Members Can Post Anonymously On This Site
Langley Celebrates Black History Month: Alexus Cottonham
-
Similar Topics
-
By NASA
From left to right, Dr. Peter Parker, Astronaut Victor Glover and Dr. Shih-Yung post for a photo after the 2024 Silver Snoopy Awards ceremony.NASA/Mark Knopp Two employees from NASA’s Langley Research Center in Hampton, Virginia recently earned the prestigious Silver Snoopy award, an honor given to NASA employees and contractors across the agency for outstanding achievements related to astronaut safety or mission success. Dr. Shih-Yung Lin and Dr. Peter Parker received the awards during a Space Flight Awareness (SFA) award ceremony at Langley on Nov. 21. Lin earned the award for exceptional engineering and technical leadership contributions to the Orion program. Parker earned the award for outstanding leadership and technical contributions in support of the International Space Station (ISS).
NASA astronaut Victor Glover visited Langley to present the awards. Glover is currently assigned as the pilot of NASA’s Artemis II mission to the Moon. He piloted the SpaceX Crew 1 mission to the International Space Station in 2018 and served as a flight engineer on expeditions 64 and 65.
“This, for me, feels like how I felt when I received my astronaut pin. This is us giving you our team pin,” said Glover. He later added, “This is something to wear with honor. You are a very special part of our safety and mission assurance culture.”
Astronaut Victor Glover presents the 2024 Silver Snoopy Awards to Dr. Shih-Yung at NASA Langley Research Center.NASA/Angelique Herring The Silver Snoopy is the astronauts’ personal award and is presented to less than one percent of the total NASA workforce annually. The significance of the award was not lost on the honorees, who both brought family members to share in the moment.
“I’m involved with lots of research projects, but they don’t all involve loss of human life,” said Parker. “It definitely is a more prestigious, more impactful, more consequential type of project that I’m being recognized for.”
Lin, who recently retired, echoed that sentiment.
“You set a very high standard in order to achieve the safest conditions for all the astronauts,” he said. “For me, if we get a good mission out of it, or multiple missions, I would consider that my personal lifetime goal for my career. That’s what it means to me.”
Lin and Parker each received a sterling Silver Snoopy lapel pin that has flown in space, plus a certificate of appreciation signed by Glover and an authentication letter. The pins awarded to Langley’s recipients flew aboard Space Shuttle Endeavour during an assembly mission to the International Space Station, STS-118, August 8-21, 2007. The award depicts Snoopy, a character from the “Peanuts” comic strip created by Charles Schulz.
An avid supporter of the U.S. space program, Schulz gave NASA astronauts permission to adopt Snoopy as their personal safety symbol during the Apollo era and has long served to promote excellence in every phase of space flight to help ensure the success of NASA missions. The Snoopy emblem reflects NASA and industry’s sense of responsibility and continuing concern for astronaut flight safety.
View the full article
-
By NASA
When Ariel Vargas joined NASA in 2023, he knew he wanted to make an impact. Despite his relatively short tenure, he has earned the reputation of a Digital Transformer in his work as a Network and ICAM (Identity, Credential, and Access Management) Service Integrator at Johnson Space Center (JSC). No matter the task at hand, Ariel is motivated by measurable transformation. “I wanted to have my fingerprint on something no matter what it was, big or small. To be able to see an impact,” he says. “And a lot of the things that I’m doing, both within my role and within Digital Transformation, I can see really flourishing already.”
In his current role, Ariel oversees the integration and management of various network services to ensure compliance and smooth operation. This includes the modernization of NASA’s Voice over Internet Protocol (VoIP) to consolidate the agency’s telephone systems and enhance wireless communications. He is involved in rolling out wall-to-wall wireless and coverage improvements on campus at JSC. Ariel also spearheads efforts in streamlining communications across NASA by integrating new capabilities into familiar platforms like Microsoft Teams. With these projects in progress, he aims to foster a more flexible, collaborative work environment aligned with Digital Transformation’s goal of inclusive teaming.
Ariel appreciates the cultural side of Digital Transformation, particularly the challenges involved in pursuing constant innovation. He recognizes that growth “often requires a period of adjustment, especially for those encountering new tools or methods for the first time.” Ariel strives to ensure cohesive collaboration across teams and centers in establishing interoperable architectures, processes, and tools. His team measures the impact of their transformation efforts by several metrics, including increased network performance and adoption rates of new tools and technologies. For instance, the VoIP modernization initiative aims to remove 50% of telephones at NASA centers. Of the over 1300 users affected by the NASA-wide service shut-off of non-compliant phones at JSC, only 6% reported issues post-implementation. This reflected a positive and proactive collaboration with users on finding alternative solutions and embracing future innovations.
I really believe in embracing changes and innovation and driving impactful results, being able to see it.
Ariel Vargas
Network and ICAM (Identity, Credential, and Access Management) Service Integrator at Johnson Space Center (JSC)
Lynn Vernon, JSC’s Digital Transformation lead and Chief Engineer for IT, notes Ariel’s ability to engage with partners, understand their mission needs, and identify innovative solutions to barriers. “Ariel looks at things from a new perspective and is willing to ask ‘why’ or ‘why not.’ Why do we do it this way? Why not try this? He is consistently willing to explore new technologies and capabilities to transform the way we work,” says Lynn. Ariel’s passion for continuous improvement and learning positions him as a natural leader within the Digital Transformation community.
Ariel took a unique path to NASA and sees his prior experiences as building blocks toward becoming the Digital Transformer he is today. Although his upbringing in Florida near Cape Canaveral sparked an early interest in space, Ariel initially pursued pre-medicine after high school before transitioning into the Army. After his service, he joined NASA as an intern through the Department of Defense’s SkillBridge program, which offers career assistance to transitioning military personnel. His ability to learn NASA’s culture and demonstrate mission value quickly led to a full-time, civil servant position.
Between his initial interest in medicine, his service in the Army, and his current focus on digital transformation and technology, Ariel sees a common theme of problem-solving. “You have to figure out what the problem is, and you have to be up to date with the newest, the latest and greatest, to help solve these problems.” Ariel followed this thread to complete a master’s degree in computer science and is currently pursuing a doctorate in instructional design and performance technology. Even outside his work at NASA, Ariel pursues pathways that further his capacity as a champion of Digital Transformation initiatives.
Looking to the future, Ariel is excited by the possibility of supporting NASA’s space missions through AI and data integration. He is motivated by the prospect of seeing his current work make a difference in the near-term future. “I really believe in embracing changes and innovation and driving impactful results, being able to see it,” he says. Given his accomplishments of the past year, Ariel is well on his way to realizing the future he envisions.
View the full article
-
By NASA
This illustration shows a red, early-universe dwarf galaxy that hosts a rapidly feeding black hole at its center. Using data from NASA’s James Webb Space Telescope and Chandra X-ray Observatory, a team of astronomers have discovered this low-mass supermassive black hole at the center of a galaxy just 1.5 billion years after the Big Bang. It is pulling in matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s “feast” could help astronomers explain how supermassive black holes grew so quickly in the early universe.NOIRLab/NSF/AURA/J. da Silva/M. Zamani A rapidly feeding black hole at the center of a dwarf galaxy in the early universe, shown in this artist’s concept, may hold important clues to the evolution of supermassive black holes in general.
Using data from NASA’s James Webb Space Telescope and Chandra X-ray Observatory, a team of astronomers discovered this low-mass supermassive black hole just 1.5 billion years after the big bang. The black hole is pulling in matter at a phenomenal rate — over 40 times the theoretical limit. While short lived, this black hole’s “feast” could help astronomers explain how supermassive black holes grew so quickly in the early universe.
Supermassive black holes exist at the center of most galaxies, and modern telescopes continue to observe them at surprisingly early times in the universe’s evolution. It’s difficult to understand how these black holes were able to grow so big so rapidly. But with the discovery of a low-mass supermassive black hole feasting on material at an extreme rate so soon after the birth of the universe, astronomers now have valuable new insights into the mechanisms of rapidly growing black holes in the early universe.
The black hole, called LID-568, was hidden among thousands of objects in the Chandra X-ray Observatory’s COSMOS legacy survey, a catalog resulting from some 4.6 million Chandra observations. This population of galaxies is very bright in the X-ray light, but invisible in optical and previous near-infrared observations. By following up with Webb, astronomers could use the observatory’s unique infrared sensitivity to detect these faint counterpart emissions, which led to the discovery of the black hole.
The speed and size of these outflows led the team to infer that a substantial fraction of the mass growth of LID-568 may have occurred in a single episode of rapid accretion.
LID-568 appears to be feeding on matter at a rate 40 times its Eddington limit. This limit relates to the maximum amount of light that material surrounding a black hole can emit, as well as how fast it can absorb matter, such that its inward gravitational force and outward pressure generated from the heat of the compressed, infalling matter remain in balance.
These results provide new insights into the formation of supermassive black holes from smaller black hole “seeds,” which current theories suggest arise either from the death of the universe’s first stars (light seeds) or the direct collapse of gas clouds (heavy seeds). Until now, these theories lacked observational confirmation.
The new discovery suggests that “a significant portion of mass growth can occur during a single episode of rapid feeding, regardless of whether the black hole originated from a light or heavy seed,” said International Gemini Observatory/NSF NOIRLab astronomer Hyewon Suh, who led the research team.
A paper describing these results (“A super-Eddington-accreting black hole ~1.5 Gyr after the Big Bang observed with JWST”) appears in the journal Nature Astronomy.
About the Missions
NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
News Media Contact
Elizabeth Laundau
NASA Headquarters
Washington, DC
202-923-0167
elizabeth.r.landau@nasa.gov
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
View the full article
-
By NASA
4 min read
NASA’s Swift Studies Gas-Churning Monster Black Holes
A pair of monster black holes swirl in a cloud of gas in this artist’s concept of AT 2021hdr, a recurring outburst studied by NASA’s Neil Gehrels Swift Observatory and the Zwicky Transient Facility at Palomar Observatory in California. NASA/Aurore Simonnet (Sonoma State University) Scientists using observations from NASA’s Neil Gehrels Swift Observatory have discovered, for the first time, the signal from a pair of monster black holes disrupting a cloud of gas in the center of a galaxy.
“It’s a very weird event, called AT 2021hdr, that keeps recurring every few months,” said Lorena Hernández-García, an astrophysicist at the Millennium Institute of Astrophysics, the Millennium Nucleus on Transversal Research and Technology to Explore Supermassive Black Holes, and University of Valparaíso in Chile. “We think that a gas cloud engulfed the black holes. As they orbit each other, the black holes interact with the cloud, perturbing and consuming its gas. This produces an oscillating pattern in the light from the system.”
A paper about AT 2021hdr, led by Hernández-García, was published Nov. 13 in the journal Astronomy and Astrophysics.
The dual black holes are in the center of a galaxy called 2MASX J21240027+3409114, located 1 billion light-years away in the northern constellation Cygnus. The pair are about 16 billion miles (26 billion kilometers) apart, close enough that light only takes a day to travel between them. Together they contain 40 million times the Sun’s mass.
Scientists estimate the black holes complete an orbit every 130 days and will collide and merge in approximately 70,000 years.
AT 2021hdr was first spotted in March 2021 by the Caltech-led ZTF (Zwicky Transient Facility) at the Palomar Observatory in California. It was flagged as a potentially interesting source by ALeRCE (Automatic Learning for the Rapid Classification of Events). This multidisciplinary team combines artificial intelligence tools with human expertise to report events in the night sky to the astronomical community using the mountains of data collected by survey programs like ZTF.
“Although this flare was originally thought to be a supernova, outbursts in 2022 made us think of other explanations,” said co-author Alejandra Muñoz-Arancibia, an ALeRCE team member and astrophysicist at the Millennium Institute of Astrophysics and the Center for Mathematical Modeling at the University of Chile. “Each subsequent event has helped us refine our model of what’s going on in the system.”
Since the first flare, ZTF has detected outbursts from AT 2021hdr every 60 to 90 days.
Hernández-García and her team have been observing the source with Swift since November 2022. Swift helped them determine that the binary produces oscillations in ultraviolet and X-ray light on the same time scales as ZTF sees them in the visible range.
The researchers conducted a Goldilocks-type elimination of different models to explain what they saw in the data.
Initially, they thought the signal could be the byproduct of normal activity in the galactic center. Then they considered whether a tidal disruption event — the destruction of a star that wandered too close to one of the black holes — could be the cause.
Finally, they settled on another possibility, the tidal disruption of a gas cloud, one that was bigger than the binary itself. When the cloud encountered the black holes, gravity ripped it apart, forming filaments around the pair, and friction started to heat it. The gas got particularly dense and hot close to the black holes. As the binary orbits, the complex interplay of forces ejects some of the gas from the system on each rotation. These interactions produce the fluctuating light Swift and ZTF observe.
To view this video please enable JavaScript, and consider upgrading to a web browser that
supports HTML5 video
Watch as a gas cloud encounters two supermassive black holes in this simulation. The complex interplay of gravitational and frictional forces causes the cloud to condense and heat. Some of the gas is ejected from the system with each orbit of the black holes. F. Goicovic et al. 2016 Hernández-García and her team plan to continue observations of AT 2021hdr to better understand the system and improve their models. They’re also interested in studying its home galaxy, which is currently merging with another one nearby — an event first reported in their paper.
“As Swift approaches its 20th anniversary, it’s incredible to see all the new science it’s still helping the community accomplish,” said S. Bradley Cenko, Swift’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “There’s still so much it has left to teach us about our ever-changing cosmos.”
NASA’s missions are part of a growing, worldwide network watching for changes in the sky to solve mysteries of how the universe works.
Goddard manages the Swift mission in collaboration with Penn State, the Los Alamos National Laboratory in New Mexico, and Northrop Grumman Space Systems in Dulles, Virginia. Other partners include the University of Leicester and Mullard Space Science Laboratory in the United Kingdom, Brera Observatory in Italy, and the Italian Space Agency.
Download high-resolution images and videos.
By Jeanette Kazmierczak
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Media Contact:
Claire Andreoli
301-286-1940
claire.andreoli@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
Details
Last Updated Nov 13, 2024 Editor Jeanette Kazmierczak Related Terms
Astrophysics Black Holes Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center Neil Gehrels Swift Observatory Science & Research Supermassive Black Holes The Universe View the full article
-
By NASA
1 Min Read Oral History with R. Walter Cunningham
Lunar module pilot Walter Cunningham writes with a space pen as he performs flight tasks on the ninth day of the Apollo 7 mission. Credits: NASA Selected for NASA’s third astronaut class in 1963, Cunningham served as the backup Lunar Module Pilot for Apollo 1. He piloted the 11-day flight of Apollo 7 in October 1968, the first manned flight test of the Apollo spacecraft. The crew executed maneuvers enabling them to practice for upcoming Apollo lunar orbit rendezvous missions and provided the first live television transmission of onboard crew activities. Cunningham served as the Chief of the Skylab branch under the Flight Crew Directorate at Johnson Space Center in 1969 until his retirement and move to the private sector in 1971.
Read more about R. Walter Cunningham
NASA Oral History, May 24, 1999 NASA Biography Apollo Astronaut Walter Cunningham Dies at 90 The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.