Members Can Post Anonymously On This Site
Planet Hunting with NASA's Curious Universe Podcast Host Padi Boyd
-
Similar Topics
-
By NASA
Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division, talks about NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) mission with Dr. Kate Calvin, the agency’s chief scientist.Credits: Courtesy of Stephanie Getty Name: Dr. Stephanie Getty
Title: Director of the Solar System Exploration Division, Sciences and Exploration Directorate and Deputy Principal Investigator of the DAVINCI Mission
Formal Job Classification: Planetary scientist
Organization: Solar System Exploration Division, Sciences and Exploration Directorate (Code 690)
Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division, poses with a full-scale engineering unit of NASA’s DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) descent sphere.Credits: Courtesy of Stephanie Getty What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
As the Director of the Solar System Exploration Division, I work from a place of management to support our division’s scientists. As the deputy principal investigator of the DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) mission, I work with the principal investigator to lead the team in implementing this mission to study the atmosphere of Venus.
I love that I get to work from a place of advocacy in support of my truly excellent, talented colleagues. I get to think strategically to make the most of opportunities and do my best to overcome difficulties for the best possible future for our teams. It’s also a fun challenge that no two days are ever the same!
Why did you become a planetary scientist?
In school, I had a lot of interests and space was always one of them. I also loved reading, writing, math, biology, and chemistry. Being a planetary scientist touches on all of these.
My dad inspired me become a scientist because he loved his telescope and photography including of celestial bodies. We watched Carl Sagan’s “Cosmos” often.
I grew up in southeastern Florida, near Fort Lauderdale. I have a B.S. and Ph.D. in physics from the University of Florida.
How did you come to Goddard?
“My goal is to provide a supportive environment for our incredibly talented science community in the Division to thrive, to push discovery forward and improve the understanding of our solar system,” said Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division. “It’s a priority to encourage effective and open communication.”Credits: Courtesy of Stephanie Getty I had a post-doctoral fellowship in the physics department at the University of Maryland, and a local connection and a suggestion from my advisor led me to Goddard in 2004.
What is most important to you as director of the Solar System Exploration Division, Sciences and Exploration Directorate?
My goal is to provide a supportive environment for our incredibly talented science community in the Division to thrive, to push discovery forward and improve the understanding of our solar system. It’s a priority to encourage effective and open communication. I really try to value the whole person, recognizing that each of us is three-dimensional, with full personal lives. The people create the culture that allows our scientists to thrive and explore.
What are your goals as deputy principal investigator of the DAVINCI mission?
DAVINCI’s goal is to fill long-standing gaps about Venus, including whether it looked more like Earth in the past. Our energetic team brings together science, engineering, technology, project management, and business acumen to build a multi-element spacecraft that will explore Venus above the clouds, and during an hour-long descent through the atmosphere into the searingly hot and high pressure deep layers of the atmosphere near the surface. We hope to launch in June 2029.
What is your proudest accomplishment at Goddard?
I am pleased and proud to be deputy principal investigator on a major mission proposal that now gets to fly. It is an enormous privilege to be entrusted as part of the leadership team to bring the first probe mission back to Venus in over four decades.
What makes Goddard’s culture effective?
Goddard’s culture is at its best when we collectively appreciate how each member of the organization works towards solving our problems. The scientists appreciate the hard, detailed work that the engineers do to make designs. The engineers and project managers are energized by the fundamental science questions that underlie everything we do. And we have brilliant support staff that keeps our team organized and focused.
“Curiosity is a defining characteristic of a good scientist, never losing a sense of wonder,” says Dr. Stephanie Getty, director of NASA Goddard’s Solar System Exploration Division. “When I can, I try to make time to pause to reflect on how beautiful and special our own planet is.”Credits: Courtesy of Stephanie Getty What goes through your mind when you think about which fundamental science question to address and how?
A lot of the research I have done, including my mission work, has been inspired by the question of how life originates, how life originated on Earth, and whether there are or have been other environments in the solar system that could have ever supported life. These questions are profound to any human being. My job allows me to work with incredibly talented teams to make scientific progress on these questions.
It is really humbling.
Who inspired you?
My 10th grade English teacher encouraged us to connect with the natural world and to write down our experiences. Exploring the manifestations of nature connects with the way I approach my small piece of exploring the solar system. I really love the writing parts of my job, crafting the narrative around the science we do and why it is important.
As a mentor, what is the most important lesson you give?
A successful career should reflect both your passion and natural abilities. Know yourself. What feels rewarding to you is important. Learn how to be honest with yourself and let yourself be driven by curiosity.
Our modern lives can be very noisy at work and at home. It can be hard to filter through what is and is not important. Leaving space to connect with the things that satisfy your curiosity can be one way to make the most of the interconnectivity and complexity of life.
Curiosity not only connects us to the natural world, but also to each other. Curiosity is a defining characteristic of a good scientist, never losing a sense of wonder.
I’m looking out my window as we talk. When I can, I try to make time to pause to reflect on how beautiful and special our own planet is.
What are your hobbies?
I love hiking with my kids. Walking through the woods puts me in the moment and clears my mind better than anything else. It gives my brain a chance to relax. Nature gives perspective, it reminds me that I am part of something bigger. Walking in the woods gives me a chance to pause, for example, to notice an interesting rock formation, or watch a spider spinning an impressive web, or spot a frog trying to camouflage itself in a pond, and doing this with my children is my favorite pastime.
Where is your favorite place in the world?
Any campsite at dusk with a fire going and eating s’mores with my family.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Share
Details
Last Updated Feb 10, 2025 Related Terms
Goddard Space Flight Center DAVINCI (Deep Atmosphere Venus Investigation of Noble gases, Chemistry, and Imaging) People of Goddard Planetary Science Division Science Mission Directorate The Solar System Explore More
5 min read World Photo Day: Behind the Scenes with Goddard’s Documentary Photographers
Article 18 mins ago 6 min read Jesse Walsh: Possibility at the Cutting Edge of Flight
Article 18 mins ago 6 min read Margaret Dominguez Helps NASA Space Telescopes Open Their ‘Eyes’ to the Universe
Article 18 mins ago View the full article
-
By NASA
“People are excited and happy about working at Goddard,” said optics engineer Margaret Dominguez. “Most people are willing to put in the extra effort if needed. It makes work stimulating and exciting. Management really cares and the employees feel that too.”Credits: Courtesy of Margaret Dominguez Name: Margaret Dominguez
Formal Job Classification: Optical engineer
Organization: Code 551, Optics Branch, Instrument Systems and Technology Division, Engineering Directorate
What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
I build space telescopes. I am currently working on building one of the components for the Wide Field Instrument for the Roman Space Telescope. The component is called “Grism.” A grism is a combination of a grating and a prism.
What is unique about your childhood?
I went to high school in Tecamachalco in Puebla, Mexico, which is inland and south of Mexico City. My father raised pigs, chickens, rabbits, and cows. I am the oldest of four girls and two still live on the farm.
Why did you become a physicist?
I was always curious and had a lot of questions and thought that physics helped me answer some of these questions. I was good at math and loved it. When I told my dad I wanted to study physics, he said that I would be able to answer any question in the universe. He thought it was very cool.
What is your educational background? How an internship help you come to Goddard?
I went to the Universidad de las Americas Puebla college in Puebla and got an undergraduate degree in physics. I was very active in extracurricular activities and helped organize a physics conference. We invited Dr. Johnathan Gardner, a Goddard astronomer, who came to speak at the conference. Afterwards I spoke with him and he asked me if I was interested in doing an internship at NASA. I said I had not considered it and would be interested in applying. I applied that same spring of 2008 and got a summer internship in the Optics Branch, where I am still working today.
My branch head at Goddard was a University of Arizona alumnus. He suggested that I apply to the University of Arizona for their excellent optics program. I did, and the university gave me a full fellowship for a master’s and a Ph.D. in optical sciences.
In 2014, I began working full time at Goddard while completing my Ph.D. I graduated in May 2019.
What makes Goddard special?
Goddard has a university campus feel. It’s a place where you can work and also just hang out and socialize. Goddard has many clubs, a gym, cafeterias, and a health clinic.
People are really nice here. They are often excited and happy about working at Goddard. Most people are willing to put in the extra effort if needed. It makes work stimulating and exciting. Management really cares and the employees feel that too.
What are some of the major projects you have worked on?
Early on, I did a little bit of work on Hubble and later on, NASA’s James Webb Space Telescope. Since 2014, I have exclusively been working on Roman. We are building the grism, a slitless spectrograph, which will measure galaxy redshifts to study dark energy.
Presently we are building different grism prototypes. We work with outside vendors to build these prototypes. When we make a prototype, we test it for months. After, we use the results to build an improved prototype. We just finished making the third prototype. We are going to build a flight instrument of which the grism is a component.
What is it like to work in the clean room?
It’s exciting – it likely means I am working on flight hardware. However, because clean rooms must be kept at about 68 degrees Fahrenheit, it can feel chilly in there!
Who are your mentors? What are the most important lessons they have taught you?
Ray Ohl, the head of the Optics Branch, is a mentor to me. He is always encouraging me to get outside my comfort zone. He presents other opportunities to me so that I can grow and listens to my feedback.
Cathy Marx, one of the Roman optical leads, is also a mentor to me. She created a support network for me and is a sounding board for troubleshooting any kind of work-related issues.
What is your role a member of the Hispanic Advisory Committee (HACE)?
I joined HACE in 2010 while I was an intern. It’s a great opportunity to network with other Hispanics and gives us a platform to celebrate specific events like Hispanic Heritage Month. I really enjoy participating in HACE’s events.
What outreach do you do? Why is doing outreach so important to you?
I do educational outreach to teach people about optics. I mainly collaborate with elementary and middle schools.
I think we need more future engineers and scientists. I want to help recruit them. I specifically focus on recruiting minorities and Hispanics. I can make a special connection with women and Hispanics.
Who is your science hero?
It would probably be Marie Curie. She’s the first woman to win a Nobel Prize, and she is the only woman to win two Nobel Prizes and she had to overcome a lot of challenges to achieve that.
What is your “six-word memoir”? A six-word memoir describes something in just six words.
Disciplined. Organized. Diligent. Passionate. Curious. Family-oriented.
Is there something surprising about your hobbies outside of work that people do not generally know?
I am a certified Jazzercise instructor – I normally teach two to three times a week. I can even teach virtually if need be. It is an hour-long exercise class combining strength training and cardio through choreographed dancing. We also use weights and mats.
I also enjoy going for walks with my husband, James Corsetti, who is also an engineer in the Optics Branch.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
View the full article
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities Hubble captured this image of supernova SN 2022abvt (the pinkish-white dot at image center) about two months after it was discovered in 2022. ESA/Hubble & NASA, R. J. Foley (UC Santa Cruz)
Download this image
A supernova and its host galaxy are the subject of this NASA/ESA Hubble Space Telescope image. The galaxy in question is LEDA 132905 in the constellation Sculptor. Even at more than 400 million light-years away, LEDA 132905’s spiral structure is faintly visible, as are patches of bright blue stars.
The bright pinkish-white dot in the center of the image, between the bright center of the galaxy and its faint left edge, is a supernova named SN 2022abvt. Discovered in late 2022, Hubble observed SN 2022abvt about two months later. This image uses data from a study of Type Ia supernovae, which occur when the exposed core of a dead star ignites in a sudden, destructive burst of nuclear fusion. Researchers are interested in this type of supernova because they can use them to measure precise distances to other galaxies.
The universe is a big place, and supernova explosions are fleeting. How is it possible to be in the right place at the right time to catch a supernova when it happens? Today, robotic telescopes that continuously scan the night sky discover most supernovae. The Asteroid Terrestrial-impact Last Alert System, or ATLAS, spotted SN 2022abvt. As the name suggests, ATLAS tracks down the faint, fast-moving signals from asteroids close to Earth. In addition to searching out asteroids, ATLAS also keeps tabs on objects that brighten or fade suddenly, like supernovae, variable stars, and galactic centers powered by hungry black holes.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Explore More
The Death Throes of Stars
Homing in on Cosmic Explosions
Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Feb 07, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Galaxies Goddard Space Flight Center Spiral Galaxies Stars Supernovae The Universe Keep Exploring Discover More Topics From Hubble
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Night Sky Challenge
Reshaping Our Cosmic View: Hubble Science Highlights
Hubble’s 35th Anniversary
View the full article
-
By NASA
5 Min Read Planetary Alignments and Planet Parades
A sky chart showing Mars, Jupiter, Saturn, and Venus in a “planet parade.” Credits:
NASA/JPL-Caltech On most nights, weather permitting, you can spot at least one bright planet in the night sky. While two or three planets are commonly visible in the hours around sunset, occasionally four or five bright planets can be seen simultaneously with the naked eye. These events, often called “planet parades” or “planetary alignments,” can generate significant public interest. Though not exceedingly rare, they’re worth observing since they don’t happen every year.
Why Planets Appear Along a Line in The Sky
“Planet parade” isn’t a technical term in astronomy, and “planetary alignment” can refer to several different phenomena. As the planets of our solar system orbit the Sun, they occasionally line up in space in events called oppositions and conjunctions. A planetary alignment can also refer to apparent lineups in our sky with other planets, the Moon, or bright stars.
The planets of our solar system always appear along a line on the sky. This line, referred to as the ecliptic, represents the plane in which the planets orbit, seen from our position within the plane itself. NASA/Preston Dyches When it comes to this second type of planetary alignment, it’s important to understand that planets always appear along a line or arc across the sky. This occurs because the planets orbit our Sun in a relatively flat, disc-shaped plane. From Earth, we’re looking into that solar system plane from within. We see the racetrack of the planets from the perspective of one of the racers ourselves. When viewed edge-on, this disc appears as a line, which we call the ecliptic or ecliptic plane.
So, while planet alignment itself isn’t unusual, what makes these events special is the opportunity to observe multiple planets simultaneously with the naked eye.
Will the Planets Actually be Visible?
Before preparing to observe a planet parade, we have to consider how high the planets will appear above the horizon. For most observers to see a planet with the naked eye, it needs to be at least a few degrees above the horizon, and10 degrees or higher is best. This is crucial because Earth’s atmosphere near the ground dims celestial objects as they rise or set. Even bright planets become difficult or impossible to spot when they’re too low, as their light gets scattered and absorbed on its path to your eye. Buildings, trees, and other obstructions often block the view near the horizon as well.
This visibility challenge is particularly notable after sunset or before sunrise, where the sky is still glowing. If a planet appears very low within the sunset glow, it is very difficult to observe.
The Planets You Can See, and Those You Can’t
Five planets are visible without optical aid: Mercury, Venus, Mars, Jupiter, and Saturn. Ancient civilizations recognized these worlds as bright lights that wandered across the starscape, while the background stars remained fixed in place. In fact, the word “planet” comes to us from the Greek word for “wanderer.”
The solar system includes two additional major planets, Uranus and Neptune, plus numerous dwarf planets like Pluto and Ceres. Uranus and Neptune orbit in the dim, cold depths of the outer solar system. Neptune absolutely requires a telescope to observe. While Uranus is technically bright enough to detect with good eyesight, it’s quite faint and requires dark skies and precise knowledge of its location among similarly faint stars, so a telescope is recommended. As we’ll discuss in the next section, planet parades necessarily must be observed in twilight before dawn or after sunset, and this is not a good time to try observing extremely faint objects like Uranus and Neptune.
Thus, claims about rare six- or seven-planet alignments which include Uranus and Neptune should be viewed with the understanding that these two distant planets will not be visible to the unaided eye.
What Makes Multi-Planet Lineups Special
Lineups of four or five planet naked-eye planets with optimal visibility typically occur every few years. Mars, Jupiter, and Saturn are frequently seen in the night sky, but the addition of Venus and Mercury make four- and five-planet lineups particularly noteworthy. Both orbit closer to the Sun than Earth, with smaller, faster orbits than the other planets. Venus is visible for only a couple of months at a time when it reaches its greatest separation from the Sun (called elongation), appearing just after sunset or before sunrise. Mercury, completing its orbit in just 88 days, is visible for only a couple of weeks (or even a few days) at a time just after sunset or just before sunrise.
Planet parades aren’t single-day events, as the planets move too slowly for that. Generally, multi-planet viewing opportunities last for weeks to a month or more. Even five-planet events last for several days as Mercury briefly emerges from and returns to the Sun’s glare.
In summary, while they aren’t once-in-a-lifetime events, planetary parades afford an uncommon opportunity to look up and appreciate our place in our solar system, with diverse worlds arrayed across the sky before our very eyes.
Other Planet Lineups
Other recent and near-future multi-planet viewing opportunities:
January 2016 – Four planets visible at once before sunrise Late April to Late August 2022 – Four planets visible at once before sunrise Mid-June to Early July 2022 – Five planets visible at once before sunrise January to mid-February 2025 – Four planets visible at once after sunset Late August 2025 – Four planets visible at once before sunrise Late October 2028 – Five planets visible at once before sunrise Late February 2034 – Five planets visible at once after sunset (Venus and Mercury challenging to observe) About the January/February 2025 Planet Parade
The current four-planet lineup concludes by mid-February, as Saturn sinks increasingly lower in the sky each night after sunset. By mid-to-late February, Saturn appears less than 10 degrees above the horizon as sunset fades, making it difficult to observe for most people. While Mercury briefly joins Saturn in the post-sunset glow at the end of February, both planets will be too low and faint for most observers to spot.
Keep Exploring Discover More Topics From NASA
Skywatching
Planets
Solar System Exploration
Moons
View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.