Jump to content

NASA Center Boosted YF-12 Supersonic Engine Research


Recommended Posts

  • Publishers
Posted

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A black YF-12C aircraft with a white U.S. Air Force logo on the front section and an orange NASA logo on the tail flies above white clouds and a blue sky.
NASA pilots flew this YF-12C aircraft from 1971 and 1978 to perform airspeed calibrations and collect propulsion system data at numerous flight conditions.
Credit: NASA

Supersonic flight became a reality in October 1947, when the Bell X-1 rocket plane broke the sound barrier. NASA’s Lewis Research Center in Cleveland (now, NASA Glenn), which had served as the agency’s aeropropulsion leader since it was established in the 1940s, subsequently helped NASA advance the technology needed to make longer supersonic flights possible.

A host of military aircraft capable of reaching supersonic speeds followed the Bell X-1. In the 1960s, Lockheed’s family of Blackbirds (the original A-12, the YF-12 interceptor, and the SR-71 reconnaissance vehicle) became the world’s first aircraft able to cruise at supersonic speeds for extended periods. However, the expansion of this capability to larger transport aircraft was difficult, in large part due to the lack of data collected about propulsion systems during longer supersonic flights.

To solve problems that weren’t found during design-phase testing of these aircraft and to advance crucial technology, like the supersonic mixed-compression inlet, the military loaned two retired YF-12s to the Dryden Flight Research Center (today, NASA Armstrong) in 1969 as part of a collaborative NASA/Air Force effort. They planned to compare data from YF-12 flights to data collected in wind tunnels at NASA’s Ames, Langley, and Lewis Research Centers.

A black-and-white photo of two people dressed in suits and ties crouching under a YF-12 flight inlet in a wind tunnel. The person on the left looks up at the large, pointy inlet and writes in a binder.
Bobby Sanders (left) and Robert Coltrin check a full-scale YF-12 flight inlet prior to a February 1972 test run in the NASA Lewis Research Center (now NASA Glenn) 10×10 Supersonic Wind Tunnel. Although the 5-foot 9-inch diameter inlet was large for the test section, no problems arose
Credit: NASA/Martin Brown

Lewis’ researchers had studied supersonic inlets in wind tunnels since the early 1950s and were in the midst of an extensive evaluation of supersonic nozzles and inlets using an F-106 Delta Dart. In this new effort, Lewis was responsible for testing a full-scale YF-12 inlet in the center’s 10×10 Supersonic Wind Tunnel and analyzing a 32,500-pound thrust Pratt & Whitney J58 engine in the Propulsion Systems Laboratory (PSL).

Although mixed-compression inlets, which allowed the engines to operate as turbojets at subsonic speeds and as ramjets at higher Mach numbers, were highly efficient, their design left the engines vulnerable to flow disturbances that often caused “unstarts.” Unstarts produced instantaneous drag that could stall the engine or cause the aircraft to quickly roll or yaw. Lewis researchers tested an actual inlet from a crashed SR-71, which they installed into the 10×10 in November 1971.

Over the next year, researchers collected aerodynamic data under different conditions in the wind tunnel. They also tested a new inlet control system patented by Lewis engineers Bobby Sanders and Glenn Mitchell that used mechanical valves to protect the aircraft against unstarts. It was the first time the system was tested on a full-scale piece of hardware.

Researchers also studied the relationships between the airframe, inlet, engine, and control system during normal flight conditions and when experiencing realistic flow disturbances.

A large engine with many pipes and wires on its sides sits in a large testing facility.
A Pratt & Whitney J58 engine installed in the NASA Lewis Research Center (now, NASA Glenn) Propulsion Systems Laboratory No. 4 facility in November 1973. The center’s technicians had to take great precautions to protect the instrumentation and control systems from the engine’s 1000-degree-Fahrenheit surface temperatures during the testing.
Credit: NASA/Martin Brown

In the summer of 1973, a full-scale J-58 engine became the first hardware tested in Lewis’ new PSL second altitude chamber. For the next year, researchers captured data under normal conditions and while using mesh inlet screens to simulate in-flight air-flow distortions.

The PSL tests also measured the engine’s emissions as part of a larger effort to determine the high-altitude emissions levels of potential supersonic transports.

While the YF-12 program was terminated in 1979 as the agency’s aeronautical priorities shifted, a year’s worth of ground testing had already been completed in NASA’s wind tunnels and the YF-12s had completed nearly 300 research flights. The program had expanded to include the development of high-temperature instrumentation, airframe pressure and flow mapping, thermal loads, and the inlet control system.

NASA engineers demonstrated that small-scale models could be successfully used to design full-scale supersonic inlets, while the flight data was used to better understand the effect of subscale models and tunnel interference on data. Perhaps most importantly, the program at Lewis led to a digital control system that improved the response of the supersonic inlet to flow disturbances, which nearly eliminated engine restarts.

Many of the program’s concepts were integrated into the SR-71’s design in the early 1980s and have contributed to NASA’s continuing efforts over the decades to achieve a supersonic transport aircraft.

Additional Resources:

NASA Facts:  The Lockheed YF-12

Mach 3+ NASA/USAF YF-12 Flight Research, 1969-1979 by Peter Merlin

NASA Facts:  SR-71 Blackbird

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Is There Potential for Life on Europa? We Asked a NASA Expert
    • By NASA
      The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems NASA’s Artemis IV astronauts will be the first to inhabit the Gateway lunar space station, opening the door to greater exploration of the Moon and paving the way to Mars. Gateway’s Power and Propulsion Element, which will make the station the most powerful solar electric spacecraft ever flown, takes shape at Maxar Space Systems. In lunar orbit, Gateway will allow NASA to conduct unique science and exploration while preparing astronauts to go to the Red Planet.
      Technicians install key hardware on the element’s Propulsion Bus Module following installation of both electric propulsion and chemical propulsion control modules. The image highlights a propellant tank exposed on the right, positioned within the central cylinder of the element.  
      The Power and Propulsion Element will launch with Gateway’s HALO (Habitation and Logistics Outpost) ahead of NASA’s Artemis IV mission. During Artemis IV, V, and VI, international crews of astronauts will assemble the lunar space station around the Moon and embark on expeditions to the Moon’s South Pole region.
      The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland and built by Maxar Space Systems in Palo Alto, California.
      Gateway is an international collaboration to establish humanity’s first lunar space station as a central component of the Artemis architecture designed to return humans to the Moon for scientific discovery and chart a path for the first human missions to Mars.
      The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems An artist’s rendering of the Gateway lunar space station, including its Power and Propulsion Element, shown here with its solar arrays deployed. Gateway will launch its initial elements to lunar orbit ahead of the Artemis IV mission. NASA/Alberto Bertolin An artist’s rendering of Gateway with the Power and Propulsion Element’s advanced thrusters propelling the lunar space station to the Moon. NASA/Alberto Bertolin Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Feb 25, 2025 ContactJacqueline Minerdjacqueline.minerd@nasa.govLocationGlenn Research Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Glenn Research Center Humans in Space Technology Technology for Space Travel Explore More
      5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
      NASA and its international partners are making progress on Gateway – the lunar space station…
      Article 4 days ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 1 month ago 2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
      A key element of the Gateway lunar space station has entered the cleanroom for final…
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Human Landing System
      Extravehicular Activity and Human Surface Mobility
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A new international study partially funded by NASA on how Mars got its iconic red color adds to evidence that Mars had a cool but wet and potentially habitable climate in its ancient past.
      Mosaic of the Valles Marineris hemisphere of Mars projected into point perspective, a view similar to that which one would see from a spacecraft. The distance is 2500 kilometers from the surface of the planet, with the scale being .6km/pixel. The mosaic is composed of 102 Viking Orbiter images of Mars. The center of the scene (lat -8, long 78) shows the entire Valles Marineris canyon system, over 2000 kilometers long and up to 8 kilometers deep, extending form Noctis Labyrinthus, the arcuate system of graben to the west, to the chaotic terrain to the east. Many huge ancient river channels begin from the chaotic terrain from north-central canyons and run north. The three Tharsis volcanoes (dark red spots), each about 25 kilometers high, are visible to the west. South of Valles Marineris is very ancient terrain covered by many impact craters.NASA The current atmosphere of Mars is too cold and thin to support liquid water, an essential ingredient for life, on its surface for lengthy periods. However, various NASA and international missions have found evidence that water was abundant on the Martian surface billions of years ago during a more clement era, such as features that resemble dried-up rivers and lakes, and minerals that only form in the presence of liquid water.
      Adding to this evidence, results from a study published February 25 in the journal Nature Communications suggest that the water-rich iron mineral ferrihydrite may be the main culprit behind Mars’ reddish dust. Martian dust is known to be a hodgepodge of different minerals, including iron oxides, and this new study suggests one of those iron oxides, ferrihydrite, is the reason for the planet’s color.
      The finding offers a tantalizing clue to Mars’ wetter and potentially more habitable past because ferrihydrite forms in the presence of cool water, and at lower temperatures than other previously considered minerals, like hematite. This suggests that Mars may have had an environment capable of sustaining liquid water before it transitioned from a wet to a dry environment billions of years ago.
      “The fundamental question of why Mars is red has been considered for hundreds if not for thousands of years,” said lead author Adam Valantinas, a postdoctoral fellow at Brown University, Providence, Rhode Island, who started the work as a Ph.D. student at the University of Bern, Switzerland. “From our analysis, we believe ferrihydrite is everywhere in the dust and also probably in the rock formations, as well. We’re not the first to consider ferrihydrite as the reason for why Mars is red, but we can now better test this using observational data and novel laboratory methods to essentially make a Martian dust in the lab.”
      Laboratory sample showing simulated Martian dust. The ochre color is characteristic of iron-rich ferrihydrite, a mineral that provides crucial insights into ancient water activity and environmental conditions on Mars. The fine-powder mixture consists of ferrihydrite and ground basalt with particles less than one micrometer in size (1/100th diameter of a human hair) (Sample scale: 1 inch across).Adam Valantinas “These new findings point to a potentially habitable past for Mars and highlight the value of coordinated research between NASA and its international partners when exploring fundamental questions about our solar system and the future of space exploration,” said Geronimo Villanueva, the Associate Director for Strategic Science of the Solar System Exploration Division at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-author of this study.
      The researchers analyzed data from multiple Mars missions, combining orbital observations from instruments on NASA’s Mars Reconnaissance Orbiter, ESA’s (the European Space Agency) Mars Express and Trace Gas Orbiter with ground-level measurements from NASA rovers like Curiosity, Pathfinder, and Opportunity. Instruments on the orbiters and rovers provided detailed spectral data of the planet’s dusty surface. These findings were then compared to laboratory experiments, where the team tested how light interacts with ferrihydrite particles and other minerals under simulated Martian conditions.
      “What we want to understand is the ancient Martian climate, the chemical processes on Mars — not only ancient — but also present,” said Valantinas. “Then there’s the habitability question: Was there ever life? To understand that, you need to understand the conditions that were present during the time of this mineral’s formation. What we know from this study is the evidence points to ferrihydrite forming and for that to happen there must have been conditions where oxygen from air or other sources and water can react with iron. Those conditions were very different from today’s dry, cold environment. As Martian winds spread this dust everywhere, it created the planet’s iconic red appearance.”
      Whether the team’s proposed formation model is correct could be definitively tested after samples from Mars are delivered to Earth for analysis.
      “The study really is a door-opening opportunity,” said Jack Mustard of Brown University, a senior author on the study. “It gives us a better chance to apply principles of mineral formation and conditions to tap back in time. What’s even more important though is the return of the samples from Mars that are being collected right now by the Perseverance rover. When we get those back, we can actually check and see if this is right.”
      Part of the spectral measurements were performed at NASA’s Reflectance Experiment Laboratory (RELAB) at Brown University. RELAB is supported by NASA’s Planetary Science Enabling Facilities program, part of the Planetary Science Division of NASA’s Science Mission Directorate at NASA Headquarters in Washington.
      By William Steigerwald
      NASA Goddard Space Flight Center, Greenbelt, Maryland
      Share
      Details
      Last Updated Feb 24, 2025 EditorWilliam SteigerwaldContactLonnie Shekhtmanlonnie.shekhtman@nasa.govLocationNASA Goddard Space Flight Center Related Terms
      The Solar System Mars Explore More
      5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
      NASA and its international partners are making progress on Gateway – the lunar space station…
      Article 4 days ago 6 min read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind 
      Earth is immersed in material streaming from the Sun. This stream, called the solar wind,…
      Article 4 days ago 2 min read How Long Does it Take to Get to the Moon… Mars… Jupiter? We Asked a NASA Expert: Episode 51
      So how long does it take to get from Earth to the Moon, to Mars…
      Article 6 days ago View the full article
    • By NASA
      Drone pilot Brayden Chamberlain flashes a “good to go” signal to the command tent, indicating that the NASA Alta X quadcopter is prepped for takeoff during a FireSense uncrewed aerial system (UAS) Technology Demonstration test in 2023 in Missoula, Montana. The instruments on board collected data on wind speed and direction, humidity, temperature, and pressure.NASA/Milan Loiacono NASA’s Kennedy Space Center in Florida invites media to attend a prescribed fire campaign event hosted by the NASA FireSense Project, the Department of Defense (DOD), and the U.S. Fish and Wildlife Service. Campaign activities will occur from Monday, April 7, to Monday, April 21.
      The FireSense campaign activities will test cutting-edge models and demonstrate new technologies to measure fire behavior and smoke dynamics. The Fish and Wildlife Service will conduct the prescribed fire as part of their land management responsibilities on the Merritt Island National Wildlife Refuge, which shares a boundary with NASA Kennedy.
      The event also will demonstrate how NASA, DOD, and the Fish and Wildlife Service work with interagency and private sector partners to reduce the risk from wildland fires and benefit ecosystem health, ultimately preventing catastrophic impacts on critical national infrastructure, the economy, and local communities, while increasing the safety of wildland fire response operations.
      Credentialing is open to U.S. and international media. International media must apply by 11:59 EDT p.m. Sunday, March 16, and U.S. media must apply by 11:59 p.m. EDT Sunday, March 23.
      More details on the specific date of the prescribed fire, weather permitting, will be provided in the coming weeks. Media wishing to take part in person must apply for credentials at:
      https://media.ksc.nasa.gov
      Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation or to request special logistical support, please email by Friday, March 28 to: ksc-media-accreditat@mail.nasa.gov.
      For other questions, please contact NASA Kennedy’s newsroom at: 321-867-2468.
      Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Messod Bendayan, messod.c.bendayan@nasa.gov.
      NASA coordinates field and airborne sampling with academic and agency partners, including the DOD Strategic Environmental Research and Development Program and DOD Environmental Security Technology Certification Program. The Fish and Wildlife Service oversees all prescribed burn activities on the Merritt Island National Wildlife Refuge.
      NASA Kennedy is one of the most biologically diverse areas in the United States, counting over 1,000 species of plants, 117 kinds of fish, 68 types of amphibians and reptiles, 330 kinds of birds, and 31 different mammals within its more than 144,000 acres.
      For more information about NASA’s FireSense Project, please visit:
      https://cce.nasa.gov/firesense
      -end-
      Milan Loiacono
      Ames Research Center, California
      650-450-7575
      milan.p.loiacono@nasa.gov
      Harrison Raine
      Ames Research Center, California
      310-924-0030
      harrison.s.raine@nasa.gov
      Messod Bendayan
      Kennedy Space Center, Florida
      256-930-1371
      messod.c.bendayan@nasa.gov
      View the full article
    • By NASA
      NASA logo. (Credit: NASA) NASA acting Administrator Janet Petro announced Monday Vanessa Wyche will serve as the acting associate administrator for the agency at NASA Headquarters in Washington, effective immediately. Wyche, who had been the director of NASA’s Johnson Space Center in Houston, is detailed as Petro’s senior advisor leading the agency’s center directors and mission directorate associate administrators. She will act as the agency’s chief operating officer for about 18,000 civil servant employees and an annual budget of more than $25 billion. Stephen Koerner will become the acting center director of NASA Johnson.
      The agency also named Jackie Jester as associate administrator for the Office of Legislative and Intergovernmental Affairs and announced Catherine Koerner, associate administrator for the agency’s Exploration Systems Development Mission Directorate will retire effective Friday, Feb. 28. Lori Glaze, currently the deputy associate administrator for Exploration Systems Development will become the mission directorate’s acting associate administrator.
      “As we continue to advance our mission, it’s crucial that we have strong, experienced leaders in place,” Petro said. “Vanessa will bring exceptional leadership to NASA’s senior ranks, helping guide our workforce toward the opportunities that lie ahead, while Steve will continue to provide steadfast leadership at NASA Johnson. Jackie’s return to the agency will ensure we remain closely aligned with national priorities as we work with Congress. Cathy’s legacy is one of unwavering dedication to human spaceflight, and we are grateful for her years of service. Lori’s leadership will continue to build on that legacy as we push forward in our exploration efforts. These appointments reflect NASA’s unwavering commitment to excellence, and I have full confidence that each of these leaders will carry our vision forward with purpose, integrity, and a relentless drive to succeed.”
      Prior to her new role, Wyche was the director NASA Johnson – home to America’s astronaut corps, Mission Control Center, International Space Station, Orion and Gateway Programs, and its more than 11,000 civil service and contractor employees. Her responsibilities included a broad range of human spaceflight activities, including development and operation of human spacecraft, NASA astronaut selection and training, mission control, commercialization of low Earth orbit, and leading NASA Johnson in exploring the Moon and Mars.
      During her 35-year career, Wyche has served in several leadership roles, including Johnson’s deputy center director, director of Exploration Integration and Science Directorate, flight manager of several Space Shuttle Program missions, and executive officer in the Office of the Administrator. A native of South Carolina, Wyche earned a Bachelor of Science in Engineering and Master of Science in Bioengineering from Clemson University. 
      As deputy director of NASA Johnson, Stephen Koerner, oversaw strategic workforce planning, serves as the Designated Agency Safety Health Officer, and supported the Johnson center director in mission reviews. Before his appointment in July 2021, Koerner held various leadership roles at NASA Johnson, including director of the Flight Operations Directorate, associate director, chief financial officer, deputy director of flight operations, and deputy director of mission operations.
      In her new role as the associate administrator for the Office of Legislative and Intergovernmental Affairs, Jester will direct a staff responsible for managing and coordinating all communication with the U.S. Congress, as well as serve as a senior advisor to agency leaders on legislative matters.  
      Jester rejoins the agency after serving as the senior director for government affairs at Relativity Space’s Washington office where she led policy engagement for the company. Prior to her time with Relativity, she served as a policy advisor at NASA and at the White House Office of Science and Technology Policy. She has served as a professional staff member for the U.S. Senate Committee on Commerce, Science, and Transportation. She has spent time in state government as the Chief Legislative Aide to a member of the Massachusetts House of Representatives. Jester has significant experience advising on space policy issues, aviation operations and safety policy, and has helped develop numerous pieces of legislation.
      With a 34-year career at NASA, Catherine Koerner has been instrumental in leading NASA’s Exploration Systems Development Mission Directorate, overseeing the development of the agency’s deep space exploration approach. Previously, she was the deputy associate administrator for the mission directorate. Her extensive career at NASA includes roles such as the Orion program manager, director of the Human Health and Performance Directorate, former NASA flight director, several leadership positions within the International Space Station Program during its assembly phase and helping to foster a commercial space industry in low Earth orbit.
      Glaze has a distinguished background in planetary science, previously serving as the director of NASA’s Planetary Science Division before joining Explorations Systems Development. Prior to her tenure at NASA Headquarters in Washington, she was the chief of the Planetary Geology, Geophysics and Geochemistry Laboratory at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Deputy Director of Goddard’s Solar System Exploration Division. She has been a leading advocate for Venus exploration, serving as the principal investigator for the Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging mission. Glaze earned her Bachelor of Arts and Master of Science degrees in Physics from the University of Texas at Arlington and a doctorate in Environmental Science from Lancaster University in the United Kingdom. Her prior experience includes roles at the Jet Propulsion Laboratory and at Proxemy Research as Vice President and Senior Research Scientist.
      For more about NASA’s missions, visit:
      http://www.nasa.gov
      -end-
      Amber Jacobson / Kathryn Hambleton
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov / kathryn.a.hambleton@nasa.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...