Members Can Post Anonymously On This Site
Webb Finds Evidence for Neutron Star at Heart of Young Supernova Remnant
-
Similar Topics
-
By European Space Agency
Image: For Valentine’s Day, the Copernicus Sentinel-2 mission picks out a heart in the landscape north of Mount St Helens in the US state of Washington. View the full article
-
By NASA
4 Min Read Heart Health
Jessica Meir conducts cardiac research in the space station’s Life Sciences Glovebox. Credits: NASA Science in Space: February 2025
February was first proclaimed as American Heart Month in 1964. Since then, its 28 (or 29) days have served as an opportunity to encourage people to focus on their cardiovascular health.
The International Space Station serves as a platform for a variety of ongoing research on human health, including how different body systems adapt to weightlessness. This research includes assessing cardiovascular health in astronauts during and after spaceflight and other studies using models of the cardiovascular system, such as tissue cultures. The goal of this work is to help promote heart health for humans in space and everyone on Earth. For this Heart Month, here is a look at some of this spaceflight research
Building a better heart model
Media exchange in the tissue chambers for the Engineered Heart Tissue investigation.NASA Microgravity exposure is known to cause changes in cardiovascular function. Engineered Heart Tissues assessed these changes using 3D cultured cardiac tissues that model the behavior of actual heart tissues better than traditional cell cultures. When exposed to weightlessness, these “heart-on-a-chip” cells behaved in a manner similar to aging on Earth. This finding suggests that these engineered tissues can be used to investigate the effects of space radiation and long-duration spaceflight on cardiac function. Engineered tissues also could support development of measures to help protect crew members during a mission to Mars. Advanced 3D culture methodology may inform development of strategies to prevent and treat cardiac diseases on Earth as well.
Private astronaut heart health
In April 2022, the 11-person station crew included (clockwise on the outside from bottom right) NASA astronaut Tom Marshburn; Roscomos cosmonauts Oleg Artemyev, Denis Matveev, and Sergey Korsakov; NASA astronauts Raja Chari, Kayla Barron, and Matthias Maurer; and Ax-1 astronauts (center row from left) Mark Pathy, Eytan Stibbe, Larry Conner, and Michael López-Alegría.-Alegria.NASA For decades, human research in space has focused on professional and government-agency astronauts, but commercial spaceflight opportunities now allow more people to participate in microgravity research. Cardioprotection Ax-1 analyzed cardiovascular and general health in private astronauts on the 17-day Axiom-1 mission.
The study found that 14 health biomarkers related to cardiac, liver, and kidney health remained within normal ranges during the mission, suggesting that spaceflight did not significantly affect the health of the astronaut subjects. This study paves the way for monitoring and studying the effects of spaceflight on private astronauts and developing health management plans for commercial space providers.
Better measurements for better health
ESA astronaut Tim Peake conducts operations for the Vascular Echo experiment. NASA Vascular Echo, an investigation from CSA (Canadian Space Agency), examined blood vessels and the heart using a variety of tools, including ultrasound. A published study suggests that 3D imaging technology might better measure cardiac and vascular anatomy than the 2D system routinely used on the space station. The research team also developed a probe for the ultrasound device that better directs the beam, making it possible for someone who is not an expert in sonography to take precise measurements. This technology could help astronauts monitor heart health and treat cardiovascular issues on a long-duration mission to the Moon or Mars. The technology also could help patients on Earth who live in remote locations, where an ultrasound operator may not always be available.
Long-term heart health in space
As part of exploring ways to keep astronauts healthy on missions to the Moon and Mars, NASA is conducting a suite of space station studies called CIPHER that looks at the effects of spaceflight lasting up to a year. One CIPHER study, Vascular Calcium, examines whether calcium lost from bone during spaceflight might deposit in the arteries, increasing vessel stiffness and contributing to increased risk of future cardiovascular disease. Astronaut volunteers provide blood and urine samples and undergo ultrasound and high-resolution scans of their bones and arteries for this investigation. Another CIPHER study, Coronary Responses, uses advanced imaging tests to measure heart and artery response to spaceflight.
These studies will help scientists determine whether spaceflight accelerates narrowing and stiffening of the arteries, known as atherosclerosis, or increases the risk of atrial fibrillation, a rapid and irregular heartbeat seen in middle-aged adults. This work also could help identify potential biomarkers and early warning indicators of cardiovascular disease.
Melissa Gaskill
International Space Station Research Communications Team
Johnson Space Center
Keep Exploring Discover More Topics From NASA
Space Station Research and Technology
Humans In Space
Station Benefits for Humanity
Station Science 101: Human Research
View the full article
-
By NASA
5 Min Read Webb Maps Full Picture of How Phoenix Galaxy Cluster Forms Stars
Spectroscopic data collected from NASA’s James Webb Space Telescope is overlayed on an image of the Phoenix cluster that combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory and the Very Large Array (VLA) radio telescope. Credits:
NASA, CXC, NRAO, ESA, M. McDonald (MIT), M. Reefe (MIT), J. Olmsted (STScI) Discovery proves decades-old theory of galaxy feeding cycle.
Researchers using NASA’s James Webb Space Telescope have finally solved the mystery of how a massive galaxy cluster is forming stars at such a high rate. The confirmation from Webb builds on more than a decade of studies using NASA’s Chandra X-ray Observatory and Hubble Space Telescope, as well as several ground-based observatories.
The Phoenix cluster, a grouping of galaxies bound together by gravity 5.8 billion light-years from Earth, has been a target of interest for astronomers due to a few unique properties. In particular, ones that are surprising: a suspected extreme cooling of gas and a furious star formation rate despite a roughly 10 billion solar mass supermassive black hole at its core. In other observed galaxy clusters, the central supermassive black hole powers energetic particles and radiation that prevents gas from cooling enough to form stars. Researchers have been studying gas flows within this cluster to try to understand how it is driving such extreme star formation.
Image A: Phoenix Cluster (Hubble, Chandra, VLA Annotated)
Spectroscopic data collected from NASA’s James Webb Space Telescope is overlayed on an image of the Phoenix cluster that combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory and the Very Large Array (VLA) radio telescope. Webb’s powerful sensitivity in the mid-infrared detected the cooling gas that leads to a furious rate of star formation in this massive galaxy cluster. Credit: NASA, CXC, NRAO, ESA, M. McDonald (MIT), M. Reefe (MIT), J. Olmsted (STScI) “We can compare our previous studies of the Phoenix cluster, which found differing cooling rates at different temperatures, to a ski slope,” said Michael McDonald of the Massachusetts Institute of Technology in Cambridge, principal investigator of the program. “The Phoenix cluster has the largest reservoir of hot, cooling gas of any galaxy cluster — analogous to having the busiest chair lift, bringing the most skiers to the top of the mountain. However, not all of those skiers were making it down the mountain, meaning not all the gas was cooling to low temperatures. If you had a ski slope where there were significantly more people getting off the ski lift at the top than were arriving at the bottom, that would be a problem!”
To date, in the Phoenix cluster, the numbers weren’t adding up, and researchers were missing a piece of the process. Webb has now found those proverbial skiers at the middle of the mountain, in that it has tracked and mapped the missing cooling gas that will ultimately feed star formation. Most importantly, this intermediary warm gas was found within cavities tracing the very hot gas, a searing 18 million degrees Fahrenheit, and the already cooled gas around 18,000 degrees Fahrenheit.
The team studied the cluster’s core in more detail than ever before with the Medium-Resolution Spectrometer on Webb’s Mid-Infrared Instrument (MIRI). This tool allows researchers to take two-dimenstional spectroscopic data from a region of the sky, during one set of observations.
“Previous studies only measured gas at the extreme cold and hot ends of the temperature distribution throughout the center of the cluster,” added McDonald. “We were limited — it was not possible to detect the ‘warm’ gas that we were looking for. With Webb, we could do this for the first time.”
Image B: Phoenix Cluster (Hubble, Chandra, VLA)
This image of the Phoenix cluster combines data from NASA’s Hubble Space Telescope, Chandra X-ray Observatory, and the Very Large Array radio telescope. X-rays from Chandra depict extremely hot gas in purple. Optical light data from Hubble show galaxies in yellow, and filaments of cooler gas where stars are forming in light blue. Outburst generated jets, represented in red, are seen in radio waves by the VLA radio telescope. NASA, CXC, NRAO, ESA, M. McDonald (MIT). A Quirk of Nature
Webb’s capability to detect this specific temperature of cooling gas, around 540,000 degrees Fahrenheit, is in part due to its instrumental capabilities. However, the researchers are getting a little help from nature, as well.
This oddity involves two very different ionized atoms, neon and oxygen, created in similar environments. At these temperatures, the emission from oxygen is 100 times brighter but is only visible in ultraviolet. Even though the neon is much fainter, it glows in the infrared, which allowed the researchers to take advantage of Webb’s advanced instruments.
“In the mid-infrared wavelengths detected by Webb, the neon VI signature was absolutely booming,” explained Michael Reefe, also of the Massachusetts Institute of Technology, lead author on the paper published in Nature. “Even though this emission is usually more difficult to detect, Webb’s sensitivity in the mid-infrared cuts through all of the noise.”
The team now hopes to employ this technique to study more typical galaxy clusters. While the Phoenix cluster is unique in many ways, this proof of concept is an important step towards learning about how other galaxy clusters form stars.The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
Read the research paper published in Nature.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Hannah Braun hbraun@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Article: Large-scale Structures
Article: Phoenix Galaxy Cluster’s black hole
Article: Spectroscopy 101
Related For Kids
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars
Galaxies
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities Hubble captured this image of supernova SN 2022abvt (the pinkish-white dot at image center) about two months after it was discovered in 2022. ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz)
Download this image
A supernova and its host galaxy are the subject of this NASA/ESA Hubble Space Telescope image. The galaxy in question is LEDA 132905 in the constellation Sculptor. Even at more than 400 million light-years away, LEDA 132905’s spiral structure is faintly visible, as are patches of bright blue stars.
The bright pinkish-white dot in the center of the image, between the bright center of the galaxy and its faint left edge, is a supernova named SN 2022abvt. Discovered in late 2022, Hubble observed SN 2022abvt about two months later. This image uses data from a study of Type Ia supernovae, which occur when the exposed core of a dead star ignites in a sudden, destructive burst of nuclear fusion. Researchers are interested in this type of supernova because they can use them to measure precise distances to other galaxies.
The universe is a big place, and supernova explosions are fleeting. How is it possible to be in the right place at the right time to catch a supernova when it happens? Today, robotic telescopes that continuously scan the night sky discover most supernovae. The Asteroid Terrestrial-impact Last Alert System, or ATLAS, spotted SN 2022abvt. As the name suggests, ATLAS tracks down the faint, fast-moving signals from asteroids close to Earth. In addition to searching out asteroids, ATLAS also keeps tabs on objects that brighten or fade suddenly, like supernovae, variable stars, and galactic centers powered by hungry black holes.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More
The Death Throes of Stars
Homing in on Cosmic Explosions
Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Feb 07, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Galaxies Goddard Space Flight Center Spiral Galaxies Stars Supernovae The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Night Sky Challenge
Reshaping Our Cosmic View: Hubble Science Highlights
Hubble’s 35th Anniversary
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.