Jump to content

Langley Celebrates Black History Month: Alexus Cottonham


NASA

Recommended Posts

  • Publishers

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Alexus Cottonham is an aerospace engineer supporting NASA Langley’s Systems Analysis and Concepts Directorate. She completed a bachelor’s degree in aerospace engineering from the University of Texas at Austin. She is currently pursuing a master’s degree in systems engineering at Colorado State University. She started with NASA in 2020 at NASA’s Johnson Space Center in Houston and is completing her first year at NASA Langley.

Who or what inspired you to choose your career and why?

Growing up, I actually didn’t like science. I found science fairs so stressful, and I wanted nothing to do with it. It wasn’t until I took physics in high school, and I was like, “Wow! This is amazing! You can predict the future? You can use this mathematical equation to tell me where Mars will be and its orbit 20 years from now?” I just fell in love. I had a high school teacher, high school physics teacher, Mr. [William] Budell who saw my enthusiasm and really encouraged me to think about a career in engineering, which I had never done before. As I was exploring different career options, I found aerospace, where I could combine my love of space and engineering.

What do you find most rewarding about working with NASA?

The most rewarding thing I find about working at NASA is the culture here. We really do have that ‘One NASA’ mindset. We’re all working towards a shared vision. Not to say that we don’t have our challenges or disagreements, but it makes finding solutions to those challenges so much easier knowing that we’re all working for the benefit of humankind.

What do you enjoy doing outside of work?

Outside of work, I have a lot of different interests. I enjoy spending time in nature, checking out city parks, state parks, and national parks nearby. I also enjoy board gaming. I love to travel and I’m usually planning my next big trip outside of work, and whenever I can, I like to support local theater.

What advice would you give young people who might be interested in pursuing a career at NASA?

To those who are interested in a career at NASA, I usually give advice to two different groups. You have a group of young people who know that they want to work at NASA but aren’t really sure what they’re dream job is, and that’s perfectly okay. I would say to that group, find your passion. Find the thing that sparks joy in you, and you can do that by pursuing internships, finding extracurriculars that spark interest, and once you find that passion, follow it! I used to think that NASA was only for scientists and engineers, but that’s so not true! We have communications specialists and accountants, lawyers, and artists and so many different fields of careers here, so I would explore whatever you’re passionate about.

Then to the second group, to people who know what their dream job is I would say, find a mentor, somebody who’s in the next stage of life that you trust and ask them questions. How did they get to where they are? How would they have done things differently if they had the opportunity?

Last piece of advice to both groups I would say is to be open to opportunities. You may not always find a direct path to where you’re going but you can find opportunities along the way that will help you gain the skills and make connections that will eventually get you to where you want to go.

How does your background and heritage contribute to your perspective and approach in your role at NASA?

Growing up, I heard the old African proverb, “It takes a village to raise a child” many, many times. And that’s true to my experience. Growing up in a single-parent household I saw my mom make connections with friends, with my teachers, and rely on my extended family to give me anything and everything that I needed, whether it be childcare or new clothes for school, or supporting me in my extracurriculars. And that principle is something that I like to bring into my current work. Nobody goes into space alone. It takes a village. It takes a team, and so not only do I look for strengths in myself that I can bring to my team to help us achieve our goals, but I’m also always looking around to others to see, “Hey! that person is doing amazing work!” or “This team is really awesome at this.” How can we partner together to improve our processes, to better our design, and achieve our goals together?

The 2024 theme for Black History Month is “African Americans and the Arts,” spanning the many impacts that Black Americans have had on visual arts, music, cultural movements and more. How have the arts played a role in your life? 

The arts have played a big role in my life. Growing up I was so shy. I would have never agreed to do a video interview or give a presentation to dozens or hundreds of people like I have at NASA. I got over my nerves and I jumped into drama club in middle school, and I loved it and I stuck with it all throughout high school becoming the president of the drama club my senior year. I learned so many skills that I still use today in my role. From customer interactions and customer satisfaction that we had to learn while we were selling tickets for our shows. I also learned how to consider different perspectives. When you’re putting on a show you have to think about the audience, how they’re going to react. You have to think about the actors on stage and the crew backstage and how it all comes together to complete our mission, which is putting on a great show. These are principles I still use in my work today.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      XRISM revealed the structure, motion and temperature of the material around a supermassive black hole and in a supernova remnant in unprecedented detail. Astronomers presented the first scientific results of the new X-ray telescope today, less than a year after the telescope’s launch.
      View the full article
    • By Space Force
      During CSO Gen. Chance Saltzman’s keynote address at the Air, Space and Cyber Conference, he explained how the service will transform to thrive in a new environment optimized for Great Power Competition.

      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds More… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   4 Min Read NASA’s Hubble Finds More Black Holes than Expected in the Early Universe
      The Hubble Ultra Deep Field of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. The image required 800 exposures taken over 400 Hubble orbits around Earth. The total amount of exposure time was 11.3 days, taken between Sept. 24, 2003 and Jan. 16, 2004. Credits:
      NASA, ESA, S. Beckwith (STScI) and the HUDF Team With the help of NASA’s Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      Currently, scientists do not have a complete picture of how the first black holes formed not long after the big bang. It is known that supermassive black holes, that can weigh more than a billion suns, exist at the center of several galaxies less than a billion years after the big bang.
      “Many of these objects seem to be more massive than we originally thought they could be at such early times — either they formed very massive or they grew extremely quickly,” said Alice Young, a PhD student from Stockholm University and co-author of the study  published in The Astrophysical Journal Letters.
      This is a new image of the Hubble Ultra Deep Field. The first deep imaging of the field was done with Hubble in 2004. The same survey field was observed again by Hubble several years later, and was then reimaged in 2023. By comparing Hubble Wide Field Camera 3 near-infrared exposures taken in 2009, 2012, and 2023, astronomers found evidence for flickering supermassive black holes in the hearts of early galaxies. One example is seen as a bright object in the inset. Some supermassive black holes do not swallow surrounding material constantly, but in fits and bursts, making their brightness flicker. This can be detected by comparing Hubble Ultra Deep Field frames taken at different epochs. The survey found more black holes than predicted. NASA, ESA, Matthew Hayes (Stockholm University); Acknowledgment: Steven V.W. Beckwith (UC Berkeley), Garth Illingworth (UC Santa Cruz), Richard Ellis (UCL); Image Processing: Joseph DePasquale (STScI)
      Download this image

      Black holes play an important role in the lifecycle of all galaxies, but there are major uncertainties in our understanding of how galaxies evolve. In order to gain a complete picture of the link between galaxy and black hole evolution, the researchers used Hubble to survey how many black holes exist among a population of faint galaxies when the universe was just a few percent of its current age.
      Initial observations of the survey region were re-photographed by Hubble after several years. This allowed the team to measure variations in the brightness of galaxies. These variations are a telltale sign of black holes. The team identified more black holes than previously found by other methods.
      The new observational results suggest that some black holes likely formed by the collapse of massive, pristine stars during the first billion years of cosmic time. These types of stars can only exist at very early times in the universe, because later-generation stars are polluted by the remnants of stars that have already lived and died. Other alternatives for black hole formation include collapsing gas clouds, mergers of stars in massive clusters, and “primordial” black holes that formed (by physically speculative mechanisms) in the first few seconds after the big bang. With this new information about black hole formation, more accurate models of galaxy formation can be constructed.
      “The formation mechanism of early black holes is an important part of the puzzle of galaxy evolution,” said Matthew Hayes from the Department of Astronomy at Stockholm University and lead author of the study. “Together with models for how black holes grow, galaxy evolution calculations can now be placed on a more physically motivated footing, with an accurate scheme for how black holes came into existence from collapsing massive stars.”
      Image Before/After Astronomers are also making observations with NASA’s James Webb Space Telescope to search for galactic black holes that formed soon after the big bang, to understand how massive they were and where they were located.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Matthew Hayes
      Stockholm University, Stockholm, Sweden
      Share








      Details
      Last Updated Sep 17, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Black Holes Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Online Activities



      Hubble Focus: Dark Universe


      View the full article
    • By European Space Agency
      With the help of the NASA/ESA Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early Universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      View the full article
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Reaching New Heights to Unravel Deep Martian History!
      This is an image of the rim that the Perseverance rover took on sol 383 (March 19th, 2022) when it was traversing the crater floor. Dox Castle is located at the top of the image in the far ground. NASA/JPL-Caltech/ASU The Perseverance rover is reaching new heights as it ascends the rim of Jezero crater (over 300 meters in elevation higher than the original landing site)! The rover is now enroute to its first campaign science stop Dox Castle (image in the far ground) a region of interest for its potential to host ancient Mars’ bedrock in the exposed rocks on the rim.
      Impact craters like Jezero may be the key to piecing together the early geologic history of Mars, as they provide a window into the history of the ancient crust by excavating and depositing deep crustal materials above the surface. Crater rims act as keepers of ancient Martian history, uplifting and exposing the stratigraphy of these impacted materials. Additionally, extreme heat from the impact can encourage the circulation of fluids through fractures similar to hydrothermal vents, which have implications for early habitability and may be preserved in the exposed rim bedrock. With the Perseverance rover we have the potential to explore some of the oldest exposed rocks on the planet.
      Exploring such diverse terrains takes a lot of initial planning! The team has been preparing for the Crater Rim Campaign these last few months by working together to map out the types of materials Perseverance may encounter during its traverse up and through the rim. Using orbital images from the High-Resolution Imaging Science Experiment (HiRISE) instrument, the science team divided the rim area into 36 map quadrants, carefully mapping different rock units based on the morphologies, tones, and textures they observed in the orbital images. Mapping specialists then connected units across the quads to turn 36 miniature maps into one big geologic map of the crater rim. This resource is being used by the team to plan strategic routes to scientific areas of interest on the rim.
      On Earth, geologic maps are made using a combination of orbital images and mapping in the field. Planetary scientists don’t typically get to check their map in the field, but we have the unique opportunity to validate our map using our very own robot geologist! Dox Castle will be our first chance to do rim science – and we’re excited to search for evidence of the transition between the margin and rim materials to start piecing together the stratigraphic history of the rocks that make up the rim of Jezero crater.
      Written by Margaret Deahn, Ph.D. student at Purdue University
      Share








      Details
      Last Updated Sep 16, 2024 Related Terms
      Blogs Explore More
      5 min read Sols 4304-4006: 12 Years, 42 Drill Holes, and Now… 1 Million ChemCam Shots!


      Article


      3 days ago
      3 min read Sols 4302-4303: West Side of Upper Gediz Vallis, From Tungsten Hills to the Next Rocky Waypoint


      Article


      3 days ago
      2 min read Margin’ up the Crater Rim!


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...