Jump to content

NASA’s SpaceX Crew-7 Completes Scientific Mission on Space Station


NASA

Recommended Posts

  • Publishers

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

After months aboard the International Space Station, NASA’s SpaceX Crew-7 is returning to Earth. NASA astronaut Jasmin Moghbeli and Roscosmos cosmonaut Konstantin Borisov each completed their first spaceflight. JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa and ESA (European Space Agency) astronaut Andreas Mogensen each completed their second spaceflight.

During their time on the station, Crew-7 conducted science experiments and technology demonstrations to benefit people on Earth and prepare humans for future space missions. Here’s a look at some scientific milestones accomplished during their mission:

Download full-resolution versions of all photos in this article.

The Human Body in Space

ESA (European Space Agency) astronaut Andreas Mogensen processes blood samples for the Immunity Assay investigation, which monitors the impact of spaceflight on immune function. Prior to the experiment, scientists could only test the immune function before and after flight. Taking samples while on station provides scientists a clearer assessment of changes to the immune system during spaceflight.

: ESA astronaut Andreas Mogensen, wearing a black t-shirt and green pants, holds a syringe and smiles at the camera. He is holding a syringe with both gloved hands. Several vials are taped to the workbench in front of him.
NASA

Since physiological changes in microgravity can resemble how the human body ages on Earth, scientists can use the space station for age-related studies. NASA astronaut Jasmin Moghbeli collects cell samples inside the Life Science Glovebox for Space AGE, a study to understand how microgravity-induced age-like changes affect liver regeneration. Results could boost our understanding of aging and its effects on disease mechanisms.

Jasmine Moghbeli, wearing a red polo shirt and a headset, looks up and smiles at the camera. Her arms are inside a large, clear glovebox used to contain experiments. Equipment, laptops, cords, and lights cover the walls behind her.
NASA

JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa exercises with ARED Kinematics, a device that mimics forces generated when lifting free weights on Earth. The experiment assesses the current exercise programs on station to understand the most effective countermeasures to maintain muscle and bone strength.

Expedition 70 Flight Engineer and JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa works out on the Advanced Resisitive Exercise Device located (ARED) in the International Space Station's Tranquility module. The ARED is designed to mimic the inertial forces generated when lifting free weights on Earth.
NASA

Safe Water

ESA (European Space Agency) astronaut Andreas Mogensen works on ESA’s Aquamembrane-3 technology demonstration, which tests a special membrane to eliminate contaminants from wastewater. The membrane incorporates proteins called aquaporins, found in biological cells, and may be able to filter water using less energy. An aquaporin membrane-based system could improve water reclamation and reduce materials needed for future deep space missions.

Andreas Mogenson looks at the camera while working on an orange box with several tubes sticking out of it floating next to him.
NASA

NASA astronaut Jasmin Moghbeli prepares a water sample for DNA sequencing using the EHS BioMole Facility, a technology demonstration used to monitor microbes in water samples aboard a spacecraft. Future exploration missions will need to analyze water to ensure it is safe for crews to drink while far from Earth.

Jasmine Moghbeli holds a pipette used for water samples while working at a table. Her hair is floating around her head and a microphone floats by her ear.
NASA

Growing Food on Station

Tomato seedlings sprout in the space station’s Advanced Plant Habitat. At the beginning of Crew-7’s mission, Plant Habitat-03 wrapped up a months-long experiment that tests whether epigenetics are passed to subsequent generations. Epigenetic changes involve the addition of extra information to DNA, which regulates how genes turn on or off but does not change the sequence of the DNA itself. Crew-7 also grew tomatoes for Plant Habitat-06, which investigates how the plant immune functions adapt to spaceflight and how spaceflight affects plant production.

iss070e064263 (Jan. 12, 2024) -- Inside the Plant Habitat-06 facility, the early stages of seedling growth of wild-type tomatoes is visible. This specific investigation takes a look at the physiological and genetic responses to defense activation in wild-type and immune-deficient tomatoes during spaceflight.
NASA

BioNutrients completed five years of demonstrating technology to produce nutrients on demand aboard the space station. Since vitamins can degrade over time, the investigation used engineered microbes to test generating fresh nutrient supply for future long-duration missions.

Four small clear, cylindrical containers are attached by Velcro inside a black box. The containers each hold an orange bubbly liquid.
NASA

Outside the Station

JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa retrieves MISSE-17 hardware after the experiment spent six months outside the station. MISSE experiments expose materials and organisms to the space environment to analyze performance and durability. Crew-7 installed MISSE-18, which houses several materials including printed quantum dots arrays used to make a miniaturized and ultra-compact spectrometer.

Furukawa, wearing a gray shirt and khaki pants, smiles at the camera as he pulls hardware through the open cylindrical door of an airlock. The suitcase-sized hardware has a silver front, with blue boxes behind it.
NASA

CubeSats deployed from the space station are a lower-cost alternative to traditional satellites. Crew-7 deployed two CubeSats from Japanese schools, including BEAK CubeSat, which tests novel technologies for future nano-sized planetary probes and Clark sat-1, which transmits voice and imagery data to ground control stations on Earth.

The BEAK CubeSat is deployed from a small satellie deployer in the grips of the Japanese robotic arm attached to the Kibo laboratory module. BEAK, launched to the Interational Space Station aboard the SpaceX Dragon cargo spacecraft, was developed by The University of Tokyo in Kashiwa, Japan, and the Institute of Space and Astronautical Science in Sagamihara, Japan. Its primary mission is to test novel technologies for use in future nano-sized planetary probes.
NASA

Picture Perfect

Using handheld digital cameras, astronauts capture images of the Earth below. This imagery is used by researchers across disciplines from glaciology to ecology. A Crew-7 member captured this image of the Aladaghlar Mountains in northwest Iran, where the convergent boundary of the Arabia and Eurasia tectonic plates created folds in the landscape over millions of years.

A brown textured map of Northwest Iran. There are folds of mountains in an array of white, tan, and brown.
NASA

These bright red streaks above a thundercloud on Earth are a rare phenomenon known as red sprites. Red sprites happen above the clouds and are not easily studied from Earth. This image was captured on the space station with a high-speed camera for the Thor-Davis experiment. Imagery collected from the station is instrumental in studying the effects of thunderstorms and electrical activity on Earth’s climate and atmosphere.

A red streak shoots into the blackness of space. Below it is a blue ring around a bright white circle, with the top of a thundercloud visible below it.
ESA

Biology on Station

Recent spaceflight experiments found individual animal cells can sense the effects of gravity. Cell Gravisensing investigation from JAXA (Japanese Aerospace Exploration Agency) seeks to understand how cells can do this. JAXA astronaut Satoshi Furukawa uses a microscope to examine cells during spaceflight and document cell responses to microgravity. Understanding the mechanisms of cell gravity sensing could contribute to new drug development.

Satoshi Furukawa is wearing a yellow short-sleeved shirt, a mask, googles, and blue gloves as he works with a black microscope on a workbench.
NASA

NASA astronaut Jasmin Moghbeli works in the BioFabrication Facility (BFF), which bioprints organ-like tissues in microgravity. During the Crew-7 mission, BFF-Cardiac tested bioprinting and processing cardiac tissue samples. This experiment could help to advance technology to support the development of biological patches to replace damaged tissues and potentially entire muscles.

Moghbeli’s arms are inserted into large plastic gloves that are connected to a clear flexible plastic glovebag attached to the wall of the space station. Moghbeli is wearing a blue shirt and a headlamp. She is looking at the camera over her shoulder and smiling.
NASA

Special Delivery

Two commercial spacecraft visited during Crew-7’s time in space bringing critical science, hardware, and supplies to the station: SpaceX Dragon in November 2023 and Northop Grumman’s Cygnus in February 2024.

A white Dragon spacecraft approaches the station against the blackness of space. Its top hatch is open, revealing the docking ring, and jets of propulsion fuel are visible shooting from its top and bottom on the left side. A portion of the station is visible at the bottom left of the image.
NASA
Northrop Grumman's Cygnus space freighter approaches the International Space Station to deliver more than 8,200 pounds of science experiments, crew supplies, and station hardware for the Expedition 70 crew. Both spacecraft were orbiting 259 miles above the south Pacific Ocean at the time of this photograph.
NASA

Andrea Lloyd
International Space Station Program Research Office
Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      (Oct. 25, 2024) — NASA astronaut and Expedition 72 Commander Suni Williams is pictured at the galley inside the International Space Station’s Unity module at the beginning of her day.Credit: NASA Students from Colorado will have the opportunity to hear NASA astronauts Nick Hague and Suni Williams answer their prerecorded questions aboard the International Space Station on Thursday, Nov. 14.
      Watch the 20-minute space-to-Earth call at 1 p.m. EST on NASA+. Learn how to watch NASA content on various platforms, including social media.
      The JEKL Institute for Global Equity and Access, in partnership with the Denver Museum of Nature and Science, will host students from the Denver School of Science and Technology for the event. Students are building CubeSat emulators to launch on high-altitude balloons, and their work will drive their questions with crew.
      Media interested in covering the event must RSVP by 5 p.m., Wednesday, Nov. 13, to Daniela Di Napoli at: daniela.dinapoli@scienceandtech.org or 832-656-5231.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Nov 12, 2024 EditorTiernan P. DoyleLocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Communicating and Navigating with Missions Humans in Space ISS Research Johnson Space Center Near Space Network Space Communications & Navigation Program Sunita L. Williams View the full article
    • By NASA
      NASA/Loral O’Hara The Choctaw Heirloom Seeds investigation flew five varieties of heirloom seeds from the Choctaw Nation of Oklahoma aboard the International Space Station in early November 2023. The seeds are Isito (Choctaw Sweet Potato Squash), Tobi (Smith Peas), Tanchi Tohbi (Flour Corn), Tvnishi (Lambsquarter), and Chukfi Peas. The seeds spent six months aboard station, returning to Earth in April 2024.
      Next spring, Jones Academy students will plant the space-flown seeds alongside Earth-bound seeds of the same type in the school’s Growing Hope Garden. Students will hypothesize how the seeds will grow and make observations throughout the growing season.
      Middle school teachers are developing curriculum incorporating the seeds’ journey to space station and students’ experiments in the garden. This research could impact Native and Indigenous populations across the United States, inviting underrepresented groups to engage with science, technology, engineering, and mathematics.
      Image credit: NASA/Loral O’Hara
      View the full article
    • By NASA
      Vanessa Wyche, director of NASA’s Johnson Space Center provides an update on Exploration Park on Feb. 15, 2022, at the ASCENDxTexas conference at South Shore Harbor Resort and Conference Center. Credit: NASA / Josh Valcarcel Nov. 12, 2024
      Director Vanessa Wyche of NASA’s Johnson Space Center in Houston will join Texas A&M University leaders and guests Friday, Nov. 15, to break ground for the new Texas A&M University Space Institute.
      U.S. media interested in participating in person must contact the NASA Johnson newsroom no later than 5 p.m. Wednesday, Nov. 13, by calling 281-483-5111 or emailing: jsccommu@mail.nasa.gov. NASA’s media accreditation policy is available online.
      The groundbreaking is planned for 10 a.m. CST Nov. 15, at Johnson Space Center’s Exploration Park. Additional participants will include:
      Greg Bonnen, Texas House of Representatives, chairman of House Appropriations Committee William Mahomes, Jr., Board of Regents chairman, Texas A&M University System  John Sharp, chancellor Texas A&M University System  General (Ret.) Mark Welsh III, president, Texas A&M University  Robert H. Bishop, vice chancellor and dean, Texas A&M Engineering Nancy Currie-Gregg, director, Texas A&M University Space Institute Robert Ambrose, associate director for space and robotics initiatives, Texas A&M Engineering Experiment Station  The institute, funded through a $200 million initial investment from the State of Texas, will support research for civilian, defense and commercial space missions as part of NASA Johnson’s Exploration Park. Key features will include the world’s largest indoor simulation spaces for lunar and Mars surface operations, state-of-the-art high-bay laboratories, and multifunctional project rooms.
      The Texas A&M Space Institute is set to open in Summer 2026. 
      NASA is leasing the 240-acre Exploration Park to create facilities that enable a collaborative development environment, increase commercial access, and enhance the United States’ commercial competitiveness in the space and aerospace industries. 
      To learn more about NASA Johnson and the Texas A&M University Space Institute, visit:
      https://www.nasa.gov/nasas-johnson-space-center-hosts-exploration-park
      -end-
      Kelly Humphries
      Johnson Space Center, Houston
      281-483-5111
      kelly.o.humphries@nasa.gov
      View the full article
    • By NASA
      Researchers demonstrated the feasibility of 3D bioprinting a meniscus or knee cartilage tissue in microgravity. This successful result advances technology for bioprinting tissue to treat musculoskeletal injuries on long-term spaceflight or in extraterrestrial settings where resources and supply capacities are limited.

      BFF Meniscus-2 evaluated using the BioFabrication Facility to 3D print knee cartilage tissue using bioinks and cells. The meniscus is the first engineered tissue of an anatomically relevant shape printed on the station. Manufactured human tissues have potential as alternatives to donor organs, which are in short supply. Bioprinting in microgravity overcomes some of the challenges present in Earth’s gravity, such as deformation or collapse of tissue structures.
      A human knee meniscus 3D bioprinted in space using the International Space Station’s BioFabrication Facility.Redwire Complex cultures of central nervous system cells known as brain organoids can be maintained in microgravity for long periods of time and show faster development of neurons than cultures on Earth. These findings could help researchers develop treatments for neurodegenerative diseases on Earth and address potential adverse neurological effects of spaceflight.

      Cosmic Brain Organoids examined growth and gene expression in 3D organoids created with neural stem cells from individuals with primary progressive multiple sclerosis and Parkinson’s disease. Results could improve understanding of these neurological diseases and support development of new treatments. Researchers plan additional studies on the underlying causes of the accelerated neuron maturation.
      Neural growth in brain organoids that spent more than a month in space. Jeanne Frances Loring, National Stem Cell Foundation Researchers demonstrated that induced pluripotent stem cells (iPSCs) can be processed in microgravity using off the-shelf cell culture materials. Using standard laboratory equipment and protocols could reduce costs and make space-based biomedical research accessible to a broader range of scientists and institutions.

      Stellar Stem Cells Ax-2 evaluated how microgravity affects methods used to generate and grow stem cells into a variety of tissue types on the ground. iPSCs can give rise to any type of cell or tissue in the human body, and insight into processing in space could support their use in regenerative medicine and future large-scale biomanufacturing of cellular therapeutics in space.
      NASA astronaut Peggy Whitson, an Axiom Mission 2 crew member, works on stem cell research on a previous mission. NASA/Shane KimbroughView the full article
    • By NASA
      NASA's SpaceX 31st Cargo Resupply Services Launch
  • Check out these Videos

×
×
  • Create New...