Jump to content

Ocean Worlds Planetary Scientist Dr. Lynnae Quick


Recommended Posts

  • Publishers
Posted
A woman that's standing in the woods wearing a red blouse and red suit jacket smiles widely at the camera.

“I was not interested in science until I got to high school, and I didn’t find what I wanted to focus on as far as what I liked the most about science until I was in grad school. I spent a summer doing an internship at Johns Hopkins Applied Physics Lab focused on Jupiter’s moon Europa, completely fell in love with Europa, and completely fell in love with planetary science. 

“I found it amazing that this world was covered in ice and had an ocean underneath. I was mapping this area on Europa called Conamara Chaos, where we believe that the surface is locally heated. Because of this, there are ginormous icebergs that broke off and floated around in this slushy ice, so I learned to map [that part of the surface]. Having my physics and math background and thinking about a world with a subsurface ocean, I was like, ‘OK, this is a good marriage of fluid mechanics and heat transfer. Europa is a nice world to study that will combine my background with this new planetary science thing that I love.’

“What happened with Europa Clipper was I decided to do my dissertation topic on [the moon]. We’d seen images of these beautiful south polar plumes on Enceladus, these geyser-like plumes, but Europa is much bigger. It has much more water and receives much more tidal heating. Why didn’t the Galileo spacecraft see plumes on Europa? Why don’t we see geysers?

“My dissertation focused on what it would take to have this geyser activity on Europa and for spacecraft cameras to image it. I remember defending my dissertation well but sitting there thinking, ‘People will think I’m a quack because we’ve never seen geysers on Europa.’ That was in May, and by December, LorenzRoth’s paper came out that Hubble may have detected geysers on Europa. That’s when I was like, ‘Oh yes, I might actually have a career!’

“Shortly after that, the call came out for instrument proposals. Zibi Turtle [Principal Investigator for the Europa Imaging System] met me at a conference and said, ‘We’re writing a proposal for a camera for the Europa mission. Would you want to be on it?’ At that point, I was a year out of my Ph.D. and was like, ‘Are you kidding me?’ Because that usually never happens. Usually, the people on these instrument teams are more senior. They’ve been around longer, so it’s very rare to be just finishing up your Ph.D. and someone asks you. I felt like it was the best thing in the world because Europa was already my favorite place in the solar system. It would be like a dream to be on the team that will send a spacecraft there to study it. That doesn’t happen very often. So, I said, ‘Sure. I would love to.’

“Our camera got selected, and is an instrument on the Europa Clipper mission, and my role on the team is to look for those geysers! I’ve come a long way from thinking, ‘Well, I did this whole dissertation on geysers, what it would take for them to erupt, for a spacecraft to see them, and that people might not take me seriously as a scientist because of it,’ to being on the Europa Clipper camera team involved in investigating these plumes and ensuring we can image them if they’re there. It’s a full-circle moment.” 

– Dr. Lynnae Quick, Ocean Worlds Planetary Scientist, NASA’s Goddard Space Flight Center

Image Credit: NASA/Thalia Patrinos
Interviewer: NASA/Tahira Allen

Check out some of our other Faces of NASA. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      The ongoing mystery and debate surrounding UFO and drone sightings across the U.S. continue to captivate public attention. The lack of transparency and definitive answers from government agencies combined with the apparent absence of military action against these drones, has fueled speculation about possible cover-ups or incompetence. 

      Local, county, and state governments seem to have no knowledge of who is operating these drones, where they originate, or their purpose. Despite this, officials confidently assert that "there is no credible threat." This raises the question: how can they be so certain? The reality suggests they cannot. 
      Recently, the Pentagon issued a statement following claims by a New Jersey congressman that Iran had deployed a "mothership" off the U.S. East Coast, launching drones. The Pentagon denied any military origin for the drones and ruled out links to known foreign entities, but questions persist about whether critical information is being withheld. 
      If these drones are not linked to Iran, the U.S., Russia, China, or any other nation, some experts propose they may be part of clandestine "deep state" programs. These programs could involve advanced aerospace technologies being tested by private companies under classified initiatives. 
      Witness accounts, including those from a New Jersey sheriff and Coast Guard officials, suggest the drones exhibit highly unusual behaviors. These include emerging from the ocean and performing movements like abrupt 90-degree turns—characteristics that could imply the use of advanced propulsion systems not publicly known. 
      Another theory posits that the drones may not be physical objects at all but rather holographic projections, akin to the controversial "Project Blue Beam" concept. If true, this would explain why attempts to intercept them could fail—they might not physically exist. 
      The sheer number, endurance, and sophistication of these drones hint at a coordinated operation. Some theorists believe this might be part of a psychological operation designed to distract from pressing political, economic, or social issues. The timing of such events often appears suspiciously aligned with periods of public, economic unrest or uncertainty. 
      In the event that the "deep state" is orchestrating these phenomena, some fear it could be a prelude to a false flag operation, with motives and consequences yet to be revealed. 
      The situation remains shrouded in speculation, leaving the public to grapple with more questions than answers.
        View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Knowing whether or not a planet elsewhere in the galaxy could potentially be habitable requires knowing a lot about that planet’s sun. Sarah Peacock relies on computer models to assess stars’ radiation, which can have a major influence on whether or not one of these exoplanets has breathable atmosphere.
      Name: Sarah Peacock
      Title: Assistant Research Scientist
      Formal Job Classification: Astrophysicist
      Organization: Exoplanets and Stellar Astrophysics Laboratory, Astrophysics Division, Science Directorate (Code 667)
      Sarah Peacock is a research scientist with the Exoplanets and Stellar Astrophysics Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Md.Courtesy of Sarah Peacock What do you do and what is most interesting about your role here at Goddard?
      My overarching research goal is to find habitable planets in other solar systems. To do this, I study the high-energy radiation that specific stars produce to help determine if life can exist on any earthlike planets that orbit them.
      What is your educational background?
      In 2013, I received a Bachelor of Arts in astrophysics from the University of Virginia. I received both my master’s and doctorate degrees from the Lunar and Planetary Laboratory at the University of Arizona in 2016 and 2019, respectively.
      What drew you to study the stars?
      In high school, I took an astronomy class. We had a planetarium in our school and I had a wonderful teacher who inspired me to fall in love with the stars. She also showed us how many of the Harry Potter characters are drawn from the constellations and that spoke to my heart because I am a Harry Potter fan!
      How did you come to Goddard?
      I started at Goddard as a NASA post-doctoral fellow in July 2020, but I first saw the center the day before Goddard shut down due to COVID.
      How does high-energy radiation show you what planets outside our solar system might be habitable?
      High-energy radiation can cause a planet to lose its atmosphere. If a planet is exposed to too much high-energy radiation, the atmosphere can be blown off, and if there is no atmosphere, then there is nothing for life as we know it to breathe.
      We cannot directly measure the specific radiation that I study, so we have to model it. The universe has so many stars, and almost all stars host a planet. There are approximately 5,500 confirmed exoplanets so far, with an additional 7,500 unconfirmed exoplanets.
      I help identify systems that either have too much radiation, so planets in the habitable zone (the region around a star where liquid water could exist on a planet’s surface) are probably lifeless, or systems that have radiation levels that are safer. Ultimately, my research helps narrow down the most likely systems to host planets that should have stable atmospheres.
      Sarah Peacock research goal is to find habitable planets in other solar systems.Courtesy of Sarah Peacock Where does your data come from?
      I predominately use data from the Hubble Space Telescope and from the now-retired spacecraft GALEX. My work itself is more theory-focused though: I create a modeled stellar spectrum across all wavelengths and use observations to validate my modeling.
      What other areas of research are you involved in?
      I am working with a team analyzing data from the James Webb Space Telescope to see if earthlike planets around M-type stars (a star that is cooler and smaller than the Sun) have atmospheres and, if so, what the composition of those atmospheres is. An exciting result from this work is that we may have detected water in the atmosphere of a rocky planet for the first time ever. However, we cannot yet distinguish with our current observations if that water comes from the planet or from spots on the star (starspots on this host star are cold enough for water to exist in gas form).
      I am also helping manage a NASA Innovative Advance Concept (NIAC) study led by my mentor, Ken Carpenter, to work on the Artemis Enabled Stellar Imager (AeSI). If selected for further development, this imager would be an ultraviolet/optical interferometer located on the South Pole of the Moon. With this telescope, we would be able to map the surface of stars, image accretion disks, and image the centers of Active Galactic Nuclei.
      As a relatively new employee to Goddard, what have been your first impressions?
      Everyone who I have met, especially those in my lab, are incredibly friendly and welcoming. Starting during the pandemic, I was worried about feeling isolated, but instead, I was blown away by how many folks in my lab reached out to set up calls to introduce themselves and suggest opportunities for collaboration. It made me feel welcome.
      Who is your mentor and what did your mentor advise you?
      Ken Carpenter is my mentor. He encourages me to pursue my aspirations. He supports letting me chart my own path and being exposed to many different areas of research. I thank Ken for his support and encouragement and for including me on his projects.
      “Everyone who I have met, especially those in my lab, are incredibly friendly and welcoming.”Courtesy of Sarah Peacock What do you do for fun?
      I am a new mom, so my usual hobbies are on pause! Right now, fun is taking care of my baby and introducing life experiences to him.
      As a recently selected member of the Executive Committee for NASA’s Exoplanet Exploration Program Analysis Group (ExoPAG), what are your responsibilities?
      The NASA ExoPAG is responsible for soliciting and coordinating scientific community input into the development and execution of NASA’s exoplanet exploration program. We solicit opinions and advice from any scientist who studies exoplanets. We are a bridge between NASA’s exoplanet scientists and NASA Headquarters in Washington.
      What is a fun fact about yourself?
      I got married the same day I defended my Ph.D. I had my defense in the morning and got married in the afternoon at the courthouse.
      Who is your favorite author?
      I love to read; I always have three books going. My favorite author is Louise Penny, who writes mysteries, but I read all genres. Right now, I am reading a biography about Marjorie Merriweather Post.
      What is your favorite quote?
      “The most that can be expected from any model is that it can supply a useful approximation to reality: All models are wrong; some models are useful.” —Box and Draper 1987
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Dec 10, 2024 Related Terms
      People of Goddard Goddard Space Flight Center People of NASA Explore More
      5 min read NASA Scientific Balloon Flights to Lift Off From Antarctica
      Article 2 hours ago 5 min read Scientists Share Early Results from NASA’s Solar Eclipse Experiments 
      On April 8, 2024, a total solar eclipse swept across North America, from the western…
      Article 6 hours ago 17 min read 30 Years Ago: NASA Selects its 15th Group of Astronauts 
      Article 22 hours ago View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This animation shows data taken by NASA’s PACE and the international SWOT satellites over a region of the North Atlantic Ocean. PACE captured phytoplankton data on Aug. 8, 2024; layered on top is SWOT sea level data taken on Aug. 7 and 8, 2024. NASA’s Scientific Visualization Studio One Earth satellite can see plankton that photosynthesize. The other measures water surface height. Together, their data reveals how sea life and the ocean are intertwined.
      The ocean is an engine that drives Earth’s weather patterns and climate and sustains a substantial portion of life on the planet. A new animation based on data from two recently launched missions — NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) and the international Surface Water and Ocean Topography (SWOT) satellites — gives a peek into the heart of that engine.
      Physical processes, including localized swirling water masses called eddies and the vertical movement of water, can drive nutrient availability in the ocean. In turn, those nutrients determine the location and concentration of tiny floating organisms known as phytoplankton that photosynthesize, converting sunlight into food. These organisms have not only contributed roughly half of Earth’s oxygen since the planet formed, but also support economically important fisheries and help draw carbon out of the atmosphere, locking it away in the deep sea.
      “We see great opportunity to dramatically accelerate our scientific understanding of our oceans and the significant role they play in our Earth system,” said Karen St. Germain, director of the Earth Science Division at NASA Headquarters in Washington. “This visualization illustrates the potential we have when we begin to integrate measurements from our separate SWOT and PACE ocean missions. Each of those missions is significant on its own. But bringing their data together — the physics from SWOT and the biology from PACE — gives us an even better view of what’s happening in our oceans, how they are changing, and why.”
      A collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), the SWOT’ satellite launched in December 2022 to measure the height of nearly all water on Earth’s surface. It is providing one of the most detailed, comprehensive views yet of the planet’s ocean and its freshwater lakes, reservoirs, and rivers.
      Launched in February 2024, NASA’s PACE satellite detects and measures the distribution of phytoplankton communities in the ocean. It also provides data on the size, amount, and type of tiny particles called aerosols in Earth’s atmosphere, as well as the height, thickness, and opacity of clouds.
      “Integrating information across NASA’s Earth System Observatory and its pathfinder missions SWOT and PACE is an exciting new frontier in Earth science,” said Nadya Vinogradova Shiffer, program scientist for SWOT and the Integrated Earth System Observatory at NASA Headquarters.
      Where Physics and Biology Meet
      The animation above starts by depicting the orbits of SWOT (orange) and PACE (light blue), then zooms into the North Atlantic Ocean. The first data to appear was acquired by PACE on Aug. 8. It reveals concentrations of chlorophyll-a, a vital pigment for photosynthesis in plants and phytoplankton. Light green and yellow indicate higher concentrations of chlorophyll-a, while blue signals lower concentrations.
      Next is sea surface height data from SWOT, taken during several passes over the same region between Aug. 7 and 8. Dark blue represents heights that are lower than the mean sea surface height, while dark orange and red represent heights higher than the mean. The contour lines that remain once the color fades from the SWOT data indicate areas of the ocean with the same height, much like the lines on a topographic map indicate areas with the same elevation.
      The underlying PACE data then cycles through several groups of phytoplankton, starting with picoeukaryotes. Lighter green indicates greater concentrations of this group. The final two groups are cyanobacteria — some of the smallest and most abundant phytoplankton in the ocean — called Prochlorococcus and Synechococcus. For Prochlorococcus, lighter raspberry colors represent higher concentrations. Lighter teal colors for Synechococcus signal greater amounts of the cyanobacteria.
      The animation shows that higher phytoplankton concentrations on Aug. 8 tended to coincide with areas of lower water height. Eddies that spin counterclockwise in the Northern Hemisphere tend to draw water away from their center. This results in relatively lower sea surface heights in the center that draw up cooler, nutrient-rich water from the deep ocean. These nutrients act like fertilizer, which can boost phytoplankton growth in sunlit waters at the surface.
      Overlapping SWOT and PACE data enables a better understanding of the connections between ocean dynamics and aquatic ecosystems, which can help improve the management of resources such as fisheries, since phytoplankton form the base of most food chains in the sea. Integrating these kinds of datasets also helps to improve calculations of how much carbon is exchanged between the atmosphere and the ocean. This, in turn, can indicate whether regions of the ocean that absorb excess atmospheric carbon are changing.
      More About SWOT
      The SWOT satellite was jointly developed by NASA and CNES, with contributions from the Canadian Space Agency (CSA) and the UK Space Agency. NASA’s Jet Propulsion Laboratory, managed for the agency by Caltech in Pasadena, California, leads the U.S. component of the project. For the flight system payload, NASA provided the Ka-band radar interferometer (KaRIn) instrument, a GPS science receiver, a laser retroreflector, a two-beam microwave radiometer, and NASA instrument operations.  The Doppler Orbitography and Radioposition Integrated by Satellite system, the dual frequency Poseidon altimeter (developed by Thales Alenia Space), the KaRIn radio-frequency subsystem (together with Thales Alenia Space and with support from the UK Space Agency), the satellite platform, and ground operations were provided by CNES. The KaRIn high-power transmitter assembly was provided by CSA.
      To learn more about SWOT, visit:
      https://swot.jpl.nasa.gov
      More About PACE
      The PACE mission is managed by NASA Goddard Space Flight Center, which also built and tested the spacecraft and the Ocean Color Instrument, which collected the data shown in the visualization. The satellite’s Hyper-Angular Rainbow Polarimeter #2  was designed and built by the University of Maryland, Baltimore County, and the Spectro-polarimeter for Planetary Exploration  was developed and built by a Dutch consortium led by Netherlands Institute for Space Research, Airbus Defence, and Space Netherlands.
      To learn more about PACE, visit:
      https://pace.gsfc.nasa.gov
      News Media Contacts
      Jacob Richmond (for PACE)
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      jacob.a.richmond@nasa.gov
      Jane J. Lee / Andrew Wang (for SWOT)
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      2024-169
      Share
      Details
      Last Updated Dec 09, 2024 Related Terms
      PACE (Plankton, Aerosol, Cloud, Ocean Ecosystem) Climate Science Oceans SWOT (Surface Water and Ocean Topography) Explore More
      7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
      Article 3 weeks ago 4 min read NASA Data Helps International Community Prepare for Sea Level Rise
      Article 4 weeks ago 6 min read Inia Soto Ramos, From the Mountains of Puerto Rico to Mountains of NASA Earth Data
      Dr. Inia Soto Ramos became fascinated by the mysteries of the ocean while growing up…
      Article 4 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      9 Min Read Towards Autonomous Surface Missions on Ocean Worlds
      Artist’s concept image of a spacecraft lander with a robot arm on the surface of Europa. Credits:
      NASA/JPL – Caltech Through advanced autonomy testbed programs, NASA is setting the groundwork for one of its top priorities—the search for signs of life and potentially habitable bodies in our solar system and beyond. The prime destinations for such exploration are bodies containing liquid water, such as Jupiter’s moon Europa and Saturn’s moon Enceladus. Initial missions to the surfaces of these “ocean worlds” will be robotic and require a high degree of onboard autonomy due to long Earth-communication lags and blackouts, harsh surface environments, and limited battery life.
      Technologies that can enable spacecraft autonomy generally fall under the umbrella of Artificial Intelligence (AI) and have been evolving rapidly in recent years. Many such technologies, including machine learning, causal reasoning, and generative AI, are being advanced at non-NASA institutions.  
      NASA started a program in 2018 to take advantage of these advancements to enable future icy world missions. It sponsored the development of the physical Ocean Worlds Lander Autonomy Testbed (OWLAT) at NASA’s Jet Propulsion Laboratory in Southern California and the virtual Ocean Worlds Autonomy Testbed for Exploration, Research, and Simulation (OceanWATERS) at NASA’s Ames Research Center in Silicon Valley, California.
      NASA solicited applications for its Autonomous Robotics Research for Ocean Worlds (ARROW) program in 2020, and for the Concepts for Ocean worlds Life Detection Technology (COLDTech) program in 2021. Six research teams, based at universities and companies throughout the United States, were chosen to develop and demonstrate autonomy solutions on OWLAT and OceanWATERS. These two- to three-year projects are now complete and have addressed a wide variety of autonomy challenges faced by potential ocean world surface missions.
      OWLAT
      OWLAT is designed to simulate a spacecraft lander with a robotic arm for science operations on an ocean world body. The overall OWLAT architecture including hardware and software components is shown in Figure 1. Each of the OWLAT components is detailed below.
      Figure 1. The software and hardware components of the Ocean Worlds Lander Autonomy Testbed and the relationships between them. NASA/JPL – Caltech The hardware version of OWLAT (shown in Figure 2) is designed to physically simulate motions of a lander as operations are performed in a low-gravity environment using a six degrees-of-freedom (DOF) Stewart platform. A seven DOF robot arm is mounted on the lander to perform sampling and other science operations that interact with the environment. A camera mounted on a pan-and-tilt unit is used for perception. The testbed also has a suite of onboard force/torque sensors to measure motion and reaction forces as the lander interacts with the environment. Control algorithms implemented on the testbed enable it to exhibit dynamics behavior as if it were a lightweight arm on a lander operating in different gravitational environments.
      Figure 2. The Ocean Worlds Lander Autonomy Testbed. A scoop is mounted to the end of the testbed robot arm. NASA/JPL – Caltech The team also developed a set of tools and instruments (shown in Figure 3) to enable the performance of science operations using the testbed. These various tools can be mounted to the end of the robot arm via a quick-connect-disconnect mechanism. The testbed workspace where sampling and other science operations are conducted incorporates an environment designed to represent the scene and surface simulant material potentially found on ocean worlds.
      Figure 3. Tools and instruments designed to be used with the testbed. NASA/JPL – Caltech The software-only version of OWLAT models, visualizes, and provides telemetry from a high-fidelity dynamics simulator based on the Dynamics And Real-Time Simulation (DARTS) physics engine developed at JPL. It replicates the behavior of the physical testbed in response to commands and provides telemetry to the autonomy software. A visualization from the simulator is shown on Figure 4.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Figure 7. Screenshot of OceanWATERS lander on a terrain modeled from the Atacama Desert. A scoop operation has just been completed. NASA/JPL – Caltech The autonomy software module shown at the top in Figure 1 interacts with the testbed through a Robot Operating System (ROS)-based interface to issue commands and receive telemetry. This interface is defined to be identical to the OceanWATERS interface. Commands received from the autonomy module are processed through the dispatcher/scheduler/controller module (blue box in Figure 1) and used to command either the physical hardware version of the testbed or the dynamics simulation (software version) of the testbed. Sensor information from the operation of either the software-only or physical testbed is reported back to the autonomy module using a defined telemetry interface. A safety and performance monitoring and evaluation software module (red box in Figure 1) ensures that the testbed is kept within its operating bounds. Any commands causing out of bounds behavior and anomalies are reported as faults to the autonomy software module.
      Figure 5. Erica Tevere (at the operator’s station) and Ashish Goel (at the robot arm) setting up the OWLAT testbed for use. NASA/JPL – Caltech OceanWATERS
      At the time of the OceanWATERS project’s inception, Jupiter’s moon Europa was planetary science’s first choice in searching for life. Based on ROS, OceanWATERS is a software tool that provides a visual and physical simulation of a robotic lander on the surface of Europa (see Figure 6). OceanWATERS realistically simulates Europa’s celestial sphere and sunlight, both direct and indirect. Because we don’t yet have detailed information about the surface of Europa, users can select from terrain models with a variety of surface and material properties. One of these models is a digital replication of a portion of the Atacama Desert in Chile, an area considered a potential Earth-analog for some extraterrestrial surfaces.
      Figure 6. Screenshot of OceanWATERS. NASA/JPL – Caltech JPL’s Europa Lander Study of 2016, a guiding document for the development of OceanWATERS, describes a planetary lander whose purpose is collecting subsurface regolith/ice samples, analyzing them with onboard science instruments, and transmitting results of the analysis to Earth.
      The simulated lander in OceanWATERS has an antenna mast that pans and tilts; attached to it are stereo cameras and spotlights. It has a 6 degree-of-freedom arm with two interchangeable end effectors—a grinder designed for digging trenches, and a scoop for collecting ground material. The lander is powered by a simulated non-rechargeable battery pack. Power consumption, the battery’s state, and its remaining life are regularly predicted with the Generic Software Architecture for Prognostics (GSAP) tool. To simulate degraded or broken subsystems, a variety of faults (e.g., a frozen arm joint or overheating battery) can be “injected” into the simulation by the user; some faults can also occur “naturally” as the simulation progresses, e.g., if components become over-stressed. All the operations and telemetry (data measurements) of the lander are accessible via an interface that external autonomy software modules can use to command the lander and understand its state. (OceanWATERS and OWLAT share a unified autonomy interface based on ROS.) The OceanWATERS package includes one basic autonomy module, a facility for executing plans (autonomy specifications) written in the PLan EXecution Interchange Language, or PLEXIL. PLEXIL and GSAP are both open-source software packages developed at Ames and available on GitHub, as is OceanWATERS.
      Mission operations that can be simulated by OceanWATERS include visually surveying the landing site, poking at the ground to determine its hardness, digging a trench, and scooping ground material that can be discarded or deposited in a sample collection bin. Communication with Earth, sample analysis, and other operations of a real lander mission, are not presently modeled in OceanWATERS except for their estimated power consumption. Figure 7 is a video of OceanWATERS running a sample mission scenario using the Atacama-based terrain model.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Figure 7. Screenshot of OceanWATERS lander on a terrain modeled from the Atacama Desert. A scoop operation has just been completed. NASA/JPL – Caltech Because of Earth’s distance from the ocean worlds and the resulting communication lag, a planetary lander should be programmed with at least enough information to begin its mission. But there will be situation-specific challenges that will require onboard intelligence, such as deciding exactly where and how to collect samples, dealing with unexpected issues and hardware faults, and prioritizing operations based on remaining power. 
      Results
      All six of the research teams funded by the ARROW and COLDTech programs used OceanWATERS to develop ocean world lander autonomy technology and three of those teams also used OWLAT. The products of these efforts were published in technical papers, and resulted in development of software that may be used or adapted for actual ocean world lander missions in the future. The following table summarizes the ARROW and COLDTech efforts.
        Principal Investigator (PI) PI Institution Project Testbed Used Purpose of Project ARROW Projects Jonathan Bohren Honeybee Robotics Stochastic PLEXIL (SPLEXIL) OceanWATERS Extended PLEXIL with stochastic decision-making capabilities by employing reinforcement learning techniques. Pooyan Jamshidi University of South Carolina Resource Adaptive Software Purpose-Built for Extraordinary Robotic Research Yields (RASPBERRY SI) OceanWATERS & OWLAT Developed software algorithms and tools for fault root cause identification, causal debugging, causal optimization, and causal-induced verification. COLDTech Projects Eric Dixon Lockheed Martin Causal And Reinforcement Learning (CARL) for COLDTech OceanWATERS Integrated a model of JPL’s mission-ready Cold Operable Lunar Deployable Arm (COLDarm) into OceanWATERS and applied image analysis, causal reasoning, and machine learning models to identify and mitigate the root causes of faults, such as ice buildup on the arm’s end effector. Jay McMahon University of Colorado Robust Exploration with Autonomous Science On-board, Ranked Evaluation of Contingent Opportunities for Uninterrupted Remote Science Exploration (REASON-RECOURSE) OceanWATERS Applied automated planning with formal methods to maximize science return of the lander while minimizing communication with ground team on Earth. Melkior Ornik U Illinois, Urbana-Champaign aDaptive, ResIlient Learning-enabLed oceAn World AutonomY (DRILLAWAY) OceanWATERS & OWLAT Developed autonomous adaptation to novel terrains and selecting scooping actions based on the available image data and limited experience by transferring the scooping procedure learned from a low-fidelity testbed to the high-fidelity OWLAT testbed. Joel Burdick Caltech Robust, Explainable Autonomy for Scientific Icy Moon Operations (REASIMO) OceanWATERS & OWLAT Developed autonomous 1) detection and identification of off-nominal conditions and procedures for recovery from those conditions, and 2) sample site selection Acknowledgements: The portion of the research carried out at the Jet Propulsion Laboratory, California Institute of Technology was performed under a contract with the National Aeronautics and Space Administration (80NM0018D0004).  The portion of the research carried out by employees of KBR Wyle Services LLC at NASA Ames Research Center was performed under a contract with the National Aeronautics and Space Administration (80ARC020D0010). Both were funded by the Planetary Science Division ARROW and COLDTech programs.
      Project Leads: Hari Nayar (NASA Jet Propulsion Laboratory, California Institute of Technology), K. Michael Dalal (KBR, Inc. at NASA Ames Research Center)
      Sponsoring Organizations: NASA SMD PESTO
      View the full article
    • By NASA
      1 Min Read Coming Spring 2025: Planetary Defenders Documentary
      David Rankin, Senior Survey Operations Specialist at Catalina Sky Survey, is seen opening the dome structure surrounding the telescope at the asteroid-hunting facility in Mt. Lemmon, AZ. Credits:
      NASA How would humanity respond if we discovered an asteroid headed for Earth? NASA’s Planetary Defenders is a gripping documentary that delves into the high-stakes world of asteroid detection and planetary defense. Journey alongside a dedicated team of astronomers and scientists working tirelessly to track and monitor near-Earth asteroids, aiming to protect our planet from potential impacts. This documentary captures the intricate and collaborative efforts of these unsung heroes, blending cutting-edge science with personal stories to reveal the human spirit behind this critical global endeavor. Witness the drama, the challenges and the triumphs of those on the front lines of planetary defense.
      The dinosaurs went extinct because they didn’t have a space program. We do have one.
      Dr. vishnu reddy
      Professor of Planetary Science, University of Arizona
      Dr. Shantanu Naidu, Asteroid Radar Researcher, from NASA’s Jet Propulsion Laboratory points toward the Goldstone Solar System Radar in Barstow, CA – the most powerful planetary radar on Earth. NASA In 2016, NASA established the Planetary Defense Coordination Office (PDCO) to manage the agency’s ongoing mission of finding, tracking, and better understanding asteroids and comets that could pose an impact hazard to Earth.
      I really like that I am protecting the planet. And yes, I’m not the one that’s with a cape pushing the asteroid away, that’s not what I do. In some ways, my little contribution might not help just myself, but someone in the future, and I think it’s very important to do that.
      Dr. CASSANDRA LEJOLY
      RESEARCHER, SPACEWATCH®
      Dr. Cassandra Lejoly, a researcher with the University of Arizona’s SPACEWATCH® program, sits at a computer console at Kitt Peak National Observatory in Tuscon, AZ, where she conducts follow up observations on near-Earth objects. NASA Planetary Defenders is an original NASA documentary that showcases the challenges and the triumphs of those on the front lines of planetary defense. This documentary will be released on NASA+ and other streaming platforms in Spring 2025. Stay tuned for updates!
      About the Author
      efurfaro

      Share








      Details
      Last Updated Dec 03, 2024 Related Terms
      Planetary Defense Planetary Defense Coordination Office Science Mission Directorate Explore More
      5 min read NASA-Led Team Links Comet Water to Earth’s Oceans
      Scientists find that cometary dust affects interpretation of spacecraft measurements, reopening the case for comets…


      Article


      49 mins ago
      2 min read Hubble Captures an Edge-On Spiral with Curve Appeal


      Article


      2 weeks ago
      5 min read NASA’s Hubble Finds Sizzling Details About Young Star FU Orionis


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...