Jump to content

The CUTE Mission: Innovative Design EnablesObservations of Extreme Exoplanets from a SmallPackage


Recommended Posts

  • Publishers
Posted
5 Min Read

The CUTE Mission: Innovative Design EnablesObservations of Extreme Exoplanets from a SmallPackage

A satellite above planet Earth; the satellite consists of a rectangular box with four flat rectangular solar array panels attached.
Fig 1: Artist’s concept of the CUTE mission on-orbit. CUTE has been operating in a 560 km sun-synchronous orbit since September 2021.
Credits:
NASA

Of the approximately 5,500 exoplanets discovered to date, many have been found to orbit very close to their parent stars. These close-in planets provide a unique opportunity to observe in detail the phenomena critical to the development and evolution of our own solar system, including atmospheric mass loss and interactions with the host star. NASA’s Colorado Ultraviolet Transit Experiment (CUTE) mission, launched in September 2021, employed a new design that enabled exploration of these processes using a small spacecraft for the first time. CUTE provides unique spectral diagnostics that trace the escaping atmospheres of close-in, ultra-hot, giant planets. In addition, CUTE’s dedicated mission architecture enables the survey duration required to characterize atmospheric structure and variability on these worlds.

Atmospheric escape is a fundamental process that affects the structure, composition, and evolution of many planets. It has operated on all of the terrestrial planets in our solar system and likely drives the demographics of the short-period planet population characterized by NASA’s Kepler mission. In fact, atmospheric escape ultimately may be the determining factor when predicting the habitability of temperate, terrestrial exoplanets. Escaping exoplanet atmospheres were first observed in the hydrogen Lyman-alpha line (121nm) in 2003. However, contamination by neutral hydrogen in both the intervening interstellar medium and Earth’s upper atmosphere makes obtaining high-quality Lyman-alpha transit measurements for most exoplanets very challenging. By contrast, a host star’s near-ultraviolet (NUV; 250 – 350 nm) flux is two to three orders of magnitude higher than Lyman-alpha, and transit light curves can be measured against a smoother stellar surface intensity distribution.

This knowledge motivated a team led by Dr. Kevin France at the University of Colorado Laboratory for Atmospheric and Space Physics to design the CUTE mission (Fig 1). The team proposed the CUTE concept to NASA through the ROSES/Astrophysics Research and Analysis (APRA) Program in February 2016 and NASA funded the project in July 2017. The CUTE instrument pioneered use of two technologies on a small space mission: a novel, rectangular Cassegrain telescope (20cm × 8cm primary mirror) and a miniature, low-resolution spectrograph operating from approximately 250 – 330 nm. The rectangular telescope was fabricated to accommodate the unique instrument volume of the 6U CubeSat form factor, an adaptation that delivers approximately three times the collecting area of a traditional, circular aperture telescope.  The compact spectrograph meets the spectral resolution requirements of the mission while using scaled down component technology adapted from the Hubble Space Telescope.

Flat board with boxes and wires attached, held by person wearing gloves
Fig 2 – Image of the CUTE science instrument, including rectangular telescope and miniaturized spectrograph, mounted to the spacecraft bus.
Credit: CUTE Team, University of Colorado

This novel instrument design enables CUTE to measure NUV with similar precision as larger missions even in the more challenging thermal and pointing environment experienced by a CubeSat. In addition, the CUTE instrument’s NUV bandpass enables it to measure iron and magnesium ions from highly extended atmospheric layers that ground-based instruments cannot access. The CUTE science instrument is incorporated into a 6U Blue Canyon Technologies spacecraft bus that provides power, command and data handling, attitude control, and communications. This CubeSat platform enables CUTE to observe numerous transits of a given planet. The spectrogram from the CUTE instrument is recorded on a UV-optimized commercial off-the-shelf charge-coupled device (CCD), onboard data processing is performed, and data products are relayed to a ground station at the University of Colorado.

Several individuals dressed in protective clothing, masks and gloves attach a rectangular box to rails.
Fig 3 –Graduate student Arika Egan (center) and electrical engineer Nicholas DeCicco (left) install CUTE into the LANDSAT-9 secondary payload dispenser at Vandenberg Space Force Base.
Credit: CUTE Team, University of Colorado

CUTE was launched as a secondary payload on NASA’s LANDSAT-9 mission on September 27, 2021 into a Sun-synchronous orbit with a 560 km apogee. CUTE deployed from the payload dispenser (Fig 2) approximately two hours after launch and then deployed its solar arrays. Spacecraft beacon signals were identified by the amateur radio community on the first orbit and communications were established with the ground station at the University of Colorado the following day. On-orbit commissioning of the spacecraft and instrument concluded in February 2022 and the mission has been conducting science operations since that time.

As of February 2024, CUTE is actively acquiring science and calibration data (Fig 3), and has observed between 6 and 11 transits of seven different exoplanetary systems. Data downlink efficiency is the primary factor limiting the number of targets observed over the course of the mission. CUTE light curves and transit spectroscopy are revealing extended NUV atmospheres on some planets (Fig 4) and potential time variability in the atmospheric transmission spectra of others. For example, observations of the ultra-hot exoplanet, Jupiter WASP-189b, indicate a highly extended atmosphere. Magnesium ions are observed to be gravitationally unbound from the planet, which is evidence for active escape of heavy elements in this system. CUTE data are being archived by the NASA Exoplanet Science Institute (NExScI).

At top: a graph depicting a nearly straight line from left to right against a purple background. At bottom: a graph showing wavelength on the x axis and flux on the y axis; a blue line zig-zags downward from left to right
Fig 4 – Flight data from CUTE showing raw CCD observations (top) and calibrated one-dimensional spectra (bottom).
Image credit: France et al (2023)
Graph showing optical data in blue and NUV data from visit 1 in black, visit 2 in green, and visit 3 in pink. Most data points fall on a straight line from left to right, except for a significant dip at orbital phase 0.
Fig 5 – CUTE NUV transit light curve of the ultra-hot exoplanet, Jupiter WASP-189b. This light curve was created from three separate transit visits to the planet.
Image credit: Sreejith, et al (2023)

CUTE successfully demonstrated the use of a non-circular telescope and miniature spectrograph design for small space missions, an approach that has been subsequently adopted by several NASA and international mission designs, including NASA’s new Monitoring Activity from Nearby sTars with uv Imaging and Spectroscopy (MANTIS) mission. CUTE’s demonstration of sub-1% NUV precision has shown that the precision achieved by large UV astronomy missions can also be achieved by a CubeSat. In addition, student training and early-career mentorship have been key ingredients to CUTE’s mission success. So far, over 20 early career students and professionals have trained and participated in CUTE activities—ranging from science to engineering to operations.

PROJECT LEAD

Professor Kevin France, Laboratory for Atmospheric and Space Physics/University of Colorado

SPONSORING ORGANIZATION

Astrophysics Division Astrophysics Research and Analysis Program

Share

Details

Last Updated
Feb 27, 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s SpaceX Crew-11 members stand inside the Space Vehicle Mockup Facility at the agency’s Johnson Space Center in Houston. From left are Mission Specialist Kimiya Yui from JAXA (Japan Aerospace Exploration Agency), Commander NASA astronaut Zena Cardman, Mission Specialist Oleg Platonov of Roscosmos, and Pilot NASA astronaut Mike Fincke.Credit: NASA As part of NASA’s SpaceX Crew-11 mission, four crew members from three space agencies will launch in the coming months to the International Space Station for a long-duration science expedition aboard the orbiting laboratory.
      NASA astronauts Commander Zena Cardman and Pilot Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Mission Specialist Kimiya Yui, and Roscosmos cosmonaut Mission Specialist Oleg Platonov will join crew members aboard the space station no earlier than July 2025.
      The flight is the 11th crew rotation with SpaceX to the station as part of NASA’s Commercial Crew Program. The crew will conduct scientific investigations and technology demonstrations to help prepare humans for future missions to the Moon, as well as benefit people on Earth.
      Cardman previously was assigned to NASA’s SpaceX Crew-9 mission, and Fincke previously was assigned to NASA’s Boeing Starliner-1 mission. NASA decided to reassign the astronauts to Crew-11 in overall support of planned activities aboard the International Space Station. Cardman carries her experience training as a commander on Dragon spacecraft, and Fincke brings long-duration spaceflight experience to this crew complement.
      Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she had begun pursuing a doctorate in Geosciences. Cardman’s research in geobiology and geochemical cycling focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning.
      This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon and Boeing Starliner toward operational certification. The Emsworth, Pennsylvania, native is a distinguished graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both Aeronautics and Astronautics, as well as Earth, Atmospheric and Planetary Sciences. He also has a master’s degree in Aeronautics and Astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in more than 30 different aircraft.
      With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel.
      The Crew-11 mission will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in Engineering from Krasnodar Air Force Academy in Aircraft Operations and Air Traffic Management. He also earned a bachelor’s degree in State and Municipal Management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon, where the agency is preparing for future human exploration of Mars.
      Learn more about NASA’s Commercial Crew Program at:
      https://www.nasa.gov/commercialcrew
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Courtney Beasley / Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov / chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Mar 27, 2025 LocationNASA Headquarters Related Terms
      Commercial Space Commercial Crew Humans in Space International Space Station (ISS) ISS Research Johnson Space Center Low Earth Orbit Economy Space Operations Mission Directorate
      View the full article
    • By NASA
      Artemis II crew members and U.S. Navy personnel practice recovery procedures in the Pacific Ocean using a test version of NASA’s Orion spacecraft in February 2024. Credit: NASA NASA and the Department of Defense will host a media event on the recovery operations that will bring the Artemis II astronauts and the agency’s Orion spacecraft home at the conclusion of next year’s mission around the Moon. The in-person event will take place at 3 p.m. PDT on Monday, March 31, at Naval Base San Diego in California.
      A team of NASA and Department of Defense personnel are at sea in the Pacific Ocean where splashdown will take place. The team currently is practicing the procedures it will use to recover the astronauts after their more than 600,000 mile journey from Earth and back on the first crewed mission under the Artemis campaign. A test version of Orion and other hardware also will be on-hand for media representatives to view.
      Interested media must RSVP no later than 4 p.m. PDT Friday, March 28, to Naval Base San Diego Public Affairs at nbsd.pao@us.navy.mil or 619-556-7359. The start time of the event may change based on the conclusion of testing activities.
      Participants include:
      Liliana Villarreal, NASA’s Artemis II landing and recovery director, Exploration Ground Systems Program, NASA’s Kennedy Space Center in Florida Capt. Andrew “Andy” Koy, commanding officer of USS Somerset (LPD 25), U.S. Navy Lt. Col. David Mahan, commander, U.S. Air Force’s 1st Air Force, Detachment 3, Patrick Space Force Base, Florida Several astronauts participating in the testing will be available for interviews.
      Artemis II will be the first test flight of the SLS (Space Launch System) rocket, Orion spacecraft, and supporting ground system with crew aboard. NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen will venture around the Moon and back. The mission is another step toward missions on the lunar surface and helping the agency prepare for future astronaut missions to Mars.
      Learn more about Artemis II at:
      https://www.nasa.gov/mission/artemis-ii/
      -end-
      Jim Wilson
      Headquarters, Washington
      202-358-1100
      jim.wilson@nasa.gov
      Madison Tuttle/Allison Tankersley
      Kennedy Space Center, Florida
      321-298-5968/321-867-2468
      madison.e.tuttle@nasa.gov / allison.p.tankersley@nasa.gov
      Share
      Details
      Last Updated Mar 25, 2025 LocationNASA Headquarters Related Terms
      Artemis 2 Kennedy Space Center NASA Headquarters View the full article
    • By European Space Agency
      As ESA’s Hera planetary defence mission flew past planet Mars it autonomously locked onto dozens of impact craters and other prominent surface features to track them over time, in a full-scale test of the self-driving technology that the spacecraft will employ to navigate around its target asteroids.
      View the full article
    • By USH
      Io, Jupiter’s famous volcanic moon, is already the most volcanically active place in the solar system. But between Halloween and Christmas of 2024, something happened that was extreme, even by Io’s standards. 

      Its south pole erupted in a way astronomers weren’t even sure was possible. A super volcano exploded with such force that it was visible from space as a massive dark blotch in the atmosphere. In infrared, the eruption was so intense that it saturated scientific sensors. 
      How Big Was This Eruption? To grasp the scale, imagine Io were the size of Earth. This super volcano would cover an area larger than Texas, larger than Egypt. The aftermath would trigger a global volcanic winter lasting years, possibly decades. 
      The eruption unleashed energy equivalent to 260 Yellowstone's and its lava field could bury everything from New York to Kansas under 10 feet of molten rock or stretch from the Gulf of Mexico to the Great Lakes. Every minute, the eruption released energy equal to 1.5 million Hiroshima bombs. 
      Just think about this: Earth’s most devastating volcanic event, the Siberian Traps eruption, lasted for a million years and led to one of the worst mass extinctions in history. Io’s super volcano, at its current rate, would surpass that in just 800 years. Over a million years, it could spew out the equivalent of 1% of Earth’s entire mantle. If the volume of this eruption were spread evenly across Earth, our planet’s landscape would be completely transformed in a matter of days. 
      Even in a solar system filled with astonishing phenomena, Io continues to shock and surprise us.
        View the full article
    • By NASA
      Explore This Section Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 5 Min Read NASA’s Webb Images Young, Giant Exoplanets, Detects Carbon Dioxide
      NASA’s James Webb Space Telescope has provided the clearest look in the infrared yet at the iconic multi-planet system HR 8799. Full image below. Credits:
      NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI) NASA’s James Webb Space Telescope has captured direct images of multiple gas giant planets within an iconic planetary system. HR 8799, a young system 130 light-years away, has long been a key target for planet formation studies.
      The observations indicate that the well-studied planets of HR 8799 are rich in carbon dioxide gas. This provides strong evidence that the system’s four giant planets formed much like Jupiter and Saturn, by slowly building solid cores that attract gas from within a protoplanetary disk, a process known as core accretion.
      The results also confirm that Webb can infer the chemistry of exoplanet atmospheres through imaging. This technique complements Webb’s powerful spectroscopic instruments, which can resolve the atmospheric composition.
      “By spotting these strong carbon dioxide features, we have shown there is a sizable fraction of heavier elements, like carbon, oxygen, and iron, in these planets’ atmospheres,” said William Balmer, of Johns Hopkins University in Baltimore. “Given what we know about the star they orbit, that likely indicates they formed via core accretion, which is an exciting conclusion for planets that we can directly see.”
      Balmer is the lead author of the study announcing the results published today in The Astrophysical Journal. Balmer and their team’s analysis also includes Webb’s observation of a system 97 light-years away called 51 Eridani.
      Image A: HR 8799 (NIRCam Image)
      NASA’s James Webb Space Telescope has provided the clearest look in the infrared yet at the iconic multi-planet system HR 8799. The closest planet to the star, HR 8799 e, orbits 1.5 billion miles from its star, which in our solar system would be located between the orbit of Saturn and Neptune. The furthest, HR 8799 b, orbits around 6.3 billion miles from the star, more than twice Neptune’s orbital distance. Colors are applied to filters from Webb’s NIRCam (Near-Infrared Camera), revealing their intrinsic differences. A star symbol marks the location of the host star HR 8799, whose light has been blocked by the coronagraph. In this image, the color blue is assigned to 4.1 micron light, green to 4.3 micron light, and red to the 4.6 micron light. NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI) Image B: 51 Eridani (NIRCam Image)
      Webb’s NIRCam (Near-Infrared Camera) captured this image of 51 Eridani b (also referred to as 51 Eri b), a cool, young exoplanet that orbits 890 million miles from its star, similar to Saturn’s orbit in our solar system. The 51 Eridani system is 97 light-years from Earth. This image includes filters representing 4.1-micron light as red. The background red in this image is not light from other planets, but a result of light subtraction during image processing. NASA, ESA, CSA, STScI, W. Balmer (JHU), L. Pueyo (STScI), M. Perrin (STScI) HR 8799 is a young system about 30 million years old, a fraction of our solar system’s 4.6 billion years. Still hot from their tumultuous formation, the planets within HR 8799 emit large amounts of infrared light that give scientists valuable data on how they formed.
      Giant planets can take shape in two ways: by slowly building solid cores with heavier elements that attract gas, just like the giants in our solar system, or when particles of gas rapidly coalesce into massive objects from a young star’s cooling disk, which is made mostly of the same kind of material as the star. The first process is called core accretion, and the second is called disk instability. Knowing which formation model is more common can give scientists clues to distinguish between the types of planets they find in other systems.
      “Our hope with this kind of research is to understand our own solar system, life, and ourselves in the comparison to other exoplanetary systems, so we can contextualize our existence,” Balmer said. “We want to take pictures of other solar systems and see how they’re similar or different when compared to ours. From there, we can try to get a sense of how weird our solar system really is—or how normal.”
      Image C: Young Gas Giant HR 8799 e (NIRCam Spectrum)
      This graph shows a spectrum of one of the planets in the HR 8799 system, HR 8799 e. Spectral fingerprints of carbon dioxide and carbon monoxide appear in data collected by Webb’s NIRCam (Near-Infrared Camera). NASA, ESA, CSA, STScI, J. Olmsted (STScI) Of the nearly 6,000 exoplanets discovered, few have been directly imaged, as even giant planets are many thousands of times fainter than their stars. The images of HR 8799 and 51 Eridani were made possible by Webb’s NIRCam (Near-Infrared Camera) coronagraph, which blocks light from bright stars to reveal otherwise hidden worlds.
      This technology allowed the team to look for infrared light emitted by the planets in wavelengths that are absorbed by specific gases. The team found that the four HR 8799 planets contain more heavy elements than previously thought.
      The team is paving the way for more detailed observations to determine whether objects they see orbiting other stars are truly giant planets or objects such as brown dwarfs, which form like stars but don’t accumulate enough mass to ignite nuclear fusion.
      “We have other lines of evidence that hint at these four HR 8799 planets forming using this bottom-up approach” said Laurent Pueyo, an astronomer at the Space Telescope Science Institute in Baltimore, who co-led the work. “How common is this for planets we can directly image? We don’t know yet, but we’re proposing more Webb observations to answer that question.”
      “We knew Webb could measure colors of the outer planets in directly imaged systems,” added Rémi Soummer, director of STScI’s Russell B. Makidon Optics Lab and former lead for Webb coronagraph operations. “We have been waiting for 10 years to confirm that our finely tuned operations of the telescope would also allow us to access the inner planets. Now the results are in and we can do interesting science with it.”
      The NIRCam observations of HR 8799 and 51 Eridani were conducted as part of Guaranteed Time Observations programs 1194 and 1412 respectively.
      The James Webb Space Telescope is the world’s premier space science observatory. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.
      Downloads
      Click any image to open a larger version.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from The Astrophysical Journal.
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Hannah Braun – hbraun@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Roberto Molar Candanosa
      Johns Hopkins University, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Webb Blog: How Webb’s Coronagraphs Reveal Exoplanets in the Infrared
      Video: Eclipse/Coronagraph Animation
      Video: Exploring Star and Planet Formation
      Learn more about gas giants
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Exoplanet Stories



      Universe


      Share








      Details
      Last Updated Mar 17, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Exoplanets Gas Giant Exoplanets Goddard Space Flight Center Science & Research The Universe View the full article
  • Check out these Videos

×
×
  • Create New...