Jump to content

Former Student Launch Competitor Turns Experience into NASA Engineering Career


Recommended Posts

  • Publishers
Posted

3 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A group of students in black t-shirts and red shorts pose around a student created rocket.
Meredith Patterson, front row, center right, poses with her teammates in the High-Powered Rocketry Club at North Carolina State University on the day they launched the rocket they built for NASA’s 2023 Student Launch. The experience and knowledge Patterson gained from her years participating in the annual competition helped pave the way for a career at NASA after graduation.
High-Powered Rocketry Club at NC State

By Jessica Barnett

Sometimes, all it takes is a few years and the right people to completely change a person’s career trajectory. One such example is Meredith Patterson, an aerospace engineer at NASA’s Marshall Space Flight Center in Huntsville, Alabama, who went from knowing little to nothing about rockets to being part of the team that is working to put humans back on the Moon.

She credits her success in large part to NASA’s Student Launch, which not only helped her uncover her passion for aerospace engineering but gave her the knowledge and experience she needed to get where she is today.

The annual Student Launch competition invites student teams from across the U.S. to spend nine months designing, building, and testing a high-powered rocket carrying a scientific or engineering payload. The hands-on, research-based engineering activity culminates each year in a final launch in Huntsville. This year’s challenge conclusion is set for April 10-14, with the final launch date set for April 13 at Bragg Farms in Toney, Alabama.

While Student Launch is open to students as young as sixth grade, Patterson was in her junior year of high school when she learned about the competition during a tour of North Carolina State University.

“When I walked into the rocketry lab there, I knew then, however many years it was going to take, I wanted to be the person who was able to run that and help put together everything for us to be successful in Student Launch,” Patterson said.

A college student works on a student created rocket with safety glasses on her face.
Meredith Patterson, then-freshman at North Carolina State University, assembles the competition vehicle used by the school’s high-powered rocketry club in this photo from the NASA’s 2019 Student Launch. Patterson was a member of the club and a regular participant in Student Launch for five years before graduating and turning her experience into a full-time career as an aerospace engineer at NASA.
High-Powered Rocketry Club at NC State

She attended North Carolina State for five years, participating in each year’s Student Launch competition and leading the team to a fourth-place win during her final year. She received her Level I and Level II certifications from Tripoli Rocketry Association through Student Launch, and she was able to connect with mentors from Tripoli and the National Rocketry Association that helped her get the hands-on experience and technical know-how she believes are key to success in the aerospace industry.

“My leadership skills grew, my system engineering skills grew, and my technical writing skills grew,” Patterson said. “Having mentors through the competition allowed me to ask questions and learn on the technical side of things, too. I think I use more information from Student Launch day to day than from almost any of my classes in college.”

She said attending an engineering camp at 16 years old first unlocked her interest in spaceflight and rocketry, but it was through Student Launch that she got to really dive in and deepen her passion.

“It’s crazy to think that less than 10 years ago, I had never even built a rocket, and now I can build Level II-sized rockets on my own and I’m actively working on the biggest solid rocket boosters in the world,” Patterson said. “Just in the past year, I’ve gone from the L-class motor that we used for Student Launch to casting 11-inch motors to now actively watching the casting of the SLS (Space Launch System) boosters.”

A woman with brown shoulder-length hair poses in front of the American and NASA flags for her headshot.
Meredith Patterson, a former competitor in NASA’s Student Launch Challenge, now works as an aerospace engineer at NASA’s Marshall Space Flight Center.
NASA

Student Launch is part of NASA’s Artemis Student Challenges. Seventy teams representing 24 states and Puerto Rico were selected to compete in the 2024 Student Launch Challenge.

Marshall hosts the Student Launch challenge with management support provided by NASA’s Office of STEM Engagement – Southeast Region. Funding is provided, in part, by NASA’s Space Operations Mission Directorate and NASA’s Next Gen STEM project.

Share

Details

Last Updated
Feb 27, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read Five Facts About NASA’s Moon Bound Technology
      A view of the Moon from Earth, zooming up to IM-2's landing site at Mons Mouton, which is visible in amateur telescopes. Credits: NASA/Scientific Visualization Studio NASA is sending revolutionary technologies to the Moon aboard Intuitive Machines’ second lunar delivery as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign to establish a long-term presence on the lunar surface. 
      As part of this CLPS flight to the Moon, NASA’s Space Technology Mission Directorate will test novel technologies to learn more about what lies beneath the lunar surface, explore its challenging terrain, and improve in-space communication.  
      The launch window for Intuitive Machines’ second CLPS delivery, IM-2, opens no earlier than Wednesday, Feb. 26 from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. After the Intuitive Machines’ Nova-C class lunar lander reaches Mons Mouton, a lunar plateau near the Moon’s South Pole region, it will deploy several NASA and commercial technologies including a drill and mass spectrometer, a new cellular communication network, and a small drone that will survey difficult terrain before returning valuable data to Earth.

      Caption: The Intuitive Machines lunar lander that will deliver NASA science and technology to the Moon as part of the agency’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign is encapsulated in the fairing of the SpaceX Falcon 9 rocket. Credit: SpaceX Here are five things to know about this unique mission to the Moon, the technologies we are sending, and the teams making it happen!  

      1. Lunar South Pole Exploration 
      IM-2’s landing site is known as one of the flatter regions in the South Pole region, suitable to meet Intuitive Machines’ requirement for a lit landing corridor and acceptable terrain slope. The landing location was selected by Intuitive Machines using data acquired by NASA’s Lunar Reconnaissance Orbiter.  
      An illustration of Mons Mouton, a mesa-like lunar mountain that towers above the landscape carved by craters near the Moon’s South Pole.Credit: NASA/Scientific Visualization Studio 2. New Technology Demonstrations 

      NASA’s Polar Resources Ice Mining Experiment, known as PRIME-1, is a suite of two instruments – a drill and mass spectrometer – designed to demonstrate our capability to look for ice and other resources that could be extracted and used to produce propellant and breathable oxygen for future explorers. The PRIME-1 technology will dig up to about three feet below the surface into the lunar soil where it lands, gaining key insight into the soil’s characteristics and temperature while detecting other resources that may lie beneath the surface.  
      Data from the PRIME-1 technology demonstration will be made available to the public following the mission, enabling partners to accelerate the development of new missions and innovative technologies.   
      The Polar Resources Ice Mining Experiment-1 (PRIME-1) will help scientists search for water at the lunar South Pole.Credit: NASA/Advanced Concepts Lab 3. Mobile Robots

      Upon landing on the lunar surface, two commercial Tipping Point technology demonstrations will be deployed near Intuitive Machines’ lander, Tipping Points are collaborations between NASA’s Space Technology Mission Directorate and industry that foster the development of commercial space capabilities and benefit future NASA missions. 
      The first is a small hopping drone developed by Intuitive Machines. The hopper, named Grace, will deploy as a secondary payload from the lander and enable high-resolution surveying of the lunar surface, including permanently shadowed craters around the landing site. Grace is designed to bypass obstacles such as steep inclines, boulders, and craters to cover a lot of terrain while moving quickly, which is a valuable capability to support future missions on the Moon and other planets, including Mars. 
      Artist rendering of the Intuitive Machines Micro Nova Hopper.Credit: Intuitive Machines 4. Lunar Surface Communication
      The next Tipping Point technology will test a Lunar Surface Communications System developed by Nokia. This system employs the same cellular technology used here on Earth, reconceptualized by Nokia Bell Labs to meet the unique requirements of a lunar mission. The Lunar Surface Communications System will demonstrate proximity communications between the lander, a Lunar Outpost rover, and the hopper. 

      Artist rendering of Nokia’s Lunar Surface Communication System (LSCS), which aims to demonstrate cellular-based communications on the lunar surface. Credit: Intuitive Machines 5. Working Together
      NASA is working with several U.S. companies to deliver technology and science to the lunar surface through the agency’s CLPS initiative.  
      NASA’s Space Technology Mission Directorate plays a unique role in the IM-2 mission by strategically combining CLPS with NASA’s Tipping Point mechanism to maximize the potential benefit of this mission to NASA, industry, and the nation.  
      NASA’s Lunar Surface Innovation Initiative and Game Changing Development program within the agency’s Space Technology Mission Directorate led the maturation, development, and implementation of pivotal in-situ resource utilization, communication, and mobility technologies flying on IM-2.  
      Join NASA to watch full mission updates, from launch to landing on NASA+, and share your experience on social media. Mission updates will be made available on NASA’s Artemis blog.  

      A team of engineers from NASA’s Johnson Space Center in Houston and Honeybee Robotics in Altadena, California inspect TRIDENT – short for The Regolith Ice Drill for Exploring New Terrain – shortly after its arrival at the integration and test facility.Credit: NASA/Robert Markowitz Artist’s rendering of Intuitive Machines’ Athena lunar lander on the Moon. Credit: Intuitive Machines
      Artist conception: Earth emerges from behind Mons Mouton on the horizon.Credit: NASA/Scientific Visualization Studio Explore More
      3 min read NASA’s Polar Ice Experiment Paves Way for Future Moon Missions 
      Article 2 weeks ago 6 min read Ten NASA Science, Tech Instruments Flying to Moon on Firefly Lander
      Article 1 month ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      Polar Resources Ice Mining Experiment 1 (PRIME-1)
      Commercial Lunar Payload Services (CLPS)
      The goal of the CLPS project is to enable rapid, frequent, and affordable access to the lunar surface by helping…
      NASA Partners with American Companies on Key Moon, Exploration Tech
      NASA has selected 11 U.S. companies to develop technologies that could support long-term exploration on the Moon and in space…
      Share
      Details
      Last Updated Feb 24, 2025 EditorStefanie PayneContactAnyah Demblinganyah.dembling@nasa.govLocationNASA Headquarters Related Terms
      Space Technology Mission Directorate Artemis Commercial Lunar Payload Services (CLPS) Game Changing Development Program Kennedy Space Center Lunar Surface Innovation Initiative Missions NASA Headquarters Research and Technology at Kennedy Space Center Science Mission Directorate
      View the full article
    • By NASA
      The unpiloted Roscosmos Progress spacecraft pictured on Aug. 13, 2024, from the International Space Station.Credit: NASA NASA will provide live launch and docking coverage of a Roscosmos cargo spacecraft delivering approximately three tons of food, fuel, and supplies for the crew aboard the International Space Station.
      The unpiloted Roscosmos Progress 91 spacecraft is scheduled to launch at 4:24 p.m. EST, Thursday, Feb. 27 (2:24 a.m. Baikonur time, Friday, Feb. 28), on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan.
      Live launch coverage will begin at 4 p.m. on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      After a two-day in-orbit journey to the station, the spacecraft will dock autonomously to the aft port of the Zvezda service module at 6:03 p.m. Saturday, March 1. NASA’s rendezvous and docking coverage will begin at 5:15 p.m. on NASA+.
      The Progress 91 spacecraft will remain docked to the space station for approximately six months before departing for re-entry into Earth’s atmosphere to dispose of trash loaded by the crew.
      The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars.
      Get breaking news, images and features from the space station on Instagram, Facebook, and X.
      Learn more about the International Space Station, its research, and its crew, at:
      https://www.nasa.gov/station
      -end-
      Claire O’Shea
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Feb 24, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Johnson Space Center Space Operations Mission Directorate View the full article
    • By NASA
      Live High-Definition Views from the International Space Station (Official NASA Stream)
    • By NASA
      Live Video from the International Space Station (Official NASA Stream)
    • By NASA
      Wayne Johnson, who in 2012 earned the highest rank of Fellow at NASA’s Ames Research Center in California, is known worldwide as an expert in rotary wing technology. He was among those who provided help in testing Ingenuity, NASA’s Mars helicopter.NASA / Eric James NASA Ames’ Wayne Johnson Elected to 2025 Class of New Members of the National Academy of Engineering (NAE)
      Dr. Wayne R. Johnson, aerospace engineer at Ames Research Center, will be inducted as a new member of the prestigious National Academy of Engineering (NAE), class of 2025, on October 5, 2025, for his 45+ years of contributions to rotorcraft analysis, tiltrotor aircraft development, emerging electric aircraft, and the Mars Helicopter development. NAE members are among the world’s most accomplished engineers from business, academia, and government and are elected by their peers. The full announcement was released to the press on February 11, 2025 from NAE and is at
      https://www.nae.edu/19579/31222/20095/327741/331605/NAENewClass2025
      View the full article
  • Check out these Videos

×
×
  • Create New...