Jump to content

NASA’s LRO Images Intuitive Machine’s Odysseus Lander


NASA

Recommended Posts

  • Publishers

On Feb. 22, Intuitive Machines’ Nova-C lander, called Odysseus, completed a seven-day journey to lunar orbit and softly landed near crater Malapert A in the South Pole region of the Moon at 6:24 p.m. EST. On Feb. 24, NASA’s Lunar Reconnaissance Orbiter (LRO) spacecraft passed over the landing site at an altitude of about 56 miles (90 km) and photographed Odysseus.

grayscale image of Moon's rocky surface from above, with a small white dot at the center of the frame: IM-1 lander, location indicated with white arrow
NASA’s Lunar Reconnaissance Orbiter captured this image of the Intuitive Machines’ Nova-C lander, called Odysseus, on the Moon’s surface on Feb. 24, 2024, at 1:57 p.m. EST). Odysseus landed at 80.13 degrees south latitude, 1.44 degrees east longitude, at an elevation of 8,461 feet (2,579 meters). The image is 3,192 feet (973 meters) wide, and lunar north is up. (LROC NAC frame M1463440322L)
NASA/Goddard/Arizona State University

Odysseus came to rest at 80.13 degrees south latitude, 1.44 degrees east longitude, 8,461 feet (2,579 meters) elevation, within a degraded one-kilometer diameter crater where the local terrain is sloped at 12 degrees.

animation of two grayscale images (before and after) of Moon's rocky surface from above, with a small white dot at the center of the frame: IM-1 lander
This image pair shows LRO views of the area surrounding the Odysseus site before (frame M172936310) and after (frame M1463440322L) its landing.
NASA/Goddard/Arizona State University

Odysseus marks the first successful soft landing of NASA’s CLPS (Commercial Lunar Payload Services) initiative and the first time that new NASA science instruments and technology demonstrations are operating on the Moon in more than 50 years.

grayscale image of Moon's rocky surface from above, with a small white dot at the center of the frame: IM-1 lander
This image is the same as the one above, but without the arrow. NASA’s Lunar Reconnaissance Orbiter captured this image of the Intuitive Machines’ Nova-C lander, called Odysseus, on the Moon’s surface on Feb. 24, 2024, at 12:57 pm CST). The image is 3,192 feet (973 meters) wide, and lunar north is up. (LROC NAC frame M1463440322L)
NASA/Goddard/Arizona State University

LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the agency’s Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. Arizona State University manages and operates the Lunar Reconnaissance Orbiter Camera, LROC.

Media Contact:
Nancy N. Jones
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Feb 26, 2024
Editor
Rob Garner
Contact
Location
Goddard Space Flight Center

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Week in images: 04-08 November 2024
      Discover our week through the lens
      View the full article
    • By European Space Agency
      Week in images: 28 October - 01 November 2024
      Discover our week through the lens
      View the full article
    • By European Space Agency
      Week in images: 21-25 October 2024
      Discover our week through the lens
      View the full article
    • By European Space Agency
      ESA’s Hera mission for planetary defence has taken its first images using three of the instruments that will be used to explore and study the asteroids Dimorphos and Didymos.
      View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
      Sols 4331-4333: Today’s Rover ABC – Aurora, Backwards Driving, and Chemistry, with a Side of Images
      This image shows just how variable and interesting the terrain is in the area that NASA’s Mars rover Curiosity is currently investigating. Curiosity captured this long-distance Remote Micro Imager (RMI) image using the Chemistry & Camera (ChemCam) aboard the rover on sol 4329 — Martian day 4,329 of the Mars Science Laboratory mission — on Oct. 10, 2024 at 02:30:12 UTC. NASA/JPL-Caltech/LANL Earth planning date: Friday, Oct. 11, 2024
      This blogger is in the United Kingdom, just north of London, where we yesterday had beautiful night skies with a red aurora that was even visible with the unaided eye, and looked stunning on photographs. That reminded me of the solar storm that made it all the way to Mars earlier this year. Here is my colleague Deborah’s blog about it: “Aurora Watch on Mars.” And, of course, that was a great opportunity to do atmospheric science and prepare for future crewed missions, to assess radiation that future astronauts might encounter. You can read about it in the article, “NASA Watches Mars Light Up During Epic Solar Storm.” But now, back from shiny red night skies north of London, and auroras on Mars six months ago, to today’s planning!
      Power — always a negotiation! Today, I was the Science Operations Working Group chair, the one who has to watch for the more technical side of things, such as the question if all the activities will fit into the plan. Today there were many imaging ideas to capture the stunning landscape in detail with Mastcam and very close close-ups with the long-distance imaging capability of ChemCam (RMI). Overall, we have two long-distance RMIs in the plan to capture the details of the ridge we are investigating. You can see in the accompanying image an example from last sol of just how many stunning details we can see. I so want to go and pick up that smooth white-ish looking rock to find out if it is just the light that makes it so bright, or if the surface is different from the underside… but that’s just me, a mineralogist by training, used to wandering around a field site! Do you notice the different patterns — textures as we call them in geology — on the rocks to the left of that white-ish rock and the right of it? So much stunning detail, and we are getting two more RMI observations of 10 frames each in today’s plan! In addition there are more than 80 Mastcam frames planned. Lots of images to learn from!
      Chemistry is also featuring in the plan. The rover is stable on its wheels, which means we can get the arm out and do an APXS measurement on the target “Midnight Lake,” which MAHLI also images. The LIBS investigations are seconding the APXS investigation on Midnight Lake, and add another target to the plan, “Pyramidal Pinnacle.” On the third sol there is an AEGIS, the LIBS measurement where the rover picks its own target before we here on Earth even see where it is! Power was especially tight today, because the CheMin team does some housekeeping, in particular looking at empty cells in preparation for the next drill. The atmosphere team adds many investigations to look out for dust devils and the dustiness of the atmosphere, and APXS measures the argon content of the atmosphere. This is a measure for the seasonal changes of the atmosphere, as argon is an inert gas that does not react with other components of the atmosphere. It is only controlled by the temperature in various places of the planet — mainly the poles. DAN continues to monitor water in the subsurface, and RAD — prominently featured during the solar storm I was talking about earlier — continues to collect data on the radiation environment.
      Let’s close with a fun fact from planning today: During one of the meetings, the rover drivers were asked, “Are you driving backwards again?” … and the answer was yes! The reason: We need to make sure that in this rugged terrain, with its many interesting walls (interesting for the geologists!), the antenna can still see Earth when we want to send the plan. So the drive on sol 4332 is all backwards. I am glad we have hazard cameras on the front and the back of the vehicle!
      Written by Susanne Schwenzer, Planetary Geologist at The Open University
      Share








      Details
      Last Updated Oct 13, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4329-4330: Continuing Downhill


      Article


      2 days ago
      3 min read Sols 4327-4328: On the Road Again


      Article


      4 days ago
      3 min read Sols 4325-4326: (Not Quite) Dipping Our Toes in the Sand


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
  • Check out these Videos

×
×
  • Create New...