [SAO] presented the first measurements from TEMPO. He explained that TEMPO’s design is similar to GEMS, but GEMS includes an additional visible and near infrared (VNIR) spectral channel (540–740 nm) to measure tropospheric O3, O2, and water vapor (H2Ov). TEMPO can perform optimized morning scans, twilight scans, and scans with high temporal resolution (5–10 minutes) over selected regions. Abad reported that the TEMPO team released L1B spectra and the first provisional public L2 products (Version 3), including NO2, HCHO, and total column O3. Andrew Rollins [National Oceanic and Atmospheric Administration’s (NOAA) Chemical Sciences Laboratory (CSL)] reported that the TEMPO team is working on validation of provisional data using both ground-based data from PANDORA spectrometers and data collected during several different airborne campaigns completed during the summer of 2023 and compiled on the AGES+ website.
      Ben Veihelmann [ESA’s European Space Research and Technology Center—PI] explained that ESA’s Copernicus Sentinel-4 mission will be the final member of the GEO AC constellation. Veefkind summarized the Sentinel-4 mission, which is expected to launch on the Meteosat Third Generation (MTG)-Sounder 1 (MTG-S1) platform in 2025. The mission is dedicated to measuring air quality and O3 over Europe and parts of the Atlantic and North Africa. Sentinel-4 will deploy the first operational UV-Vis-NIR (UVN) imaging spectrometer on a geostationary satellite. (Airbus will build UVN, with ESA providing guidance.) Sentinel-4 includes two instruments launched in sequence on MTG-S1 and MTG-S2 platforms designed to have a combined lifetime of 15 years. The mission by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) will operate Sentinel-4, and the Deutsches Zentrum für Luft- und Raumfahrt (DLR) or German Aerospace Center will be responsible for operational L2 processing.
      These three GEO AC missions, along with the upcoming ESA/EUMETSAT/Copernicus LEO (morning orbit, 9:30 a.m.) Sentinel-5 (S5) mission, will complete a LEO–GEO satellite constellation that will enable monitoring of the most industrialized and polluted regions in the Northern Hemisphere into the 2030s. Sentinel-5 will not continue the OMI–TROPOMI data record in the early afternoon; however, it will be placed in the morning orbit and follow ESA’s Global Ozone Monitoring Experiment (GOME) and EUMETSAT GOME-2 missions. By contrast, GEO AC observations over the Southern Hemisphere are currently not available. Several presenters described ongoing projects for capacity building for LEO satellite air quality data uptake and emission monitoring in Africa and advocated for the new geostationary measurements.
      Synergy with Other Current or Upcoming Missions
      Attendees discussed the synergy between upcoming AC, GHG, and ocean color missions. Current trends in satellite AC measurements are toward increased spatial resolution and combined observations of short-lived reactive trace gases – which are important for air quality (AQ) monitoring – and long-lived GHG – which are important for climate monitoring and carbon cycle assessments. Some trace gases (e.g., O3 and CH4) are both polluters and GHG agents. Others [e.g., NO2 and sulfur dioxide (SO2 )] are aerosol [particulate matter (PM)] and O3 precursors and are used as proxies and spatial indicators for anthropogenic CO2 and CH4 emissions.
      Yasjka Meijer [ESA—Copernicus Anthropogenic Carbon Dioxide Monitoring (CO2M) Mission Scientist]) reviewed the plans for CO2M, which includes high-resolution measurements [~4 km2 (~1.5 mi2)] of CO2 , CH4 , and NO2.
      Jochen Landgraf [SRON] described ESA’s new Twin Anthropogenic Greenhouse Gas Observers (TANGO) mission, which has the objective to measure CO2 , CH4 , and NO2 at even higher spatial resolution [~300 m (~984 ft)] using two small CubeSat spectrometers flying in formation.
      Hiroshi Tanimoto [National Institute for Environmental Studies, Japan] described the Japan Aerospace Exploration Agency’s (JAXA) Global Observing SATellite for greenhouse gases and water cycle (GOSAT-GW) mission, which includes the Total Anthropogenic and Natural Emission mapping SpectrOmeter (TANSO-3) spectrometer to simultaneously measure CO2 , CH4, and NO2 with ~1–3 km (~0.6–1.8 mi) spatial resolution in focus mode. GOSAT-GW will also fly the Advanced Microwave Scanning Radiometer 3 (AMSR3).
      Joanna Joiner [GSFC—Geostationary Extended Operations (GeoXO) Project Scientist and ACX Instrument Scientist] described the plans for the next-generation U.S. geosynchronous satellite constellation, which will consist of three satellites covering the full Earth disk: GEO-East, GEO-West, and GEO-Central. (By contrast, the current Geostationary Operational Environmental Satellite (GOES) series has two satellites: GOES–East and GOES–West.) GEO-Central will carry an advanced infrared sounder (GXS) for measuring vertical profiles of many trace gases, temperature and humidity, and a new UV-VIS spectrometer (ACX), which is a follow-on to TEMPO for AQ applications. Both GXS and ACX instruments will be built by BAE Systems, which acquired Ball Aerospace and Technology, and will also build the GeoXO ocean color spectrometer (OCX).
      Andrew Sayer [UMBC] described NASA’s Plankton, Aerosols, Clouds, and ocean Ecosystem (PACE), which launched on February 8, 2024. The PACE payload includes a high-spatial resolution [~1 km (~0.6 mi) at nadir] Ocean Color Instrument (OCI), which is a UV-Vis-NIR spectrometer with discrete SWIR bands presenting additional opportunities for synergistic observations with the AC constellation. Sayer presented OCI “first light” aerosol data processed using the unified retrieval algorithm developed by Lorraine Remer [UMBC].
      The second day concluded with a joint crossover session with NASA’s Health and Air Quality Applied Sciences Team (HAQAST) followed by a poster session. Several OMI–TROPOMI STM participants presented on a variety of topics that illustrate how OMI and TROPOMI data are being used to support numerous health and AQ applications. Duncan, who is also a member of HAQAST team, presented “20 years of health and air quality applications enabled by OMI data.” He highlighted OMI contributions to AQ and health applications, including NO2 trend monitoring, inferring trends of co-emitted species [e.g., CO2, CO, some Volatile Organic Compounds (VOCs)], validation of new satellite missions (e.g., TEMPO, PACE), and burden of disease studies.
      DAY THREE
      Discussions on the third day focused on advanced retrieval algorithms, leading to new products and new applications for OMI and TROPOMI data. Several presentations described applications of TROPOMI CH4 data and synergy with small satellites.
      Advanced Retrieval Algorithms and New Data Products
      Ilse Aben [SRON] described TROPOMI global detection of CH4 super-emitters using an automated system based on Machine Learning (ML) techniques – see Figure 6. Berend Schuit [SRON] provided additional detail on these methods. He introduced the TROPOMI CH4 web site to the meeting participants. He explained how TROPOMI global CH4 measurements use “tip-and-cue” dedicated satellites with much higher spatial resolution instruments [e.g., GHGSat with ~25-m (~82-ft) resolution] to scan for individual sources and estimate emission rates. Most CH4 super-emitters are related to urban areas and/or landfills, followed by plumes from gas and oil industries and coal mines.
      Figure 6. Methane plume map produced by SRON shows TROPOMI large CH4 emission plumes for the week of the OMI–TROPOMI meeting (June 3–6, 2024). Figure credit: Itse Aben/Stichting Ruimte Onderzoek Nederland (SRON) Alba Lorente [Environmental Defense Fund—Methane Scientist] introduced a new MethaneSAT satellite launched in March 2024, which aims to fill the gap in understanding CH4 emissions on a regional scale [200 x 200 km2 (~77 x 77 mi2)] from at least 80% of global oil and gas production, agriculture, and urban regions. Alex Bradley [University of Colorado, Boulder] described improvements to TROPOMI CH4 retrievals that were achieved by correcting seasonal effects of changing surface albedo.
      Daniel Jacob [Harvard University] presented several topics, including the highest resolution [~30 m (~98 ft)] NO2 plume retrievals from Landsat-8 – see Figure 7 – and Sentinel-2 imagers. He also discussed using a ML technique trained with TROPOMI data to improve NO2 retrievals from GEMS and modeling NO2 diurnal cycle and emission estimates. He introduced the ratio of ammonia (NH3) to NO2 (NH3/NO2) as an indicator of particulate matter with diameters less than 2.5 µm (PM2.5) nitrate sensitivity regime. Jacob emphasized the challenges related to satellite NO2 retrievals (e.g., accounting for a free-tropospheric NO2 background and aerosols).
      Figure 7. Landsat Optical Land Imager (OLI) image, obtained on October 17, 2021 over Saudi Arabia, shows power plant exhaust, which contains nitrogen dioxide (NO2) drifting downwind from the sources (the two green circles are the stacks). The ultra-blue channel (430–450 nm) on OLI enables quantitative detection of NO2 in plumes from large point sources at 30-m (~98-ft) resolution. This provides a unique ability for monitoring point-source emissions of oxides of nitrogen (NOx). The two stacks in the image are separated by 2 km (~1.2 mi). Figure credit: Daniel Jacob – repurposed from a 2024 publication in Proceedings of the National Academies of Sciences (PNAS) Steffen Beirle [Max Planck Institute for Chemistry, Germany] explained his work to fit TROPOMI NO2 column measurements to investigate nitric oxide (NO) to NO2 processing in power plant plumes. Debra Griffin [Environment and Climate Change Canada (ECCC)] used TROPOMI NO2 observations and ML random forest technique to estimate NO2 surface concentrations. Sara Martinez-Alonso [NCAR] investigated geographical and seasonal variations in NO2 diurnal cycle using GEMS and TEMPO data.  Ziemkecombined satellite O3 data to confirm a persistent low anomaly (~5–15%) in tropospheric O3 after 2020.  Jethva presented advanced OMI and TROPOMI absorbing aerosol products. Yu described improved OMI and TROPOMI cloud datasets using the O2-O2 absorption band at 477 nm. Nicholas Parazoo [Jet Propulsion Laboratory (JPL)] described TROPOMI Fraunhofer line retrievals of red solar-induced chlorophyll fluorescence (SIF) near O2-B band (663–685 nm) to improve mapping of ocean primary productivity. Liyin He [Duke University] described using satellite terrestrial SIF data to study the effect of particulate pollution on ecosystem productivity.
      New Applications
      Zachary Fasnacht [SSAI] used OMI and TROPOMI spectra to train a neural network to gap-fill MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color data under aerosol, sun glint, and partly cloudy conditions. This ML method can also be applied to PACE OCI spectra. Anu-Maija Sundström [Finnish Meteorological Institute (FMI)] used OMI and TROPOMI SO2 and O3 data as proxies to study new particle formation events. Lindsey Anderson [University of Colorado, Boulder] described how she used TROPOMI NO2 and CO measurements to estimate the composition of wildfire emissions and their effect on forecasted air quality. Heesung Chong [SAO] applied OMI bromine oxide (BrO) retrievals to the NOAA operational Ozone Mapping and Profiling Suite Nadir Mapper (OMPS-NM) on joint NOAA–NASA Suomi-National Polar-orbiting Partnership (Suomi NPP) satellite with the possibility to continue afternoon measurements using similar OMPS-NM instruments on the four Joint Polar Satellite System missions (JPSS-1,-2,-3,-4) into the 2030s. (JPSS-1 and -2 are now in orbit and known as NOAA-20 and -21 respectively; JPSS-4 is planned for launch in 2027, with JPSS-3 currently targeted for 2032.)
      Kim demonstrated the potential for using satellite NO2 and SO2 emissions as a window into socioeconomic issues that are not apparent by other methods. For example, she showed how OMI and TROPOMI data were widely used to monitor air quality improvements in the aftermath of COVID-19 lockdowns. (Brad Fisher [SSAI] presented a poster on a similar topic.)
      Cathy Clerbaux [Center National d’Études Spatiale (CNES), or French Space Agency] showed how her team used TROPOMI NO2 data to trace the signal emitted by ships and used this information to determine how the shipping lanes through the Suez Canal changed in response to unrest in the Middle East. Iolanda Ialongo [FMI] showed a similar drop of NO2 emissions over Donetsk region due to the war in Ukraine. Levelt showed how OMI and TROPOMI NO2 data are used for capacity-building projects and for air quality reporting in Africa. She also advocated for additional geostationary AQ measurements over Africa.
      DAY FOUR
      Discussions on the final day focused on various methods of assimilating satellite data into air quality models for emission inversions and aircraft TEMPO validation campaigns. The meeting ended with Levelt giving her unique perspective on the OMI mission, as she reflected on more than two decades being involved with the development, launch, operation, and maintenance of OMI.  
      Assimilating Satellite Data into Models for Emissions
      Brian McDonald [CSL] described advance chemical data assimilation of satellite data for emission inversions and the GReenhouse gas And Air Pollutants Emissions System (GRA2PES). He showed examples of assimilations using TROPOMI and TEMPO NO2 observations to adjust a priori emissions. He also showed that when TEMPO data are assimilated, NOx emissions adjust faster and tend to perform better at the urban scale. Adrian Jost [Max Planck Institute for Chemistry] described the ESA-funded World Emission project to improve pollutant and GHG emission inventories using satellite data. He showed examples of TROPOMI SO2 emissions from large-point sources and compared the data with bottom-up and NASA SO2 emissions catalogue.
      Ivar van der Velde [SRON] presented a method to evaluate fire emissions using new satellite imagery of burned area and TROPOMI CO. Helene Peiro [SRON] described her work to combine TROPOMI CO and burned area information to compare the impact of prescribed fires versus wildfires on air quality in the U.S. She concluded that prescribed burning reduces CO pollution. Barbara Dix [University of Colorado, Boulder, Cooperative Institute for Research in Environmental Sciences] derived NOx emissions from U.S. oil and natural gas production using TROPOMI NO2 data and flux divergence method. She estimated TROPOMI CH4 emissions from Denver–Julesburg oil and natural gas production. Dix explained that the remaining challenge is to separate oil and gas emissions from other co-located CH4 sources. Ben Gaubert [NCAR, Atmospheric Chemistry Observations and Modeling] described nonlinear and non-Gaussian ensemble assimilation of MOPITT CO using the data assimilation research testbed (DART).
      Andrew (Drew) Rollings [CSL] presented first TEMPO validation results from airborne field campaigns in 2023 (AGES+ ), including NOAA CSL Atmospheric Emissions and Reactions observed from Megacities to Marine Aeras (AEROMMA) and NASA’s Synergistic TEMPO Air Quality Science (STAQS) campaigns.
      A Reflection on Twenty Years of OMI Observations
      Levelt gave a closing presentation in which she reflected on her first involvement with the OMI mission as a young scientist back in 1998. This led to a collaboration with the international ST to develop the instrument, which was included as part of Aura’s payload when it launched in July 2004. She reminisced about important highlights from 2 decades of OMI, e.g., the 10-year anniversary STM at KNMI in 2014 (see “Celebrating Ten Years of OMI Observations,” The Earth Observer, May–Jun 2014, 26:3, 23–30), and the OMI ST receiving the NASA/U.S. Geological Survey Pecora award in 2018 and the American Meteorological Society’s Special award in 2021.
      Levelt pointed out that in this combined OMI–TROPOMI meeting the movement towards using air pollution and GHG data together became apparent. She ended by saying that the OMI instrument continues to “age gracefully” and its legacy continues with the TROPOMI and LEO–GEO atmospheric composition constellation of satellites that were discussed during the meeting.
      Conclusion
      Overall, the second OMI–TROPOMI STM acknowledged OMI’s pioneering role and TROPOMI’s unique enhancements in measurements of atmospheric composition: 
      Ozone Layer Monitoring: Over the past two decades, OMI has provided invaluable data on the concentration and distribution of O3 in the Earth’s stratosphere. This data has been crucial for understanding and monitoring the recovery of the O3 layer following international agreements, such as the Montreal Protocol. Air Quality Assessment: OMI’s high-resolution measurements of air pollutants, such as NO2, SO2, and HCHO, have significantly advanced our understanding of air quality. This information has been vital for tracking pollution sources, studying their transport and transformation, and assessing their impact on human health and the environment. Climate Research: The data collected by OMI has enhanced our knowledge of the interactions between atmospheric chemistry and climate change. These insights have been instrumental in refining climate models and improving our predictions of future climate scenarios. Global Impact: The OMI instrument has provided near-daily global coverage of atmospheric data, which has been essential for scientists and policymakers worldwide. The comprehensive and reliable data from OMI has supported countless research projects and informed decisions aimed at protecting and improving our environment. OMI remains one of the most stable UV/Vis instruments over its two decades of science and trend quality data collection. The success of the OMI and TROPOMI instruments is a testament to the collaboration, expertise, and dedication of both teams.
      Nickolay Krotkov
      NASA’s Goddard Space Flight Center
      Nickolay.a.krotkov@nasa.gov
      Pieternel Levelt
      National Center for Atmospheric Research, Atmospheric Chemistry Observations & Modeling
      levelt@ucar.edu
      Share








      Details
      Last Updated Nov 12, 2024 Related Terms
      Earth Science View the full article
    • By NASA
      Teams with NASA and Lockheed Martin prepare to conduct testing on NASA’s Orion spacecraft on Thursday, Nov. 7, 2024, in the altitude chamber inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida. Lockheed Martin/David Wellendorf Teams lifted NASA’s Orion spacecraft for the Artemis II test flight out of the Final Assembly and System Testing cell and moved it to the altitude chamber to complete further testing on Nov. 6 inside the Neil A. Armstrong Operations and Checkout building at NASA’s Kennedy Space Center in Florida.
      Engineers returned the spacecraft to the altitude chamber, which simulates deep space vacuum conditions, to complete the remaining test requirements and provide additional data to augment data gained during testing earlier this summer.
      The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back.
      Image credit: Lockheed Martin/David Wellendorf
      View the full article
  • Check out these Videos

×
×
  • Create New...