Jump to content

NASA’s Planetary Protection Team Conducts Vital Research for Deep Space Missions


NASA

Recommended Posts

  • Publishers
5 Min Read

NASA’s Planetary Protection Team Conducts Vital Research for Deep Space Missions

Marshall Space Flight Center's Chelsi Cassilly holds a Petri dish in front of her toward the camera and examines the specimen collected.
Cassilly examines fungal growth obtained from a space environmental exposure study, part of the Planetary Protection team’s work to understand the ability of microbes to survive conditions in deep space.
Credits: NASA/Charles Beason

By Celine Smith

As NASA continues its exploration of the solar system, including future crewed missions to Mars, experts in the agency’s Office of Planetary Protection are developing advanced tactics to prevent NASA expeditions from introducing biological contaminants to other worlds.

At NASA’s Marshall Space Flight Center in Huntsville, Alabama, the Planetary Protection team is contributing to this work – pursuing new detection, cleaning, and decontamination methods that will protect alien biospheres, safeguard future planetary science missions, and prevent potentially hazardous microbes from being returned to Earth. The Planetary Protection team is a part of the Space Environmental Effects (SEE) team in Marshall’s Materials and Processes Laboratory.

Planetary Protection microbiologist Chelsi Cassilly sits at a microscope in a white lab coat smiling at the camera.
Chelsi Cassilly, lead of Marshall Space Flight Center’s Planetary Protection Laboratory, researches microbes and their behaviors to preserve the environment of other planetary bodies after future missions.
NASA/Charles Beason

Planetary Protection microbiologist Chelsi Cassilly said much of Planetary Protection focuses on “bioburden” which is typically considered the number of bacterial endospores (commonly referred to as “spores”) found on and in materials. Such materials can range from paints and coatings on robotic landers to solid propellants in solid rocket motors. NASA currently requires robotic missions to Mars meet strict bioburden limits and is assessing how to apply similar policies to future, crewed missions to the Red Planet.

“It’s impossible to eliminate microbes completely,” Cassily said. “But it’s our job to minimize bioburden, keeping the probability of contamination sufficiently low to protect the extraterrestrial environments we explore.”

Currently, Marshall’s Planetary Protection research supports NASA’s Mars Ascent Vehicle, a key component of the planned Mars Sample Return campaign, and risk-reduction efforts for the Human Landing System program.

Critically, Planetary Protection prevents the introduction of microbes from Earth onto planetary bodies where they might proliferate and subsequently interfere with scientific study of past or current life there. If Earth’s microbes were to contaminate samples collected on Mars or Europa, the scientific findings would be an inaccurate depiction of these environments, potentially precluding the ability to determine if life ever existed there. Preserving the scientific integrity of these missions is of the utmost importance to Cassilly and her team.

Contamination mitigation tactics used in the past also may not work with modern hardware and materials. For the Viking missions to Mars, NASA employed a total spacecraft “heat microbial reduction” (HMR) process, a prolonged exposure to high temperatures to kill off or minimize microbes. As spacecrafts advance, NASA is more discerning, using HMR for components and/or subassemblies instead of the entire spacecraft.

According to Cassilly, HMR may not always be an ideal solution because, extended time at high temperatures required to kill microbes can degrade the integrity of certain materials, potentially impacting mission success. While this is not a problem for all materials, there is still a need to expand NASA’s repertoire of acceptable microbial reduction techniques to include ones that may be more efficient and sustainable.

A Petri dish held by a gloved hand hosts several black circular spots of varying sizes and one flower shaped spot.
This mold from the genus Cladosporium was collected from the surface of a cleanroom table at Marshall. This and other microbes within cleanrooms pose the biggest threat to spacecraft cleanliness and meeting Planetary Protection requirements.
Jacobs Engineering/Chelsi Cassilly

To contribute to NASA’s Planetary Protection efforts, Cassilly undertook a project – funded by a Jacobs Innovation Grant – to build a microbial library that could better inform and guide mitigation research. That meant visiting cleanrooms at Marshall to collect prevalent microbes, extracting DNA, amplifying specific genes, and submitting them for commercial sequencing. They identified 95% of the microbes within their library which is continually growing as more microbes are collected and identified.

The Planetary Protection team is interested in taking this work a step further by exposing their microbial library to space-like stressors—including ultraviolet light, ionizing radiation, temperature extremes, desiccation, and vacuum—to determine survivability.

Understanding the response of these microbes to space environmental conditions, like those experienced during deep space transit, helps inform our understanding of contamination risks associated with proposed planetary missions.

Chelsi Cassilly

Chelsi Cassilly

Planetary Protection microbiologist

“The research we’re doing probes at the possibility of using space itself to our advantage,” Cassilly said.

Cassilly and Marshall materials engineers also supported a study at Auburn University in Auburn, Alabama, to determine whether certain manufacturing processes effectively reduce bioburden. Funded by a NASA Research Opportunity in Space and Earth Sciences (ROSES) grant, the project assessed the antimicrobial activity of various additives and components used in solid rocket motor production. The team is currently revising a manuscript which should appear publicly in the coming months.

A gloved hand holds a Petri dish that appears to have a white specimen. It appears to look like a skull, spine, and hip bones in the photo that are all white.
This Bacillus isolate with striking morphology was collected from a sample of insulation commonly used in solid rocket motors. Cassilly studies these and other material-associated microbes to evaluate what could hitch a ride on spacecraft.
Jacobs Engineering/Chelsi Cassilly

Cassilly also supported research by Marshall’s Solid Propulsion and Pyrotechnic Devices Branch to assess estimates of microbial contamination associated with a variety of commonly used nonmetallic spacecraft materials. The results showed that nearly all the materials analyzed carry a lower microbial load than previously estimated – possibly decreasing the risk associated with sending these materials to sensitive locations.

Such findings benefit researchers across NASA who are also pursuing novel bioburden reduction tactics, Cassilly said, improving agencywide standards for identifying, measuring, and studying advanced planetary protection techniques.

“Collaboration unifies our efforts and makes it so much more possible to uncover new solutions than if we were all working individually,” she said.

NASA’s Office of Planetary Protection is part of the agency’s Office of Safety and Mission Assurance at NASA Headquarters in Washington. The Office of Planetary Protection oversees bioburden reduction research and development of advanced strategies for contamination mitigation at Marshall Space Flight Center; NASA’s Jet Propulsion Laboratory in Pasadena, California; NASA’s Goddard Space Flight Center in Greenbelt, Maryland; and NASA’s Johnson Space Center in Houston.

For more information about NASA’s Marshall Space Flight Center, visit:

https://www.nasa.gov/centers/marshall/home/index.html

Share

Details

Last Updated
Feb 22, 2024

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      SPoC and DAF senior leaders came together to discuss exercising for Great Power Competition during a panel at Air, Space and Cyber Conference.

      View the full article
    • By European Space Agency
      On 18–19 September, Europe’s space industry from start-up companies to large system integrators gathered at ESA–ESTEC in the Netherlands for Industry Space Days 2024.
      View the full article
    • By European Space Agency
      Image: The Copernicus Sentinel-2 mission has snapped a souvenir of the Burning Man festival in the Black Rock desert in Nevada. View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA astronaut Tracy C. Dyson smiles for a portrait in the vestibule between the Kibo laboratory module and the Harmony module aboard space station.NASA NASA astronaut Tracy C. Dyson is returning home after a six-month mission aboard the International Space Station. While on orbit, Dyson conducted an array of experiments and technology demonstrations that contribute to advancements for humanity on Earth and the agency’s trajectory to the Moon and Mars. 
      Here is a look at some of the science Dyson conducted during her mission: 
      Heart-Shaped Bioprints 
      NASA NASA astronaut Tracy C. Dyson operates the BioFabrication Facility for the Redwire Cardiac Bioprinting Investigation, which 3D prints cardiovascular tissue samples. In microgravity, bio inks used for 3D printing are less likely to settle and retain their shape better than on Earth. Cardiovascular disease is currently the number one cause of death in the United States, and findings from this space station investigation could one day lead to 3D-printed organs such as hearts for patients awaiting transplants. 
      Wicking in Weightlessness 
      NASA NASA astronaut Tracy C. Dyson handles hardware for the Wicking in Gel-Coated Tubes (Gaucho Lung) experiment. This study uses a tube lined with various gel thicknesses to simulate the human respiratory system. A fluid mass known as a liquid plug is then observed as it either blocks or flows through the tube. Data regarding the movement and trailing of the liquid plug allows researchers to design better drug delivery methods to address respiratory ailments. 
      Programming for Future Missions 
      NASA NASA NASA astronaut Tracy C. Dyson runs student-designed software on the free-flying Astrobee robot. This technology demonstration is part of Zero Robotics, a worldwide competition that engages middle school students in writing computer code to address unique specifications. Winning participants get to run their software on an actual Astrobee aboard the space station. This educational opportunity helps inspire the next generation of technology innovators.     
      Robo-Extensions
      NASA As we venture to the Moon and Mars, astronauts may rely more on robots to ensure safety and preserve resources. Through the Surface Avatar study, NASA astronaut Tracy C. Dyson controls a robot on Earth’s surface from a computer aboard station. This technology demonstration aims to toggle between manipulating multiple robots and “diving inside” a specific bot to control as an avatar. This two-way demonstration also evaluates how robot operators respond their robotic counterparts’ efficiency and general output. Applications for Earth use include exploration of inhospitable zones and search and rescue missions after disasters.  
      Capturing Earth’s Essence
      NASA For Crew Earth Observations, astronauts take pictures of Earth from space for research purposes. NASA astronauts Suni Williams (left) and Tracy C. Dyson (right) contribute by aiming handheld cameras from the space station’s cupola to photograph our planet. Images help inform climate and environmental trends worldwide and provide real-time natural disaster assessments. More than four million photographs have been taken of Earth by astronauts from space.  
      Multi-faceted Crystallization Processor 
      NASA NASA astronaut Tracy C. Dyson holds a cassette for Pharmaceutical In-Space Laboratory – 04 (ADSEP-PIL-04), an experiment to crystallize the model proteins lysozyme and insulin. Up to three cassettes with samples can be processed simultaneously in the Advanced Space Experiment Processor (ADSEP), each at an independent temperature. Because lysozyme and insulin have well-documented crystal structures, they can be used to evaluate the hardware’s performance in space. Successful crystallization with ADSEP could lead to production and manufacturing of versatile crystals with pharmaceutical applications.  
      Cryo Care  
      NASA NASA astronauts Tracy C. Dyson and Matthew Dominick preserve research samples in freezers aboard the space station. Cryopreservation is essential for maintaining the integrity of samples for a variety of experiments, especially within the field of biology. The orbiting laboratory has multiple freezer options with varying subzero temperatures. Upon return, frozen samples are delivered back to their research teams for further analysis.    
      Welcoming New Science 
      NASA NASA astronaut Tracy C. Dyson is pictured between the Unity module and Northrop Grumman’s Cygnus spacecraft in preparation for depressurization and departure from the International Space Station. On long-duration missions, visiting vehicles provide necessities for crew daily living as well as new science experiments and supplies for ongoing research. This vehicle brought experiments to test water recovery technology, produce stem cells in microgravity, study the effects of spaceflight on microorganism DNA, and conduct science demonstrations for students.   
      Diana Garcia 
      International Space Station Research Communications Team
      NASA’s Johnson Space Center 
      Keep Exploring Discover More Topics
      Latest News from Space Station Research
      Humans in Space
      Station Science 101
      Expedition 71
      Expedition 71 began on April 5, 2024 and ends in September 2024. This crew will explore neuro-degenerative diseases and therapies,…
      View the full article
    • By NASA
      5 Min Read Reinventing the Clock: NASA’s New Tech for Space Timekeeping
      The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft. Credits: NASA/Matthew Kaufman Here on Earth, it might not matter if your wristwatch runs a few seconds slow. But crucial spacecraft functions need accuracy down to one billionth of a second or less. Navigating with GPS, for example, relies on precise timing signals from satellites to pinpoint locations. Three teams at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, are at work to push timekeeping for space exploration to new levels of precision.
      One team develops highly precise quantum clock synchronization techniques to aid essential spacecraft communication and navigation. Another Goddard team is working to employ the technique of clock synchronization in space-based platforms to enable telescopes to function as one enormous observatory. The third team is developing an atomic clock for spacecraft based on strontium, a metallic chemical element, to enable scientific observations not possible with current technology. The need for increasingly accurate timekeeping is why these teams at NASA Goddard, supported by the center’s Internal Research and Development program, hone clock precision and synchronization with innovative technologies like quantum and optical communications.
      Syncing Up Across the Solar System
      “Society requires clock synchronization for many crucial functions like power grid management, stock market openings, financial transactions, and much more,” said Alejandro Rodriguez Perez, a NASA Goddard researcher. “NASA uses clock synchronization to determine the position of spacecraft and set navigation parameters.”
      If you line up two clocks and sync them together, you might expect that they will tick at the same rate forever. In reality, the more time passes, the more out of sync the clocks become, especially if those clocks are on spacecraft traveling at tens of thousands of miles per hour. Rodriguez Perez seeks to develop a new way of precisely synchronizing such clocks and keeping them synced using quantum technology.
      Work on the quantum clock synchronization protocol takes place in this lab at NASA’s Goddard Space Flight Center in Greenbelt, Md.NASA/Matthew Kaufman In quantum physics, two particles are entangled when they behave like a single object and occupy two states at once. For clocks, applying quantum protocols to entangled photons could allow for a precise and secure way to sync clocks across long distances.
      The heart of the synchronization protocol is called spontaneous parametric down conversion, which is when one photon breaks apart and two new photons form. Two detectors will each analyze when the new photons appear, and the devices will apply mathematical functions to determine the offset in time between the two photons, thus synchronizing the clocks.
      While clock synchronization is currently done using GPS, this protocol could make it possible to precisely synchronize clocks in places where GPS access is limited, like the Moon or deep space.
      Syncing Clocks, Linking Telescopes to See More than Ever Before
      When it comes to astronomy, the usual rule of thumb is the bigger the telescope, the better its imagery.
      “If we could hypothetically have a telescope as big as Earth, we would have incredibly high-resolution images of space, but that’s obviously not practical,” said Guan Yang, an optical physicist at NASA Goddard. “What we can do, however, is have multiple telescopes in various locations and have each telescope record the signal with high time precision. Then we can stich their observations together and produce an ultra-high-res image.”
      The idea of linking together the observations of a network of smaller telescopes to affect the power of a larger one is called very long baseline interferometry, or VLBI.
      For VLBI to produce a whole greater than the sum of its parts, the telescopes need high-precision clocks. The telescopes record data alongside timestamps of when the data was recorded. High-powered computers assemble all the data together into one complete observation with greater detail than any one of the telescopes could achieve on its own. This technique is what allowed the Event Horizon Telescope’s network of observatories to produce the first image of a black hole at the center of our galaxy.
      The Event Horizon Telescope (EHT) — a planet-scale array of eight ground-based radio telescopes forged through international collaboration — was designed to capture images of a black hole. Although the telescopes making up the EHT are not physically connected, they are able to synchronize their recorded data with atomic clocks.EHT Collaboration Yang’s team is developing a clock technology that could be useful for missions looking to take the technique from Earth into space which could unlock many more discoveries.
      An Optical Atomic Clock Built for Space Travel
      Spacecraft navigation systems currently rely on onboard atomic clocks to obtain the most accurate time possible. Holly Leopardi, a physicist at NASA Goddard, is researching optical atomic clocks, a more precise type of atomic clock.
      While optical atomic clocks exist in laboratory settings, Leopardi and her team seek to develop a spacecraft-ready version that will provide more precision.
      The team works on OASIC, which stands for Optical Atomic Strontium Ion Clock. While current spacecraft utilize microwave frequencies, OASIC uses optical frequencies.
      The Optical Atomic Strontium Ion Clock is a higher-precision atomic clock that is small enough to fit on a spacecraft.NASA/Matthew Kaufman “Optical frequencies oscillate much faster than microwave frequencies, so we can have a much finer resolution of counts and more precise timekeeping,” Leopardi said.
      The OASIC technology is about 100 times more precise than the previous state-of-the-art in spacecraft atomic clocks. The enhanced accuracy could enable new types of science that were not previously possible.
      “When you use these ultra-high precision clocks, you can start looking at the fundamental physics changes that occur in space,” Leopardi said, “and that can help us better understand the mechanisms of our universe.”
      The timekeeping technologies unlocked by these teams, could enable new discoveries in our solar system and beyond.
      More on cutting-edge technology development at NASA Goddard By Matthew Kaufman, with additional contributions from Avery Truman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Sep 18, 2024 EditorRob GarnerContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
      Goddard Technology Communicating and Navigating with Missions Goddard Space Flight Center Technology View the full article
  • Check out these Videos

×
×
  • Create New...