Jump to content

Ocean Worlds Planetary Scientist Dr. Lynnae Quick


NASA

Recommended Posts

  • Publishers
A woman that's standing in the woods wearing a red blouse and red suit jacket smiles widely at the camera.

“I was not interested in science until I got to high school, and I didn’t find what I wanted to focus on as far as what I liked the most about science until I was in grad school. I spent a summer doing an internship at Johns Hopkins Applied Physics Lab focused on Jupiter’s moon Europa, completely fell in love with Europa, and completely fell in love with planetary science. 

“I found it amazing that this world was covered in ice and had an ocean underneath. I was mapping this area on Europa called Conamara Chaos, where we believe that the surface is locally heated. Because of this, there are ginormous icebergs that broke off and floated around in this slushy ice, so I learned to map [that part of the surface]. Having my physics and math background and thinking about a world with a subsurface ocean, I was like, ‘OK, this is a good marriage of fluid mechanics and heat transfer. Europa is a nice world to study that will combine my background with this new planetary science thing that I love.’

“What happened with Europa Clipper was I decided to do my dissertation topic on [the moon]. We’d seen images of these beautiful south polar plumes on Enceladus, these geyser-like plumes, but Europa is much bigger. It has much more water and receives much more tidal heating. Why didn’t the Galileo spacecraft see plumes on Europa? Why don’t we see geysers?

“My dissertation focused on what it would take to have this geyser activity on Europa and for spacecraft cameras to image it. I remember defending my dissertation well but sitting there thinking, ‘People will think I’m a quack because we’ve never seen geysers on Europa.’ That was in May, and by December, LorenzRoth’s paper came out that Hubble may have detected geysers on Europa. That’s when I was like, ‘Oh yes, I might actually have a career!’

“Shortly after that, the call came out for instrument proposals. Zibi Turtle [Principal Investigator for the Europa Imaging System] met me at a conference and said, ‘We’re writing a proposal for a camera for the Europa mission. Would you want to be on it?’ At that point, I was a year out of my Ph.D. and was like, ‘Are you kidding me?’ Because that usually never happens. Usually, the people on these instrument teams are more senior. They’ve been around longer, so it’s very rare to be just finishing up your Ph.D. and someone asks you. I felt like it was the best thing in the world because Europa was already my favorite place in the solar system. It would be like a dream to be on the team that will send a spacecraft there to study it. That doesn’t happen very often. So, I said, ‘Sure. I would love to.’

“Our camera got selected, and is an instrument on the Europa Clipper mission, and my role on the team is to look for those geysers! I’ve come a long way from thinking, ‘Well, I did this whole dissertation on geysers, what it would take for them to erupt, for a spacecraft to see them, and that people might not take me seriously as a scientist because of it,’ to being on the Europa Clipper camera team involved in investigating these plumes and ensuring we can image them if they’re there. It’s a full-circle moment.” 

– Dr. Lynnae Quick, Ocean Worlds Planetary Scientist, NASA’s Goddard Space Flight Center

Image Credit: NASA/Thalia Patrinos
Interviewer: NASA/Tahira Allen

Check out some of our other Faces of NASA. 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Back to Ocean Science Landing Page
      Internet of Animals
      The Internet of Animals project combines animal tracking tags with remote sensing, to better understand habitat use and movement patterns. This kind of research enables more informed ecological management and conservation efforts, and broadens our understanding of how different ecosystems are reacting to a changing climate.
      https://www.nasa.gov/nasa-earth-exchange-nex/new-missions-support/internet-of-animals/
      FATE: dFAD Trajectory Tool
      FATE will quantify dFAD (drifting fish aggregating devices) activity in relation to ocean currents, fish biomass, and animal telemetry at Palmyra Atoll, which is a U.S. Fish and Wildlife Service (USFWS) National Wildlife Refuge and is part of the U.S. Pacific Remote Islands Marine National Monument (PRIMNM) in the central Pacific Ocean. This innovative decision support tool will use NASA observations and numerical models to predict future dFAD trajectories and inform resource managers whether they should deploy tactical resources (boats, personnel) to monitor, intercept, or retrieve dFADs that have entered the MPA.
      SeaSTAR
      SeaSTAR aims to provide multi-spectral aerosol optical depth (AOD) and aerosol optical properties using a custom-built robotic sun/sky photometer. The instrument is designed to operate from a ship and is planned to deploy aboard the NOAA research vessel RV Shearwater in September 2024 to support the PACE-PAX airborne campaign.
      PACE Validation Science Team Project: AirSHARP
      Airborne asSessment of Hyperspectral Aerosol optical depth and water-leaving Reflectance Product Performance for PACE

      The goal of AirSHARP is to provide high fidelity spatial coverage and spectral data for ocean color and aerosol products for validation of the PACE Ocean Color Instrument (OCI). Coastal influences on oceanic waters can produce high optical complexity for remote sensing especially in dynamic waters in both space and time. Dynamic coastal water features include riverine plumes (sediments and pollution), algal blooms, and kelp beds. Further, coastal California has a range of atmospheric conditions related to fires. We will accomplish validation of PACE products by combined airborne and field instrumentation for Monterey Bay, California.
      Water2Coasts
      Watersheds, Water Quality, and Coastal Communities in Puerto Rico
      Water2Coasts is an interdisciplinary island landscape to coastal ocean assessment with socioeconomic implications. The goal of Water2Coasts is to conduct a multi-scale, interdisciplinary (i.e., hydrologic, remote sensing, and social) study on how coastal waters of east, and south Puerto Rico are affected by watersheds of varying size, land use, and climate regimes, and how these may in turn induce a variety of still poorly understood effects on coastal and marine ecosystems such as coral reefs and seagrass beds.
      US Coral Reef Task Force (USCRTF)
      The USCRTF was established in 1998 by Presidential Executive Order to lead U.S. efforts to preserve and protect coral reef ecosystems. The USCRTF includes leaders of Federal agencies, U.S. States, territories, commonwealths, and Freely Associated States. The USCRTF helps build partnerships, strategies, and support for on-the-ground action to conserve coral reefs. NASA ARC scientists are members of the Steering Committee, Watershed Working Group, and Disease and Disturbance Working Group, and lead the Climate Change Working Group to assist in the use of NASA remote sensing data and tools for coastal studies, including coral reef ecosystems. Data from new and planned hyperspectral missions will advance research in heavily impacted coastal ecosystems.
      CyanoSCape
      Cyanobacteria and surface phytoplankton biodiversity of the Cape freshwater systems
      The diversity of phytoplankton is also found in freshwater systems. In Southern Africa, land use change and agricultural practices has hindered hydrological processes and compromised freshwater ecosystems. These impacts are compounded by increasingly variable rainfall and temperature fluctuations associated with climate change posing risks to water quality, food security, and aquatic biodiversity and sustainability. The goal of CyanoSCape is to utilize airborne hyperspectral data and field spectral and water sample data to distinguish phytoplankton biodiversity, including the potentially toxic cyanobacteria.
      mCDR: Marine Carbon Dioxide Removal
      The goals of this effort are to conduct literature review, analysis, and ocean simulation to provide scientifically vetted estimates of the impacts, risks, and benefits of various potential mCDR methods.
      Ocean modeling
      Atlantic Meridional Overturning Circulation (AMOC) in a changing climate

      The goals of this project are to build scientific understanding of the AMOC physics and its implications for biogeochemical cycles and climate, to assess the representation of AMOC in historical global ocean state estimates, and evaluate future needs for AMOC systems in a changing climate.

      Elucidating the role of the ocean circulation in changing North Atlantic Ocean nutrients and biological productivity

      This project will conduct analysis of NASA’s ECCO-Darwin ocean biogeochemical state estimate and historical satellite ocean color observations in order to understand the underlying causes for the sharp decline in biological productivity observed in the North Atlantic Ocean.

      Integrated GEOS and ECCO Earth system modeling and data assimilation to advance seasonal-to-decadal prediction through improved understanding and representation of air-sea interactions

      This analysis will build understanding of upper ocean, air-sea interaction, and climate processes by using data from the SWOT mission and ultra-high-resolution GEOS-ECCO simulations.
      Back to Ocean Science Landing Page Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      General Earth Science Oceans Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit around Jupiter. The mission is targeting an Oct. 10, 2024, launch.NASA/JPL-Caltech The first NASA spacecraft dedicated to studying an ocean world beyond Earth, Europa Clipper aims to find out if the ice-encased moon Europa could be habitable.
      NASA’s Europa Clipper spacecraft, the largest the agency has ever built for a planetary mission, will travel 1.8 billion miles (2.9 billion kilometers) from the agency’s Kennedy Space Center in Florida to Europa, an intriguing icy moon of Jupiter. The spacecraft’s launch period opens Thursday, Oct. 10.
      Learn more about how NASA’s Europa Clipper came together – and how it will explore an ocean moon of Jupiter. Credit: NASA/JPL-Caltech  Data from previous NASA missions has provided scientists with strong evidence that an enormous salty ocean lies underneath the frozen surface of the moon. Europa Clipper will orbit Jupiter and conduct 49 close flybys of the moon to gather data needed to determine whether there are places below its thick frozen crust that could support life.
      Here are eight things to know about the mission:
      1. Europa is one of the most promising places to look for currently habitable conditions beyond Earth.
      There’s scientific evidence that the ingredients for life — water, the right chemistry, and energy — may exist at Europa right now. This mission will gather the information scientists need to find out for sure. The moon may hold an internal ocean with twice the water of Earth’s oceans combined, and it may also host organic compounds and energy sources under its surface. If the mission determines that Europa is habitable, it would mean there may be more habitable worlds in our solar system and beyond than we have imagined.
      2. The spacecraft will fly through one of the most punishing radiation environments in our solar system — second only to the Sun’s.
      Jupiter is surrounded by a gigantic magnetic field 20,000 times stronger than Earth’s. As the field spins, it captures and accelerates charged particles, creating radiation that can damage spacecraft. Mission engineers designed a spacecraft vault to shield sensitive electronics from radiation, and they plotted orbits that will limit the time Europa Clipper spends in most radiation-heavy areas around Jupiter.
      3. Europa Clipper will orbit Jupiter, studying Europa while flying by the moon dozens of times.
      The spacecraft will make looping orbits around Jupiter that bring it close to Europa for 49 science-dedicated flybys. On each orbit, the spacecraft will spend less than a day in Jupiter’s dangerous radiation zone near Europa before zipping back out. Two to three weeks later, it will repeat the process, making another flyby.
      4. Europa Clipper features NASA’s most sophisticated suite of science instruments yet.
      To determine if Europa is habitable, Europa Clipper must assess the moon’s interior, composition, and geology. The spacecraft carries nine science instruments and a gravity experiment that uses the telecommunications system. In order to obtain the best science during each flyby, all the science instruments will operate simultaneously on every pass. Scientists will then layer the data together to paint a full picture of the moon.
      5. With antennas and solar arrays fully deployed, Europa Clipper is the largest spacecraft NASA has ever developed for a planetary mission.
      The spacecraft extends 100 feet (30.5 meters) from one end to the other and about 58 feet (17.6 meters) across. That’s bigger than a basketball court, thanks in large part to the solar arrays, which need to be huge so they can collect enough sunlight while near Jupiter to power the instruments, electronics, and other subsystems.
      6. It’s a long journey to Jupiter.
      Jupiter is on average some 480 million miles (about 770 million kilometers) from Earth; both planets are in motion, and a spacecraft can carry only a limited amount of fuel. Mission planners are sending Europa Clipper past Mars and then Earth, using the planets’ gravity as a slingshot to add speed to the spacecraft’s trek. After journeying about 1.8 billion miles (2.9 billion kilometers) over 5½ years, the spacecraft will fire its engines to enter orbit around Jupiter in 2030.
      7. Institutions across the U.S. and Europe have contributed to Europa Clipper.
      Currently, about a thousand people work on the mission, including more than 220 scientists from both the U.S. and Europe. Since the mission was officially approved in 2015, more than 4,000 people have contributed to Europa Clipper, including teams who work for contractors and subcontractors.
      8. More than 2.6 million of us are riding along with the spacecraft, bringing greetings from one water world to another.
      As part of a mission campaign called “Message in a Bottle,” the spacecraft is carrying a poem by U.S. Poet Laureate Ada Limón, cosigned by millions of people from nearly every country in the world. Their names have been stenciled onto a microchip attached to a tantalum metal plate that seals the spacecraft’s electronics vault. The plate also features waveforms of people saying the word “water” in over 100 spoken languages.
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
      NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.
      Find more information about Europa here:
      https://europa.nasa.gov
      Europa Clipper Teachable Moment See Europa’s Chaos Terrain in Crisp Detail Europa Clipper Gets Its Super-Size Solar Arrays News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215
      gretchen.p.mccartney@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-125
      Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      Europa Clipper Jet Propulsion Laboratory Jupiter The Solar System Explore More
      4 min read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training
      At first glance, it seems like a scene from an excursion on the Moon’s surface…except…
      Article 4 days ago 3 min read NASA to Develop Lunar Time Standard for Exploration Initiatives 
      Article 5 days ago 23 min read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon
      The next full Moon will be Tuesday, September 17, 2024, at 10:35 PM EDT. The…
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Europa Clipper: NASA’s Mission to Jupiter's Ocean Moon (Mission Trailer)
    • By NASA
      Linette Boisvert turned a childhood love of snow into a career as a sea ice scientist studying climate change.
      Name: Linette Boisvert
      Title: Assistant Lab Chief, Cryospheric Sciences Branch, and Deputy Project Scientist for the Aqua Satellite
      Formal Job Classification: Sea Ice Scientist
      Organization: Cryospheric Science Branch, Science Directorate (Code 615)
      “When it snowed, school was cancelled so I loved winter weather, and I was fascinated how weather could impact our daily lives,” said Linette. “One of my undergraduate classes had a guest lecturer talk about the Arctic and that is when decided that I wanted to become an Arctic scientist.”Photo credit: NASA/Kyle Krabill What do you do and what is most interesting about your role here at Goddard? 
      As a sea ice scientist, I study interactions between the sea ice and the atmosphere. I’m interested in how the changing sea ice conditions and loss of Arctic ice are affecting the atmospheric conditions in the Artic. 
      Why did you become a sea ice scientist? What is your educational background?  
      I grew up in Maryland. When it snowed, school was cancelled so I loved winter weather, and I was fascinated how weather could impact our daily lives. One of my undergraduate classes had a guest lecturer talk about the Arctic and that is when decided that I wanted to become an Arctic scientist. This also coincided with the Arctic sea ice minimum in 2007, at the time, a record low.
      In 2008, I got a B.S. in environmental science with a minor in math from the University of Maryland, Baltimore County (UMBC). I received my master’s and, in 2013, got a Ph.D. in atmospheric and oceanic sciences from the University of Maryland, College Park.
      How did you come to Goddard?
      My doctorate advisor worked at Goddard. In 2009, he brought me into Goddard’s lab to do my Ph.D. research. I became a post-doctorate in 2013, an assistant research scientist in 2016 (employed by UMD/ESSIC) and, in 2018, a civil servant.
      Dr. Linette Boisvert is a sea ice scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo credit: NASA/Jeremy Harbeck What is the most interesting field work you do as the assistant lab chief of Goddard’s Cryospheric Sciences Branch?
      From 2018 to 2020, I was the deputy project scientist for NASA’s largest and longest running airborne campaign, Operation IceBridge. This involved flying aircraft with scientific instruments over both land ice and sea ice in the Arctic and Antarctic. Every spring, we would set up a base camp in a U.S. Air Force base in Greenland and fly over parts of the sea ice over Greenland and the Arctic, and in the fall we would base out of places like Punta Arenas, Chile, and Hobart, Australia, to fly over the Antarctic. 
      We would fly low, at 1,500 feet above the surface. It is very, very cool to see the ice firsthand. It is so pretty, so vast, and complex. We would spend 12 hours a day on a plane just surveying the ice.
      Being based out of Greenland is very remote. Everything is white. Everything looks like it is closer than it is. You do not have a point of reference for any perspective. It is very quiet. There is no background ambient noise. You do not hear bugs, birds, or cars, just quiet. 
      Our team was about 20 people. Other people live at the base. The campaigns lasted six to eight weeks. I was there about three to four weeks each time. Many of the group had been doing these campaigns for a decade. I felt like I had joined a family. In the evenings, we would often cook dinner together and play games. On days we could not fly, we would go on adventures together like visiting a glacier or hiking. We saw musk ox, Arctic fox, Arctic hares, and seals. 
      How did it feel to become the deputy project scientist for the Aqua satellite, which provided most of the data you used for your doctorate and publications?
      In January 2023, I became the deputy project scientist for the Aqua satellite, which launched in 2002. Aqua measures the Earth’s atmospheric temperature, humidity, and trace gases. Most of my doctorate and publications used data from Aqua to look at how the sea ice loss in the Arctic is allowing for excess heat and moisture from the ocean to move into the atmosphere resulting in a warmer and wetter Arctic. 
      I am honored. I feel like I have come full circle. The team welcomed me into the mission and taught me a lot of things. I am grateful to be working with such a brilliant, hardworking team.
      Who is your science hero?
      My father encouraged me to get a doctorate in science. My father has a doctorate in computer science and math. He works at the National Institute of Standards and Technology. I wanted to be like him when I was growing up. I came close, working at NASA, another part of the federal government. My mother, a French pastry chef, always kept me well fed.
      “We would fly low, at 1,500 feet above the surface,” said Linette. “It is very, very cool to see the ice firsthand. It is so pretty, so vast, and complex. We would spend 12 hours a day on a plane just surveying the ice.”Photo credit: NASA/John Sonntag My father is very proud of me. He thinks I am more of a superstar than he was at my age, but I do not believe it. My mother is also proud and continues to keep me well fed.
      Who is your Goddard mentor?
      Claire Parkinson, now an emeritus, was the project scientist for Aqua since its inception. When she retired, she encouraged me to apply for the deputy position. She had confidence in me which gave me the confidence to apply for the position. She is still always available to answer any questions. I am very thankful that she has been there for me throughout my career.
      What advice do you give to those you mentor?
      I recently began advising young scientists; one undergraduate student, two graduate students, and one post-doctoral scientist. We meet weekly as a group and have one-on-one meetings when appropriate. They share their progress on their work. Sometimes we practice presentations they are about to give. 
      It is sometimes hard starting out to think that you are smart because Goddard is full of so many smart people. I tell them that they are just as capable when it comes to their research topic. I tell them that they fit in well with the Goddard community. I want to create a comfortable, respectful, and inclusive environment so that they remain in science. 
      What do you do for fun?
      I enjoy running and paddle boarding with my dog Remi, my long-haired dachshund. I enjoy reading. I love to travel and be around friends and family. But I do not enjoy cooking, so I do not bake French pastries like my mom. 
      Where do you see yourself in five years?
      I hope to continue doing research including field work. It would be great if some of my students finished their studies and joined my lab. I hope that I am still making people proud of me. 
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Hard-working. Smart. Inquisitive. Adventurous. Kind. Happy. 
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Sep 10, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      People of Goddard Earth Goddard Space Flight Center Ice & Glaciers People of NASA Explore More
      7 min read Kyle Helson Finds EXCITE-ment in Exoplanet Exploration
      Article 3 hours ago 5 min read Zachary Morse Hikes Hilltops, Caves Lava Tubes to Ready Moon Missions
      Article 1 week ago 5 min read Aaron Vigil Helps Give SASS to Roman Space Telescope
      Article 2 weeks ago View the full article
    • By NASA
      Learn Home Astro Campers SCoPE Out New… Astrophysics Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   2 min read
      Astro Campers SCoPE Out New Worlds
      Teachers at Smokey Mountain Elementary School have collaborated with the NASA Science Activation (SciAct) program’s Smoky Mountains STEM (Science, Technology, Engineering, and Mathematics) Collaborative (SMSC) and project coordinator, Randi Neff, to create a summer camp for students who are passionate about STEM topics. What started as a small summer camp has since evolved into Astro Camp, a two-week community program from the NASA Astro Camp Community Partners (part of the NASA SciAct program infrastructure) with many engaging student activities.
      Many students have enjoyed this camp from the beginning, and those who have participated annually have become increasingly interested in more challenging and robust activities to continue their learning adventures. With the help of SciAct’s NASA SCoPE (the NASA Science Mission Directorate Community of Practice for Education) team, Neff was able to connect teachers with a NASA Subject Matter Expert, Dr. Alissa Bans, to help draft new, challenging activities for the students who were ready to take them on in June 2024. Of course, new attendees and learners continued to excitedly engage in the foundational Astro Camp activities, as appropriate for their learning levels.
      Thanks to Dr. Bans and the ongoing collaboration of these three SciAct teams, returning campers took on new challenges identifying and observing goldilocks exoplanets and zones (habitable planets outside our solar system and zones where conditions might be just right – neither too hot nor too cold – for life) and exploring the various conditions that might support life on a planet. Having the opportunity to seek out and tackle more advanced STEM topics, learners developed critical thinking skills and found satisfaction in expanding their science identities.
      The Smoky Mountains STEM Collaborative, NASA SCoPE, and NASA Astro Camp Community Partners projects are supported by NASA as part of the Science Activation program portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Dr. Alissa Bans, a NASA Subject Matter Expert with NASA SCoPE, leads an activity with a group of students during Astro Camp. Share








      Details
      Last Updated Aug 09, 2024 Editor NASA Science Editorial Team Related Terms
      Astrophysics Community Partners Opportunities For Students to Get Involved Planetary Science Science Activation Explore More
      2 min read Hubble Spotlights a Supernova


      Article


      3 hours ago
      2 min read Celebrate Heliophysics Big Year: Free Monthly Webinars on the Sun Touches Everything


      Article


      3 days ago
      6 min read Quantum Scale Sensors used to Measure Planetary Scale Magnetic Fields


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...