Jump to content

Ocean Worlds Planetary Scientist Dr. Lynnae Quick


Recommended Posts

  • Publishers
Posted
A woman that's standing in the woods wearing a red blouse and red suit jacket smiles widely at the camera.

“I was not interested in science until I got to high school, and I didn’t find what I wanted to focus on as far as what I liked the most about science until I was in grad school. I spent a summer doing an internship at Johns Hopkins Applied Physics Lab focused on Jupiter’s moon Europa, completely fell in love with Europa, and completely fell in love with planetary science. 

“I found it amazing that this world was covered in ice and had an ocean underneath. I was mapping this area on Europa called Conamara Chaos, where we believe that the surface is locally heated. Because of this, there are ginormous icebergs that broke off and floated around in this slushy ice, so I learned to map [that part of the surface]. Having my physics and math background and thinking about a world with a subsurface ocean, I was like, ‘OK, this is a good marriage of fluid mechanics and heat transfer. Europa is a nice world to study that will combine my background with this new planetary science thing that I love.’

“What happened with Europa Clipper was I decided to do my dissertation topic on [the moon]. We’d seen images of these beautiful south polar plumes on Enceladus, these geyser-like plumes, but Europa is much bigger. It has much more water and receives much more tidal heating. Why didn’t the Galileo spacecraft see plumes on Europa? Why don’t we see geysers?

“My dissertation focused on what it would take to have this geyser activity on Europa and for spacecraft cameras to image it. I remember defending my dissertation well but sitting there thinking, ‘People will think I’m a quack because we’ve never seen geysers on Europa.’ That was in May, and by December, LorenzRoth’s paper came out that Hubble may have detected geysers on Europa. That’s when I was like, ‘Oh yes, I might actually have a career!’

“Shortly after that, the call came out for instrument proposals. Zibi Turtle [Principal Investigator for the Europa Imaging System] met me at a conference and said, ‘We’re writing a proposal for a camera for the Europa mission. Would you want to be on it?’ At that point, I was a year out of my Ph.D. and was like, ‘Are you kidding me?’ Because that usually never happens. Usually, the people on these instrument teams are more senior. They’ve been around longer, so it’s very rare to be just finishing up your Ph.D. and someone asks you. I felt like it was the best thing in the world because Europa was already my favorite place in the solar system. It would be like a dream to be on the team that will send a spacecraft there to study it. That doesn’t happen very often. So, I said, ‘Sure. I would love to.’

“Our camera got selected, and is an instrument on the Europa Clipper mission, and my role on the team is to look for those geysers! I’ve come a long way from thinking, ‘Well, I did this whole dissertation on geysers, what it would take for them to erupt, for a spacecraft to see them, and that people might not take me seriously as a scientist because of it,’ to being on the Europa Clipper camera team involved in investigating these plumes and ensuring we can image them if they’re there. It’s a full-circle moment.” 

– Dr. Lynnae Quick, Ocean Worlds Planetary Scientist, NASA’s Goddard Space Flight Center

Image Credit: NASA/Thalia Patrinos
Interviewer: NASA/Tahira Allen

Check out some of our other Faces of NASA. 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Credit: NASA NASA has selected SpaceX of Starbase, Texas, to provide launch services for the Near-Earth Object (NEO) Surveyor mission, which will detect and observe asteroids and comets that could potentially pose an impact threat to Earth.
      The firm fixed price launch service task order is being awarded under the indefinite delivery/indefinite quantity NASA Launch Services II contract. The total cost to NASA for the launch service is approximately $100 million, which includes the launch service and other mission related costs. The NEO Surveyor mission is targeted to launch no earlier than September 2027 on a SpaceX Falcon 9 rocket from Florida.
      The NEO Surveyor mission consists of a single scientific instrument: an almost 20-inch (50-centimeter) diameter telescope that will operate in two heat-sensing infrared wavelengths. It will be capable of detecting both bright and dark asteroids, the latter being the most difficult type to find with existing assets. The space telescope is designed to help advance NASA’s planetary defense efforts to discover and characterize most of the potentially hazardous asteroids and comets that come within 30 million miles of Earth’s orbit. These are collectively known as near-Earth objects, or NEOs.
      The mission will carry out a five-year baseline survey to find at least two-thirds of the unknown NEOs larger than 140 meters (460 feet). These are the objects large enough to cause major regional damage in the event of an Earth impact. By using two heat-sensitive infrared imaging channels, the telescope can also make more accurate measurements of the sizes of NEOs and gain information about their composition, shapes, rotational states, and orbits.
      The mission is tasked by NASA’s Planetary Science Division within the agency’s Science Mission Directorate at NASA Headquarters in Washington. Program oversight is provided by NASA’s Planetary Defense Coordination Office, which was established in 2016 to manage the agency’s ongoing efforts in planetary defense. NASA’s Planetary Missions Program Office at the agency’s Marshall Space Flight Center in Huntsville, Alabama, provides program management for NEO Surveyor. The project is being developed by NASA’s Jet Propulsion Laboratory in Southern California.
      Multiple aerospace and engineering companies are contracted to build the spacecraft and its instrumentation, including BAE Systems SMS (Space & Mission Systems), Space Dynamics Laboratory, and Teledyne. The Laboratory for Atmospheric and Space Physics at the University of Colorado, Boulder, will support operations, and the Infrared Processing and Analysis Center at the California Institute of Technology (Caltech) in Pasadena, California, is responsible for processing survey data and producing the mission’s data products. Caltech manages JPL for NASA. Mission team leadership includes the University of California, Los Angeles. NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is responsible for managing the launch service.
      For more information about NEO Surveyor, visit:
      https://science.nasa.gov/mission/neo-surveyor/
      -end-
      Tiernan Doyle / Joshua Finch
      Headquarters, Washington
      202-358-1600 / 202-358-1100
      tiernan.doyle@nasa.gov / joshua.a.finch@nasa.gov
      Patti Bielling
      Kennedy Space Center, Florida
      321-501-7575
      patricia.a.bielling@nasa.gov
      Share
      Details
      Last Updated Feb 21, 2025 LocationNASA Headquarters Related Terms
      Kennedy Space Center Launch Services Office Launch Services Program NEO Surveyor (Near-Earth Object Surveyor Space Telescope) Planetary Defense Coordination Office Planetary Science Division Science Mission Directorate Space Operations Mission Directorate View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      We’ve been talking about this for 2,000 years. Aristotle mentions it. And in our own time, scientists are designing experiments to figure out exactly what’s going on. But there’s no consensus yet.
      Here’s what we do know.
      The atmosphere isn’t magnifying the Moon. If anything, atmospheric refraction squashes it a little bit. And the Moon’s not closer to us at the horizon. It’s about 1.5 percent farther away. Also, it isn’t just the Moon. Constellations look huge on the horizon, too.
      One popular idea is that this is a variation on the Ponzo illusion. Everything in our experience seems to shrink as it recedes toward the horizon — I mean clouds and planes and cars and ships. But the Moon doesn’t do that. So our minds make up a story to reconcile this inconsistency. Somehow the Moon gets bigger when it’s at the horizon. That’s one popular hypothesis, but there are others. And we’re still waiting for the experiment that will convince everyone that we understand this.
      So why does the Moon look larger on the horizon? We don’t really know, but scientists are still trying to figure it out.
      [END VIDEO TRANSCRIPT]

      Full Episode List
      Full YouTube Playlist
      Share
      Details
      Last Updated Feb 12, 2025 Related Terms
      General Earth's Moon Lunar Science Planetary Science Science & Research Skywatching The Solar System Explore More
      4 min read NASA’s Mini Rover Team Is Packed for Lunar Journey
      Article 19 hours ago 1 min read Building Blocks for Enhanced Mission Execution
      Article 20 hours ago 5 min read NASA’s Curiosity Rover Captures Colorful Clouds Drifting Over Mars
      Article 20 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      “I do evolutionary programming,” said NASA Goddard oceanographer Dr. John Moisan. “I see a lot of possibility in using evolutionary programming to solve many large problems we are trying to solve. How did life start and evolve? Can these processes be used to evolve intelligence or sentience?”Courtesy of John Moisan Name: John Moisan
      Formal Job Classification: Research oceanographer
      Organization: Ocean Ecology Laboratory, Hydrosphere, Biosphere, Geophysics (HBG), Earth Science Directorate (Code 616) – duty station at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore
      What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      I develop ecosystem models and satellite algorithms to understand how the ocean’s ecology works. My work has evolved over time from when I coded ocean ecosystem models to the present where I now use artificial intelligence to evolve the ocean ecosystem models.
      How did you become an oceanographer?
      As a child, I watched a TV series called “Sea Hunt,” which involved looking for treasure in the ocean. It inspired me to want to spend my life scuba diving.
      I got a Bachelor of Science in marine biology from the University of New England in Biddeford, Maine, and later got a Ph.D. from the Center for Coastal Physical Oceanography at Old Dominion University in Norfolk, Virginia.
      Initially, I just wanted to do marine biology which to me meant doing lots of scuba diving, maybe living on a sailboat. Later, when I was starting my graduate schoolwork, I found a book about mathematical biology and a great professor who helped open my eyes to the world of numerical modeling. I found out that instead of scuba diving, I needed instead to spend my days behind a computer, learning how to craft ideas into equations and then code these into a computer to run simulations on ocean ecosystems.
      I put myself through my initial education. I went to school fulltime, but I lived at home and hitchhiked to college on a daily basis. When I started my graduate school, I worked to support myself. I was in school during the normal work week, but from Friday evening through Sunday night, I worked 40 hours at a medical center cleaning and sterilizing the operating room instrument carts. This was during the height of the AIDS epidemic.
      What was most exciting about your two field trips to the Antarctic?
      In 1987, I joined a six-week research expedition to an Antarctic research station to explore how the ozone hole was impacting phytoplankton. These are single-celled algae that are responsible for making half the oxygen we breathe. Traveling to Antarctica is like visiting another planet. There are more types of blue than I’ve ever seen. It is an amazingly beautiful place to visit, with wild landscapes, glaciers, mountains, sea ice, and a wide range of wildlife. After my first trip I returned home and went back in a few months later as a biologist on a joint Polish–U.S. (National Oceanic and Atmospheric Administration) expedition to carry out a biological survey and measure how much fast the phytoplankton was growing in different areas of the Southern Ocean. We used nets to measure the amounts of fish and shrimp and took water samples to measure salinity, the amount of algae and their growth rates. We ate well, for example the Polish cook made up a large batch of smoked ice fish.
      What other field work have you done?
      While a graduate student, I helped do some benthic work in the Gulf of Maine. This study was focused on understanding the rates of respiration in the muds on the bottom of the ocean and on understanding how much biomass was in the muds. The project lowered a benthic grab device to the bottom where it would push a box core device into the sediments to return it to the surface. This process is sort of like doing a biopsy of the ocean bottom.
      What is your goal as a research oceanographer at Goddard?
      Ocean scientists measure the amount and variability of chlorophyll a, a pigment in algae, in the ocean because it is an analogue to the amount of algae or phytoplankton in the ocean. Chlorophyll a is used to capture solar energy to make sugars, which the algae use for growth. Generally, areas of the ocean that have more chlorophyll are also areas where growth or primary production is higher. So, by estimating how much chlorophyll is in the ocean we can study how these processes are changing with an aim in understanding why. NASA uses the color of the ocean using satellites to estimate chlorophyll a because chlorophyll absorbs sunlight and changes the color of the ocean. Algae have other kinds of pigments, each of which absorbs light at different wavelengths. Because different groups of algae have different levels of pigments, they are like fingerprints that can reveal the type of algae in the water. Some of my research aims at trying to use artificial intelligence and mathematical techniques to create new ways to measure these pigments from space to understand how ocean ecosystems change.
      In 2024, NASA plans to launch the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) satellite, which will measure the color of the ocean at many different wavelengths. The data from this satellite can be used with results from my work on genetic programs and inverse modeling to estimate concentrations of different pigments and possibly concentrations of different types of algae in the ocean.
      You have been at Goddard over 22 years. What is most memorable to you?
      I develop ecosystem models. But ecosystems do not have laws in the same way that physics has laws. Equations need to be created so that the ecosystem models represent what is observed in the real world. Satellites have been a great source for those observations, but without a lot of other types of observations that are collected in the field, the ocean, it is difficult to develop these equations. In my time at NASA, I have only been able to develop models because of the great but often tedious work that ocean scientists around the world have been doing when they go on ocean expeditions to measure various ocean features, be it simple temperature or the more complicated measurements of algal growth rates. My experience with their willingness to collaborate and share data is especially memorable. This experience is also what I enjoyed with numerous scientists at NASA who have always been willing to support new ideas and point me in the right direction. It has made working at NASA a phenomenal experience.
      What are the philosophical implications of your work?
      The human capacity to think rapidly, to test and change our opinions based on what we learn, is slow compared to that of a computer. Computers can help us adapt more quickly. I can put 1,000 students in a room developing ecosystem model models. But I know that this process of developing ecosystem models is slow when compared what a computer can do using an artificial intelligence approach called genetic programming, it is a much faster way to generate ecosystem model solutions.
      Philosophically, there is no real ecosystem model that is the best. Life and ecosystems on Earth change and adapt at rates too fast for any present-day model to resolve, especially considering climate change. The only real ecosystem model is the reality itself. No computer model can perfectly simulate ecosystems. By utilizing the fast adaptability that evolutionary computer modeling techniques provide, simulating and ultimately predicting ecosystems can be improved greatly.
      How does your work have implications for scientists in general?
      I do evolutionary programming. I see a lot of possibility in using evolutionary programming to solve many large problems we are trying to solve. How did life start and evolve? Can these processes be used to evolve intelligence or sentience?
      The artificial intelligence (AI) work answers questions, but you need to identify the questions. This is the greater problem when it comes to working with AI. You cannot answer the question of how to create a sentient life if you do not know how to define it. If I cannot measure life, how can I model it? I do not know how to write that equation. How does life evolve? How did the evolutionary process start? These are big questions I enjoy discussing with friends. It can be as frustrating as contemplating “nothing.”
      Who inspires you?
      Many of the scientists that I was fortunate to work with at various research institutes, such as Scripps Institution of Oceanography at the University of California, San Diego. These are groups of scientists are open to always willing to share their ideas. These are individuals who enjoy doing science. I will always be indebted to them for their kindness in sharing of ideas and data.
      Do you still scuba dive?
      Yes, I wish I could dive daily, it is a very calming experience. I’m trying to get my kids to join me.
      What else do you do for fun?
      My wife and I bike and travel. Our next big bike trip will hopefully be to Shangri-La City in China. I also enjoy sailing and trying to grow tropical plants. But, most of all, I enjoy helping raise my children to be resilient, empathic, and intelligent beings.
      What are your words to live by?
      Life. So much to see. So little time.
      Conversations With Goddard is a collection of question and answer profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Feb 10, 2025 EditorJessica EvansContactRob Garnerrob.garner@nasa.gov Related Terms
      Goddard Space Flight Center Artificial Intelligence (AI) People of Goddard Wallops Flight Facility Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Jonathan Gardner of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, was selected as a 2023 Fellow of the American Astronomical Society (AAS) for extraordinary achievement and service. He is being recognized for exceptional community service and scientific leadership of NASA’s James Webb Space Telescope science teams, leading to Webb’s flight hardware exceeding all of its requirements.  
      Dr. Jonathan Gardner is the Deputy Senior Project Scientist for the James Webb Space Telescope at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.Credits: Courtesy of Jonathan Gardner Gardner is the deputy senior project scientist for the Webb telescope in Goddard’s Astrophysics Science Division. Webb, which launched Dec. 25, 2021, is the  largest, most powerful, and most complex space science telescope ever built. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      John Mather, senior project scientist on Webb and a senior astrophysicist at Goddard, nominated Gardner for the fellowship. In his nomination, Mather wrote:
      “Jonathan Gardner is a quiet superstar, well known to the Webb community. As deputy senior project scientist for Webb, Gardner represents the senior project scientist in all aspects of the mission, with responsibility for ensuring Webb’s scientific performance. Gardner is a tireless advocate for the scientific vision and its accurate implementation. He is the main spokesperson for Webb science throughout NASA and in the wider astronomy community. He is the person most responsible for keeping the science teams working well together and for communicating with other astronomers.”
      Gardner began working on Webb as a member of the Ad-Hoc Science Working Group in the late 1990s, joining the project as the deputy senior project scientist in 2002. 
      Beginning in 2002, Gardner organized all the meetings and communications of the Science Working Group, which included people from the U.S., Europe, and Canada, including instrument teams and other partners. He recruited Goddard scientists for the mission’s Project Science Team, and ensured a scientist was assigned to every engineering topic. Gardner also wrote and published the scientific requirements in a dedicated issue of Space Science Reviews. He set up the Science Requirements Analysis Board to review any potential threats to the scientific goals of the mission and worked with engineering teams to avoid any failures. He represented scientific interests throughout the engineering project and throughout NASA, by ensuring regular communication between scientists, managers, and engineers.   
      The 2023 AAS Fellows are recognized for enhancing and sharing humanity’s scientific understanding of the universe through personal achievement and extraordinary service to the astronomical sciences and to the AAS.
      AAS, established in 1899, is a major international organization of professional astronomers, astronomy educators, and amateur astronomers. Its membership of approximately 8,000 also includes physicists, geologists, engineers, and others whose interests lie within the broad spectrum of subjects now comprising the astronomical sciences. The mission of the AAS is to enhance and share humanity’s scientific understanding of the universe as a diverse and inclusive astronomical community, which it achieves through publishing, meetings, science advocacy, education and outreach, and training and professional development.
      For information about NASA and agency programs, visit: https://www.nasa.gov
      By Robert Gutro
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      View the full article
    • By European Space Agency
      The European Space Agency (ESA) has endorsed the United Nations' (UN) designation of 2029 as the International Year of Asteroid Awareness and Planetary Defence.
      The initiative will foster international collaboration in the field of planetary defence and educate the public on the risks and opportunities associated with near-Earth asteroids.
      View the full article
  • Check out these Videos

×
×
  • Create New...