Jump to content

The Marshall Star for February 21, 2024


NASA

Recommended Posts

  • Publishers
30 Min Read

The Marshall Star for February 21, 2024

Marshall Center Director Joseph Pelfrey, far right, talks to reporters during his first media event since accepting the director position. The event was held Feb. 15 in the lobby of Building 4221.

Marshall Center Director Holds First Media Event

By Jessica Barnett

NASA Marshall Space Flight Center’s newest center director, Joseph Pelfrey, took to the podium Feb. 15 in the lobby of Building 4221 to host his first media event since his appointment to the position.

Pelfrey, who had been serving as acting center director since August 2023, is the 15th center director for Marshall. He succeeded Jody Singer, who retired in July 2023.

Marshall Center Director Joseph Pelfrey, far right, talks to reporters during his first media event since accepting the director position. The event was held Feb. 15 in the lobby of Building 4221.
Marshall Center Director Joseph Pelfrey, far right, talks to reporters during his first media event since accepting the director position. The event was held Feb. 15 in the lobby of Building 4221.
NASA/Charles Beason

Appearing before local news cameras and reporters, Pelfrey said he was humbled and honored to receive the call from NASA Administrator Bill Nelson with news of his selection.

“The agency is committed to Marshall’s role in supporting what we do as a nation in space exploration,” Pelfrey said. “I am honored that they have confidence in me and our team to continue to lead.”

Pelfrey took the opportunity to speak to reporters about upcoming milestones for the center, such as the celebration of 25 years of work with the Chandra X-ray Observatory, Marshall’s 30th year hosting the Human Exploration Rover Challenge, two years since the launches of the James Webb Space Telescope and IXPE (Imaging X-ray Polarimetry Explorer) observatory, and the recent launch of the LN-1 (Lunar Node 1) navigation beacon.

He also discussed the center’s plans to use more of its testing capabilities for habitation systems; build a new Engineering Science Laboratory to replace Building 4487; build the Marshall Exploration Facility where Building 4200 once stood; and continue supporting operations at the International Space Station and for future Artemis missions.

Looking to the future, Pelfrey said Marshall is focused on helping NASA expand its missions in deep space and developing the technologies needed to carry astronauts farther than “we’ve ever been before.”

A child of the shuttle generation, Pelfrey recalled watching launches and dreaming of a career at NASA. He said he’s honored to follow behind great center leaders, continuing Marshall’s legacy as a leader in space exploration.

“As we write the next chapter of our story, I am confident of the bright future we have at Marshall Space Flight Center,” he said.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Pelfrey Hosts First 2024 All-Hands at Marshall

By Celine Smith

New NASA Marshall Space Flight Center Director Joseph Pelfrey highlighted the center’s strategy and changing culture during this year’s first all-hands meeting Feb. 8 in Activities Building 4316.

The meeting – with the theme “More to Marshall” – was Pelfrey’s first all-hands since NASA Administrator Bill Nelson named him as the center’s 15th director Feb. 5. Pelfrey had served as acting director since Jody Singer’s retirement in July 2023.

NASA Marshall Space Flight Center Director Joseph Pelfrey, standing, discusses the direction of Marshall and the center’s upcoming projects and strategies during the first all-hands meeting of 2024. Joining him on stage, from left, are Tia Ferguson, Marshall’s Space Systems Department director in the Engineering Directorate, Associate Center Director Rae Ann Meyer, and Mallory James, an aerospace engineer and management assistant in the office of the center director.
NASA Marshall Space Flight Center Director Joseph Pelfrey, standing, discusses the direction of Marshall and the center’s upcoming projects and strategies during the first all-hands meeting of 2024. Joining him on stage, from left, are Tia Ferguson, Marshall’s Space Systems Department director in the Engineering Directorate, Associate Center Director Rae Ann Meyer, and Mallory James, an aerospace engineer and management assistant in the office of the center director.
NASA/Charles Beason

Along with Pelfrey, Tia Ferguson, director of Marshall’s Space Systems Department in the Engineering Directorate, Rae Ann Meyer, associate center director, and Mallory James, an aerospace engineer and management assistant in the office of the center director, gave presentations about the direction of Marshall in 2024.

“I see us embracing a transformative shift to a portfolio of more small and medium-sized projects enabled through strategic partnerships while also being a technical solutions provider to NASA and our partners,” Pelfrey said. “I see a very bright future for our center, and I’m excited to write this next chapter with all of you.”

Pelfrey commended Marshall team members for submitting 63 proposals to NASA’s Space Technology Mission Directorate, all enabled by partnerships. Marshall submitted and won the most proposals out of all NASA centers. He encouraged team members to continue creating and working on more innovative ideas to support future Agency needs.

Pelfrey gave updates on Marshall’s various projects, including Lunar Node-1 using the Huntsville Operation Support Center for its mission and Marshall partnering with the Italian Space Agency to create a multipurpose habitat that could be used on the Moon. The habitat is in the process of becoming a part of the Artemis architecture and would be the first of its kind on the lunar surface.

Pelfrey shared that Marshall and industry partners will be leading the development of the engine in collaboration with the Department of the Defense for NASA and DARPA’s DRACO (Demonstration Rocket for Agile Cislunar Operations), the first nuclear thermal flight demonstration intended for the mission to Mars. Pelfrey also highlighted the development of the solar sail prototype, which is approximately 4,700 square feet and was recently tested with NASA’s industry partner. The potential for this design has drawn attention from future science missions and the Department of Defense due to its advancements in propulsion.

Pelfrey also mentioned that NASA’s Michoud Assembly Facility, which is managed by Marshall, is manufacturing parts for Artemis III-V. Pertaining to the Artemis Mission, Pelfrey said the data from Artemis I is being examined to prepare for Artemis II. Flight software testing has been completed for Artemis II as well. The Human Landing System team is continuing to work with lander partner, SpaceX, which is preparing for the next Starship orbital flight test in the next few weeks.

Brandon Phillips, a material science engineer, asks a question during the Q&A portion of the all-hands meeting.
Brandon Phillips, a material science engineer, asks a question during the Q&A portion of the all-hands meeting.
NASA/Charles Beason

According to Pelfrey, Marshall is also expecting two new buildings, the Marshall Exploration Facility, which is tentatively scheduled to break ground in 2026, and an Engineering Science Lab, a replacement for Building 4487.

Ferguson followed Pelfrey’s presentation with updates about NASA 2040, an agency strategic initiative propelling NASA into the future. The initiative aims to drive meaningful changes in the present to ensure that, in 2040, NASA remains the preeminent institution for research, technology, and engineering, to lead science, aeronautics, and space exploration for humanity. She went into detail about plans made to optimize the internaloperations of the agency and improving the work environment for team members to achieve mission goals.

Meyer discussed how Marshall’s culture reflects the changes and new strategies taking place. Meyer emphasized the investment in centerwide events to strengthen culture at Marshall.

James, a mentee of Meyer, gave the last presentation. She discussed the results of the Federal Employee Viewpoint Survey and how leadership is moving forward to address concerns expressed from the results. 

All-hands ended with a Q&A panel with Pelfrey, Ferguson, Meyer, and James. Larry Leopard, associate director, technical, also joined the panel. They answered questions submitted online and from the audience.

“With our long history of what we’ve done at the center, there’s so much more to Marshall that we can achieve,” Pelfrey said in his closing remarks. “There’s so much more that we can dare to dream and explore and innovate for the agency and there’s more to gain when we do it together.”

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Black History Month Profile: Evolving with Leslie Smith

By Celine Smith

Ever since Leslie Smith was young, she has liked working with her hands, whether it be arts and crafts or playing the piano. Watching her father weld pieces of scrap metal into something new reinforced her enthusiasm for designing and creating.

While working for NASA’s Marshall Space Flight Center, Smith has been able to pursue her passion of more tactile work while also gaining an array of other skills.

Leslie Smith
Leslie Smith is the task manager of the Sustaining Lunar Development program.
MSFC/Emmett Given

“Helping put the next man and first woman on the Moon gives me a sense of pride, especially because it could help us get to Mars,” said Smith, who is the task manager of the Sustaining Lunar Development program. “I love knowing I’m helping the next generation and just being a part of the program.”

As a young girl, Smith aspired to be an architect, which combined her two favorite skills of designing and building. While in high school, Smith began to co-op at a technical vocational school. Her interest in architecture increased when she was introduced to CAD (computerized-aided design) software in a drafting class.

After Smith started at Tuskegee University, a historically Black university in Alabama, her sights changed. “The architecture class seemed more artsy, and not as focused on design or manufacturing, which is what I really wanted to do,” said Smith, who is from Vicksburg, Mississippi.

She decided to major in mechanical engineering instead. Before graduating, Smith signed an offer for a co-op opportunity with Marshall during a 2008 Tuskegee job fair, leading to her 15-year career at the center.

During Smith’s start, she didn’t get to immediately do the CAD work she originally was drawn to. Smith began working in the Planning and Operations branch within the Mission Ops Lab. She oversaw the countdown timeline for operational tasks and filled out functional objective sheets for the Constellation program’s Ares I. Later, she performed 3D CAD modeling for the main propulsion system and 2D drawings and assemblies for the cryogenic propellant storage and transfer system.

The experience served as Smith’s introduction to program management and systems engineering. While her role was not originally in her area of interest, she found a reason to stay.

“I stayed because of the people,” Smith said. “They were very friendly and helpful. Also, after taking a tour of Marshall, I saw all capabilities of the center. Marshall’s friction stir welding, 3D printing, the propulsion lab, and the diverse types of engineering intrigued me.”

Her first full-time role at Marshall took place after graduating college. She began as a design engineer in the Propulsion Detailed Design branch in 2013. She used her CAD skills to draft a 1 Newton thruster, an adapter for secondary payloads, and a core stage auxiliary power unit among other projects. Smith also did some friction stir welding and additive manufacturing, the processes that interested her during her co-op days. Before becoming a key coordinator for human landing systems, she conducted trade studies for SLS (Space Launch System) components as a systems engineer in 2018. Now, Smith manages human landing system concepts, focused on reducing risk and the advancement of key technologies.

“I’m the kind of person who likes to do something different every so often,” she said. “Technology is always evolving so that makes me want to always evolve.”

Smith’s passion for engineering is present in her personal life. As a member of the National Society of Black Engineers, she took part in the Arusha Project, started at NASA’s Johnson Space Center. Arusha is Swahili for “he makes fly (into the skies).” Smith joined other Black engineers to build a rover for potential Moon and Mars missions. Smith personally worked on the outer shell, window, and chassis.

“The project was great because you got to work with other African American engineers and other ethnicities,” she said. “It’s important to be around people who look like you and can relate to similar issues.” 

In Smith’s free time she volunteers to do STEM outreach. She also enjoys basketball, swimming, and reading. Smith currently lives in Madison, Alabama.

Her advice for young engineers at Marshall is to: “learn all you can. Talk to as many people as you can, particularly people who are different from you for a different perspective. Never pass an opportunity to see hardware. Take all the tours and attend mentoring events.”

First in a two-part series in the Marshall Star highlighting team members during Black History Month.

Smith, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Deputy Director of NASA Safety Center Speaker for Feb. 22 Mission Success Forum

By Wayne Smith

Bob Conway, deputy director of the NASA Safety Center, will be the guest speaker for the Mission Success Is in Our Hands hybrid Shared Experiences Forum on Feb. 22 at NASA’s Marshall Space Flight Center.

The 11:30 a.m. event will be in Activities Building 4316 for Marshall team members. Light refreshments will be served. The forum is available to NASA employees and the public virtually via Teams.

Mission Success with Bob Conway flyer

Mission Success Is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs Engineering. The initiative’s goal to help team members make meaningful connections between their jobs and the safety and success of NASA and Marshall missions.

The theme of the forum is “The Impact of Breaking the Silence.” Conway will address the elements and factors that can contribute to organizational silence, including the failure to draw attention to problems that can potentially result in mission failures. He will detail practical tactics and tools to help combat this issue and identify methods of creating organizational excellence from the perspectives of both leadership and front-line employees.

Bill Hill, director of Safety and Mission Assurance at Marshall, encourages team members to attend the forum in-person.

“Administrator (Bill) Nelson has requested that all NASA civil servants and contractors hear Bob Conway’s organizational silence briefing and learn tools and techniques to avoid the pitfalls of organizational silence,” Hill said.

Jeff Haars, Jacobs vice president and program manager for Jacobs Space Exploration Group, said the Shared Experiences Forum is an impactful reminder on safety.

“At Jacobs, we put a high priority on safety so it’s very reassuring to have a great safety partner like Marshall,” Haars said. “Working as a team allows us to deliver our work safely while contributing to mission success.”

Conway works with the NASA Safety Center’s director to enable more effective and efficient safety and mission assurance support for NASA’s portfolio of programs and projects by managing the safety center’s activities in knowledge sharing and analysis, technical excellence, and assessments and investigations.

Prior to assuming this role, Conway worked in the civilian sector as the manager of Quality Engineering for Worldwide Safety and Health at the Walt Disney World Resort in Orlando, Florida, from 2012 to 2019. Conway was also a member of the NASA Aerospace Safety Advisory Panel from 2012 to 2016. In this role he evaluated various NASA programs and, with his Naval Aviation Safety background, was the lead panel representative to the NASA Aircraft Mission Directorate. After his commissioning as an ensign, Conway served in the U.S. Navy through his retirement in 2012.

As part of the forum, Mission Success Is in Our Hands will present the Golden Eagle Award to a Marshall team member. The award promotes awareness and appreciation for flight safety, as demonstrated through the connections between employees’ everyday work, the success of NASA and Marshall’s missions, and the safety of NASA astronauts. The award recognizes individuals who have made significant contributions to flight safety and mission assurance above and beyond their normal work requirements. Management or peers can nominate any team member for the award. Honorees are typically recognized at quarterly Shared Experiences forums.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

NASA Science Aboard Intuitive Machines Continues Journey to Moon, Landing Coverage set for Feb. 22

After a successful launch Feb. 15, six NASA science instruments and technology demonstrations continue their journey to the Moon aboard Intuitive Machines’ lander named Odysseus. The company confirmed communications contact with its mission operations control in Houston, and its lander continues to perform as expected.

As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, Intuitive Machines is targeting no earlier than 4:49 p.m. CST on Feb. 22 to land their Odysseus lunar lander near Malapert A in the South Pole region of the Moon.

im-1-lander.png?w=2048
A view of Earth and one of Odysseus’ fuel pressurant tanks aboard the IM-1 mission. Intuitive Machines is a commercial company that has been contracted by NASA to send its science and technology instruments to the Moon. Columbia Sportswear is a commercial payload contracted with Intuitive Machines.
Intuitive Machines

Live landing coverage will air on NASA+NASA Television, the NASA app, and the agency’s website. NASA TV can be streamed on a variety of platforms, including social media. Coverage will include live streaming and blog updates beginning 3:15 p.m., as the landing milestones occur. Upon successful landing, Intuitive Machines and NASA will host a news conference to discuss the mission and science opportunities that lie ahead as the company begins lunar surface operations.

Known as IM-1, Intuitive Machines successfully transmitted its first images back to Earth on Feb. 16. These were captured shortly after separation from SpaceX’s second stage, on Intuitive Machines’ first journey to the Moon.

Within an hour of launching, NASA confirmed data was streaming from the agency’s powered science and technology instruments aboard the flight. This means data from these instruments was automatically streaming back to the teams so NASA could monitor the health and status of its instruments.

Later, Intuitive Machines successfully commissioned Odysseus’ engine which means they exercised the engine’s complete flight profile, including the throttling required for landing. The engine, which uses liquid methane and liquid oxygen, is the first of its kind fired in space.

One of the NASA instruments, the Radio Frequency Mass Gauge is gauging the cryogenic propellants on Odysseus throughout the mission. Data files have been collected and many have been downloaded for analysis. Throughout the propellant loading phase that took place before launch, the instrument collected data, which was downloaded and analyzed in near-real time. Data also is being collected during the microgravity transit phase of the mission. This analysis will continue through landing on the Moon.

Another NASA instrument, Lunar Node-1, or LN-1, integrates navigation and communication . LN-1 was developed, built, and tested at NASA’s Marshall Space Flight Center. This science instrument will operate daily during the cruise phase as the landing date draws closer. The radio beacon is designed to support precise geolocation and navigation observations to orbiters, landers, and surface personnel, digitally confirming their positions on the Moon relative to other craft, ground stations, or rovers on the move. The check-out helps prepare to land on the Moon as the navigation demonstrator aims to gather this data throughout the duration of the surface operations phase of the mission. Flight controllers will analyze the data from this procedure to inform preparations for landing Feb. 22.

Follow the Artemis blog for updates, or follow along with Intuitive Machines for the latest operational updates on their mission.

› Back to Top

Rocket Propellant Tanks for NASA’s Artemis III Mission Take Shape

With the liquid oxygen tank now fully welded, all the major structures that will form the core stage for NASA’s SLS (Space Launch System) rocket for the agency’s Artemis III mission are ready for additional outfitting.

The hardware will be a part of the rocket used for the first of the Artemis missions planning to land astronauts on the Moon’s surface near the lunar South Pole. Technicians finished welding the 51-foot liquid oxygen tank structure inside the Vertical Assembly Building at NASA’s Michoud Assembly Facility on Jan. 8.

All the major structures that will form the core stage for NASA’s SLS (Space Launch System) rocket for the agency’s Artemis III mission are structurally complete. Technicians finished welding the 51-foot liquid oxygen tank structure, left, inside the Vertical Assembly Building at NASA’s Michoud Assembly Facility in New Orleans Jan. 8. The liquid hydrogen tank, right, completed internal cleaning Nov. 14.
All the major structures that will form the core stage for NASA’s SLS (Space Launch System) rocket for the agency’s Artemis III mission are structurally complete. Technicians finished welding the 51-foot liquid oxygen tank structure, left, inside the Vertical Assembly Building at NASA’s Michoud Assembly Facility on Jan. 8. The liquid hydrogen tank, right, completed internal cleaning Nov. 14.
NASA/Michael DeMocker

The mega rocket’s other giant propellant tank – the liquid hydrogen tank – is already one fully welded structure. NASA and Boeing, the SLS core stage lead contractor, are currently priming the tank in another cell within the Vertical Assembly Building area called the Building 131 cryogenic tank thermal protection system and primer application complex. It completed internal cleaning Nov. 14.

Manufacturing hardware is a multi-step process that includes welding, washing, and, later, outfitting hardware. The internal cleaning process is similar to a shower to ensure contaminants do not find their way into the stage’s complex propulsion and engine systems prior to priming. Once internal cleaning is complete, primer is applied to the external portions of the tank’s barrel section and domes by an automated robotic tool. Following primer, technicians apply a foam-based thermal protection system to shield it from the extreme temperatures it will face during launch and flight while also regulating the super-chilled propellant within.

“NASA and its partners are processing major hardware elements at Michoud for several SLS rockets in parallel to support the agency’s Artemis campaign,” said Chad Bryant, acting manager of the Stages Office for NASA’s SLS Program. “With the Artemis II core stage nearing completion, the major structural elements of the SLS core stage for Artemis III will advance through production on the factory floor.”

The two massive propellant tanks for the rocket collectively hold more than 733,000 gallons of super-chilled propellant. The propellant powers the four RS-25 engines and must stay extremely cold to remain liquid.

The core stage, along with the RS-25 engines, will produce two million pounds of thrust to help launch NASA’s Orion spacecraft, astronauts, and supplies beyond Earth’s orbit and to the lunar surface for Artemis III. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.

Through Artemis, NASA will send astronauts – including the first woman, first person of color, and first international partner astronaut – to explore the Moon for scientific discovery, economic benefits, and to build the foundation for crewed mission to Mars. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, exploration ground systems, advanced spacesuits and rovers, Gateway, and human landing systems.

NASA’s Marshall Space Flight Center manages the SLS Program and Michoud Assembly Facility.

› Back to Top

Artemis II Mission Manager: Matthew Ramsey

Matthew Ramsey is keenly aware of the responsibility he shoulders to ensure NASA’s missions to the Moon are safe and successful. As the mission manager for Artemis II, NASA’s first crewed mission under Artemis, Ramsey is charged with helping to define the requirements and priorities for the missions and certifying that the hardware and operations needed to support flight are ready.

“For me, it’s all about the crew and ensuring their safety as they venture to the Moon and come home,” Ramsey said. “Sending people thousands of miles from home and doing it in a way that sets the stage for long-term exploration and scientific discovery is an incredibly complex task.”

Matthew Ramsey poses for a photo in front of a model of the SLS rocket. He is wearing a grey suit, light blue shift and a red and black patterned tie.
Matthew Ramsey is the mission manager for Artemis II. During the Artemis I launch, Ramsey was the SLS Engineering Support Center manager at NASA’s Marshall Space Flight Center.
NASA/Brandon Hancock

During the leadup to Artemis II, Ramsey is responsible for oversight of the daily preparations as NASA prepares to launch and fly the agency’s SLS (Space Launch System) rocket with a crew of four inside the Orion spacecraft. He will adjudicate issues that arise in the weeks and months ahead of the flight test and serve as deputy of the Mission Management Team – a tiger team that forms two days before launch to accept the risks associated with the mission and make decisions during the flight to address any changes or concerns.

A native of Hernando, Mississippi, Ramsey pitched for the Mississippi State University baseball team before earning bachelor’s and master’s degrees in aerospace engineering from the school.

“There are a lot of similarities between mission management and pitching,” he said. “You control many aspects of the tempo, and there’s a lot of weight on your shoulders.”

Ramsey began his career in the intelligence and defense sectors before joining the space agency in 2002 to work on guidance, navigation, and control for the X-37 Approach and Landing Test Vehicle. Later, he worked on the design of the Ares I and V rockets as part of NASA’s Constellation Program before transitioning in 2010 to the SLS Program in support of the chief engineer at the agency’s Marshall Space Flight Center.

During the Artemis I launch, Ramsey was the SLS Engineering Support Center manager at Marshall, coordinating across engineering teams to provide data and solutions to issues encountered during the multiple launch attempts. He then supported the Mission Management Team during Artemis I in an observational role, preparing for his position as Artemis II mission manager.

While NASA and its partners are preparing for Artemis II, work toward other Artemis missions is also underway. Ramsey also will serve as the mission manager for Artemis IV, the first Gateway assembly mission that also will include a lunar landing.

“With Artemis II on the horizon, most of my time is focused on making sure we’re ready to fly Reid, Victor, Christina, and Jeremy around the Moon and bring them safely home,” Ramsey said. “For Artemis IV, we’re in the mission concept-planning phase, establishing mission priorities and objectives and defining how we’ll transfer crew between all the hardware elements involved.”

As Artemis II nears, Ramsey is blending his operational experience and expertise in design, development, testing, and evaluation so that NASA is primed for what lies ahead: sending humans back to the Moon for the first time in more than 50 years and laying the foundation for future missions that will ultimately enable human exploration of Mars.

› Back to Top

Teams Add Iconic NASA ‘Worm’ Logo to Artemis II Rocket, Spacecraft

Art and science merged as teams added the NASA “worm” logo on the SLS (Space Launch System) solid rocket boosters and the Orion spacecraft’s crew module adapter at NASA’s Kennedy Space Center for the agency’s Artemis II mission.

The iconic logo was introduced in 1975 by the firm of Danne & Blackburn as a modern emblem for the agency. It emerged from a nearly 30-year retirement in 2020 for limited use on select missions and products.

microsoftteams-image-2-rotated.jpg?w=136
Workers with NASA’s Exploration Ground Systems paint the bright red NASA “worm” logo on the side of an Artemis II solid rocket booster segment inside the Rotation, Processing and Surge Facility at the agency’s Kennedy Space Center on Jan. 30. The Exploration Ground Systems team used a laser projector to mask off the logo with tape, then painted the first coat of the iconic design.
NASA/Glenn Benson

NASA’s Exploration Ground Systems and prime contractor Jacobs began painting the red logotype onto the segments that form the Moon rocket’s two solid rocket boosters Jan. 22. To do so, crews used a laser projector to first mark off the location of the logo with tape, then applied two coats of paint and finished by adding several coats of clear primer. Each letter of the worm logo measures approximately 6 feet and 10 inches in height and altogether, stretches 25 feet from end to end, or a little less than the length of one of the rocket’s booster motor segments.

The location of the worm logo will be moderately different from where it was during Artemis I. While it will still be located on each of the rocket’s 17 story boosters, the modernist logo will be placed toward the front of the booster systems tunnel cover. The SLS boosters are the largest, most powerful solid propellant boosters ever flown and provide more than 75% of the thrust at launch.

ksc-20240201-ph-rns01-0001orig.jpg?w=136
The Orion spacecraft for NASA’s Artemis II mission received its latest makeover Jan. 28. Teams adhered the agency’s iconic “worm” logo and ESA (European Space Agency) insignia on the spacecraft’s crew module adapter inside the Neil Armstrong Operations and Checkout Building at Kennedy.
NASA/Rad Sinyak

Around the corner inside the Neil Armstrong Operations and Checkout Building at Kennedy, personnel adhered the worm logo and ESA (European Space Agency) insignia Jan. 28 on the spacecraft’s crew module adapter. The adapter houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the main modules.

In October 2023, technicians joined the crew and service modules together. The crew module will house the four astronauts as they journey around the Moon and back to Earth on an approximately 10-day journey. The spacecraft’s service module, provided by ESA, will supply the vehicle with electricity, propulsion, thermal control, air, and water in space.

NASA is working to land the first woman, first person of color, and first international partner astronaut on the Moon through Artemis. SLS and the Orion spacecraft are central to NASA’s deep space exploration plans, along with advanced spacesuits and rovers, the Gateway space station planned for orbit around the Moon, and commercial human landing systems.

NASA’s Marshall Space Flight Center manages the SLS Program.

› Back to Top

Chandra: Black Hole Fashions Stellar Beads on A String

Astronomers have discovered one of the most powerful eruptions from a black hole ever recorded in the system known as SDSS J1531+3414 (SDSS J1531 for short). This mega-explosion billions of years ago may help explain the formation of a striking pattern of star clusters around two massive galaxies, resembling “beads on a string.”

SDSS J1531 is a massive galaxy cluster containing hundreds of individual galaxies and huge reservoirs of hot gas and dark matter. At the center of SDSS J1531, which is located about 3.8 billion light-years away, two of the cluster’s largest galaxies are colliding with each other.

Galaxy cluster SDSS J1531+3414
SDSS J1531 is a massive galaxy cluster containing hundreds of individual galaxies and huge reservoirs of hot gas and dark matter. In the heart of SDSS J1531, two of the cluster’s largest galaxies are colliding with each other. Surrounding these merging giants is a set of 19 large clusters of stars, called superclusters, arranged in an ‘S’ formation that resembles beads on a string.
X-ray: NASA/CXC/SAO/O. Omoruyi et al.; Optical: NASA/ESA/STScI/G. Tremblay et al.; Radio: ASTRON/LOFAR; Image Processing: NASA/CXC/SAO/N. Wolk

Astronomers used several telescopes to study SDSS J1531 including NASA’s Chandra X-ray Observatory, and LOFAR (Low Frequency Array), a radio telescope. A composite image shows SDSS J1531 in X-rays from Chandra (blue and purple) that have been combined with radio data from LOFAR (dark pink) as well as an optical image from the Hubble Space Telescope (appearing as yellow and white). The inset gives a close-in view of the center of SDSS J1531 in optical light, showing the two large galaxies and a set of 19 large clusters of stars, called superclusters, stretching across the middle. The image shows these star clusters are arranged in an ‘S’ formation that resembles beads on a string.

The multiwavelength data provides signs of an ancient, titanic eruption in SDSS J1531, which a team of researchers think was responsible for creation of the 19 star clusters. Their argument is that an extremely powerful jet from the supermassive black holes in the center of one of the large galaxies pushed the surrounding hot gas away from the black hole, creating a gigantic cavity. The evidence for a cavity comes from “wings” of bright X-ray emission, seen with Chandra, tracing dense gas near the center of SDSS J1531. These wings are the edge of the cavity and the less dense gas in between is part of the cavity. LOFAR shows radio waves from the remains of the jet’s energetic particles filling in the giant cavity. These features are highlighted in a labeled version of the image.

Multiwavelength Image of SDSS J1531, Labeled
A labeled version of SDSS J1531.
X-ray: NASA/CXC/SAO/O. Omoruyi et al.; Optical: NASA/ESA/STScI/G. Tremblay et al.; Radio: ASTRON/LOFAR; Image Processing: NASA/CXC/SAO/N. Wolk

The astronomers also discovered cold and warm gas located near the opening of the cavity, detected with the Atacama Large Millimeter and submillimeter Array and the Gemini North Telescope, respectively. A separate graphic shows the optical image with the cold gas added in green (left), and the warm gas added in red (right). The team argues that some of the hot gas pushed away from the black hole eventually cooled to form the cold and warm gas shown. The team thinks tidal effects from the two merging galaxies compressed the gas along curved paths, leading to the star clusters forming in the “beads on a string” pattern.

A paper led by Osase Omoruyi of the Center for Astrophysics | Harvard & Smithsonian (CfA) describing these results has recently been published in The Astrophysical Journal and is available online here. The authors of the paper are Grant Tremblay (CfA), Francoise Combes (Paris Observatory, France), Timothy Davis (Cardiff University, UK), Michael Gladders (University of Chicago), Alexey Vikhlinin (CfA), Paul Nulsen (CfA), Preeti Kharb (National Centre for Radio Astrophysics – Tata Institute of Fundamental Research, India), Stefi Baum (University of Manitoba, Canada), Christopher O’Dea (University of Manitoba, Canada), Keren Sharon (University of Michigan), Bryan Terrazas (Columbia University), Rebecca Nevin (Fermi National Accelerator Laboratory), Aimee Schechter (University of Colorado Boulder), John ZuHone (CfA), Michael McDonald (Massachusetts Institute of Technology), Hakon Dahle (University of Oslo, Norway), Matthew B. Bayliss (University of Cincinnati), Thomas Connor (CfA), Michael Florian (University of Arizona), Jane Rigby (NASA Goddard Space Flight Center), and Sravani Vaddi (Arecibo Observatory).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

› Back to Top

New Horizons Detects Dusty Hints of Extended Kuiper Belt

New observations from NASA’s New Horizons spacecraft hint that the Kuiper Belt – the vast, distant outer zone of our solar system populated by hundreds of thousands of icy, rocky planetary building blocks – might stretch much farther out than we thought.

Speeding through the outer edges of the Kuiper Belt, almost 60 times farther from the Sun than Earth, the New Horizons SDC (Venetia Burney Student Dust Counter) instrument is detecting higher than expected levels of dust – the tiny frozen remnants of collisions between larger Kuiper Belt objects, or KBOs, and particles kicked up from KBOs being peppered by microscopic dust impactors from outside of the solar system.

Artist’s concept of a collision between two objects in the distant Kuiper Belt
Artist’s concept of a collision between two objects in the distant Kuiper Belt. Such collisions are a major source of dust in the belt, along with particles kicked up from Kuiper Belt objects being peppered by microscopic dust impactors from outside of the solar system.
Credit: Dan Durda, FIAAA

The readings defy scientific models that the KBO population and density of dust should start to decline a billion miles inside that distance and contribute to a growing body of evidence that suggests the outer edge of the main Kuiper Belt could extend billions of miles farther than current estimates – or that there could even be a second belt beyond the one we already know.

The results appear in the Feb. 1 issue of the Astrophysical Journal Letters.

“New Horizons is making the first direct measurements of interplanetary dust far beyond Neptune and Pluto, so every observation could lead to a discovery,” said Alex Doner, lead author of the paper and a physics graduate student at the University of Colorado Boulder who serves as SDC lead. “The idea that we might have detected an extended Kuiper Belt – with a whole new population of objects colliding and producing more dust – offers another clue in solving the mysteries of the solar system’s most distant regions.”

Designed and built by students at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado Boulder under the guidance of professional engineers, SDC has detected microscopic dust grains produced by collisions among asteroids, comets and Kuiper Belt objects all along New Horizons’ 5-billion-mile, 18-year journey across our solar system – which after launch in 2006 included historic flybys of Pluto in 2015 and the KBO Arrokoth in 2019. The first science instrument on a NASA planetary mission to be designed, built and “flown” by students, the SDC counts and measures the sizes of dust particles, producing information on the collision rates of such bodies in the outer solar system.

The latest, surprising results were compiled over three years as New Horizons traveled from 45 to 55 AU (astronomical units from the Sun – with one AU being the distance between Earth and Sun, about 93 million miles.

These readings come as New Horizons scientists, using observatories like the Japanese Subaru Telescope in Hawaii, have also discovered a number KBOs far beyond the traditional outer edge of the Kuiper Belt. This outer edge (where the density of objects starts to decline) was thought to be at about 50 AU, but new evidence suggests the belt may extend to 80 AU, or farther. 

As telescope observations continue, Doner said, scientists are looking at other possible reasons for the high SDC dust readings. One possibility, perhaps less likely, is radiation pressure and other factors pushing dust created in the inner Kuiper Belt out past 50 AU. New Horizons could also have encountered shorter-lived ice particles that cannot reach the inner parts of the solar system and were not yet accounted for in the current models of the Kuiper Belt.

“These new scientific results from New Horizons may be the first time that any spacecraft has discovered a new population of bodies in our solar system,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute in Boulder. “I can’t wait to see how much farther out these elevated Kuiper Belt dust levels go.”

Now into its second extended mission, New Horizons is expected to have sufficient propellant and power to operate through the 2040s, at distances beyond 100 AU from the Sun. That far out, mission scientists say, the SDC could potentially even record the spacecraft’s transition into a region where interstellar particles dominate the dust environment. With complementary telescopic observations of the Kuiper Belt from Earth, New Horizons, as the only spacecraft operating in and collecting new information about the Kuiper Belt, has a unique opportunity to learn more about KBOs, dust sources and expanse of the belt, and interstellar dust and the dust disks around other stars.

The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, built and operates the New Horizons spacecraft and manages the mission for NASA’s Science Mission Directorate. Southwest Research Institute, based in San Antonio and Boulder, Colorado, directs the mission via Principal Investigator Alan Stern and leads the science team, payload operations and encounter science planning. New Horizons is part of NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center.

› Back to Top

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Dr. Misty Davies receives the prestigious AIAA Fellowship in May 2024 for her contributions to aerospace safety and autonomous systems, recognized at a ceremony in Washington, DC.NASA In May 2024, Dr. Misty Davies joined the American Institute of Aeronautics and Astronautics (AIAA) Class of 2024 Fellows at a ceremony in Washington, DC.  The AIAA website states that, “AIAA confers Fellow upon individuals in recognition of their notable and valuable contributions to the arts, sciences or technology of aeronautics and astronautics.”  The first AIAA Fellows were elected in 1934; since then only 2064 people have been selected for the honor.  Dr. Davies has focused her career at NASA Ames Research Center on developing tools and techniques that enable the safety assurance of increasingly autonomous systems.  She currently serves as the Associate Chief for Aeronautics Systems in the Intelligent Systems Division at NASA Ames and is the Aerospace Operations and Safety Program (AOSP) Technical Advisor for Assurance and Safety. More information on AIAA Fellows is at https://www.aiaa.org/news/news/2024/02/08/aiaa-announces-class-of-2024-honorary-fellows-and-fellows
      Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 52 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 52 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 52 mins ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      8 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Tom Bell, Woods Hole Oceanographic Institution
      Dr. Kelsey Bisson, NASA Headquarters Science Mission Directorate
      Graduate Mentor:
      Kelby Kramer, Massachusetts Institute of Technology

      Kelby Kramer, Graduate Mentor
      Kelby Kramer, graduate mentor for the 2024 SARP Ocean Remote Sensing group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Lucas DiSilvestro
      Shallow Water Benthic Cover Type Classification using Hyperspectral Imagery in Kaneohe Bay, Oahu, Hawaii
      Lucas DiSilvestro
      Quantifying the changing structure and extent of benthic coral communities is essential for informing restoration efforts and identifying stressed regions of coral. Accurate classification of shallow-water benthic coral communities requires high spectral and spatial resolution, currently not available on spaceborne sensors, to observe the seafloor through an optically complex seawater column. Here we create a shallow water benthic cover type map of Kaneohe Bay, Oahu, Hawaii using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) without requiring in-situ data as inputs. We first run the AVIRIS data through a semi-analytical inversion model to derive color dissolved organic matter, chlorophyll concentration, bottom albedo, suspended sediment, and depth parameters for each pixel, which are then matched to a Hydrolight simulated water column. Pure reflectance for coral, algae, and sand are then projected through each water column to create spectral endmembers for each pixel. Multiple Endmember Spectral Mixture Analysis (MESMA) provides fractional cover of each benthic class on a per-pixel basis. We demonstrate the efficacy of using simulated water columns to create surface reflectance spectral endmembers as Hydrolight-derived in-situ endmember spectra strongly match AVIRIS surface reflectance for corresponding locations (average R = 0.96). This study highlights the capabilities of using medium-fine resolution hyperspectral imagery to identify fractional cover type of localized coral communities and lays the groundwork for future spaceborne hyperspectral monitoring of global coral communities.

      Atticus Cummings
      Quantifying Uncertainty In Kelp Canopy Remote Sensing Using the Harmonized Landsat Sentinel-2 Dataset
      Atticus Cummings
      California’s giant kelp forests serve as a major foundation for the region’s rich marine biodiversity and provide recreational and economic value to the State of California. With the rising frequency of marine heatwaves and extreme weather onset by climate change, it has become increasingly important to study these vital ecosystems. Kelp forests are highly dynamic, changing across several timescales; seasonally due to nutrient concentrations, waves, and predator populations, weekly with typical growth and decay, and hourly with the tides and currents. Previous remote sensing of kelp canopies has relied on Landsat imagery taken with a eight-day interval, limiting the ability to quantify more rapid changes. This project aims to address uncertainty in kelp canopy detection using the Harmonized Landsat and Sentinel-2 (HLS) dataset’s zero to five-day revisit period. A random forest classifier was used to identify pixels that contain kelp, on which Multiple Endmember Spectral Mixture Analysis (MESMA) was then run to quantify intrapixel kelp density. Processed multispectral satellite images taken within 3 days of one another were paired for comparison. The relationship between fluctuations in kelp canopy density with tides and currents was assessed using in situ data from an acoustic doppler current profiler (ADCP) at the Santa Barbara Long Term Ecological Research site (LTER) and a NOAA tidal buoy. Preliminary results show that current and tidal trends cannot be accurately correlated with canopy detection due to other sources of error. We found that under cloud-free conditions, canopy detection between paired images varied on average by 42%. Standardized image processing suggests that this uncertainty is not created within the image processing step, but likely arises due to exterior factors such as sensor signal noise, atmospheric conditions, and sea state. Ultimately, these errors could lead to misinterpretation of remotely sensed kelp ecosystems, highlighting the need for further research to identify and account for uncertainties in remote sensing of kelp canopies.

      Jasmine Sirvent
      Kelp Us!: A Methods Analysis for Predicting Kelp Pigment Concentrations from Hyperspectral Reflectance
      Jasmine Sirvent
      Ocean color remote sensing enables researchers to assess the quantity and physiology of life in the ocean, which is imperative to understanding ecosystem health and formulating accurate predictions. However, without proper methods to analyze hyperspectral data, correlations between spectral reflectance and physiological traits cannot be accurately derived. In this study, I explored different methods—single variable regression, partial least squares regressions (PLSR), and derivatives—in analyzing in situ Macrocystis pyrifera (giant kelp) off the coast of Santa Barbara, California in order to predict pigment concentrations from AVIRIS hyperspectral reflectance. With derivatives as a spectral diagnostic tool, there is evidence suggesting high versus low pigment concentrations could be diagnosed; however, the fluctuations were within 10 nm of resolution, thus AVIRIS would be unable to reliably detect them. Exploring a different method, I plotted in situ pigment measurements — chlorophyll a, fucoxanthin, and the ratio of fucoxanthin to chlorophyll a—against hyperspectral reflectance that was resampled to AVIRIS bands. PLSR proved to be a more successful model because of its hyperdimensional analysis capabilities in accounting for multiple wavelength bands, reaching R2 values of 0.67. Using this information, I constructed a model that predicts kelp pigments from simulated AVIRIS reflectance using a spatial time series of laboratory spectral measurements and photosynthetic pigment concentrations. These results have implications, not only for kelp, but many other photosynthetic organisms detectable by hyperspectral airborne or satellite sensors. With these findings, airborne optical data could possibly predict a plethora of other biogeochemical traits. Potentially, this research would permit scientists to acquire data analogous to in situ measurements about floating matters that cannot financially and pragmatically be accessed by anything other than a remote sensor.

      Isabelle Cobb
      Correlations Between SSHa and Chl-a Concentrations in the Northern South China Sea
      Isabelle Cobb
      Sea surface height anomalies (SSHa)–variations in sea surface height from climatological averages–occur on seasonal timescales due to coastal upwelling and El Niño-Southern Oscillation (ENSO) cycles. These anomalies are heightened when upwelling plumes bring cold, nutrient-rich water to the surface, and are particularly strong along continental shelves in the Northern South China Sea (NSCS). This linkage between SSHa and nutrient availability has interesting implications for changing chlorophyll-a (chl-a) concentrations, a prominent indicator of phytoplankton biomass that is essential to the health of marine ecosystems. Here, we evaluate the long-term (15 years) relationship between SSHa and chl-a, in both satellite remote sensing data and in situ measurements. Level 3 SSHa data from Jason 1/2/3 satellites and chl-a data from MODIS Aqua were acquired and binned to monthly resolution. We found a significant inverse correlation between SSHa and chl-a during upwelling months in both the remote sensing (Spearman’s R=-0.57) and in situ data, with higher resolution in situ data from ORAS4 (an assimilation of buoy observations from 2003-2017) showing stronger correlations (Spearman’s R=-0.75). In addition, the data reveal that the magnitude of SSH increases with time during instances of high correlation, possibly indicating a trend of increased SSH associated with reduced seasonal chl-a concentrations. Thus, this relationship may inform future work predicting nutrient availability and threats to marine ecosystems as climate change continues to affect coastal sea surface heights.

      Alyssa Tou
      Exploring Coastal Sea Surface Temperature Anomalies and their effect on Coastal Fog through analyzing Plant Phenology
      Alyssa Tou
      Marine heat waves (MHW) have been increasing in frequency, duration and intensity, giving them substantial potential to influence ecosystems. Do these MHWs sufficiently enhance coastal precipitation such that plant growth is impacted? Recently, the Northeast Pacific experienced a long, intense MHW in 2014/2015, and another short, less intense MHW in 2019/2020. Here we investigate how the intensity and duration of MHWs influence the intensity and seasonal cycle of three different land cover types (‘grass’, ‘trees’, and a combination of both ‘combined’’) to analyze plant phenology trends in Big Sur, California. We hypothesize that longer intense MHWs decrease the ocean’s evaporative capacity, decreasing fog, thus lowering plant productivity, as measured by Normalized Difference Vegetation Index (NDVI). Sea surface temperature (SST) and NDVI data were collected from the NOAA Coral Reef Watch, and NASA MODIS/Terra Vegetation Indices 16-Day L3 Global 250m products respectively. Preliminary results show no correlation (R2=0.02) between SSTa and combined NDVI values and no correlation (R2=0.01) between SST and NDVI. This suggests that years with anomalously high SST do not significantly impact plant phenology. During the intense and long 2014/2015 MHW, peak NDVI values for ‘grass’ and ‘combined’ pixels were 2.0 and 1.7 standard deviations above the climatological average, while the shorter 2019/2020 MHW saw higher peaks of 3.2 and 2.4 standard deviations. However, the ‘grass’, ‘tree’ and ‘combined’ NDVI anomalies were statistically insignificant during both MHWs, showing that although NDVI appeared to increase during the shorter and less intense MHW, these values may be attributed to other factors. The data qualitatively suggest that MHW’s don’t impact the peak NDVI date, but more data at higher temporal resolution are necessary. Further research will involve analyzing fog indices and exploring confounding variables impacting NDVI, such as plant physiology, anthropogenic disturbance, and wildfires. In addition, it’s important to understand to what extent changes in NDVI are attributed to the driving factors of MHWs or the MHWs themselves. Ultimately, mechanistically understanding the impacts MHW intensity and duration have on terrestrial ecosystems will better inform coastal community resilience.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      10 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Guanyu Huang, Stony Brook University
      Graduate Mentor:
      Ryan Schmedding, McGill University

      Ryan Schmedding, Graduate Mentor
      Ryan Schmedding, graduate mentor for the 2024 SARP Atmospheric Science group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Danielle Jones
      Remote sensing of poor air quality in mountains: A case study in Kathmandu, Nepal
      Danielle Jones
      Urban activity produces particulate matter in the atmosphere known as aerosol particles. These aerosols can negatively affect human health and cause changes to the climate system. Measures for aerosols include surface level PM2.5 concentration and aerosol optical depth (AOD). Kathmandu, Nepal is an urban area that rests in a valley on the edge of the Himalayas and is home to over three million people. Despite the prevailing easterly winds, local aerosols are mostly concentrated in the valley from the residential burning of coal followed by industry. Exposure to PM2.5 has caused an estimated ≥8.6% of deaths annually in Nepal. We paired NASA satellite AOD and elevation data, model  meteorological data, and local AirNow PM2.5 and air quality index (AQI) data to determine causes of variation in pollutant measurement during 2023, with increased emphasis on the post-monsoon season (Oct. 1 – Dec. 31). We see the seasonality of meteorological data related to PM2.5 and AQI. During periods of low temperature, low wind speed, and high pressure, PM2.5 and AQI data slightly diverge. This may indicate that temperature inversions increase surface level concentrations of aerosols but have little effect on the total air column. The individual measurements of surface pressure, surface temperature, and wind speed had no observable correlation to AOD (which was less variable than PM2.5 and AQI over the entire year). Elevation was found to have no observable effect on AOD during the period of study. Future research should focus on the relative contributions of different pollutants to the AQI to test if little atmospheric mixing causes the formation of low-altitude secondary pollutants in addition to PM2.5 leading to the observed divergence in AQI and PM2.5.

      Madison Holland
      Analyzing the Transport and Impact of June 2023 Canadian Wildfire Smoke on Surface PM2.5 Levels in Allentown, Pennsylvania
      Madison Holland
      The 2023 wildfire season in Canada was unparalleled in its severity. Over 17 million hectares burned, the largest area ever burned in a single season. The smoke from these wildfires spread thousands of kilometers, causing a large population to be exposed to air pollution. Wildfires can release a variety of air pollutants, including fine particulate matter (PM2.5). PM2.5 directly affects human health – exposure to wildfire-related PM2.5 has been associated with respiratory issues such as the exacerbation of asthma and chronic obstructive pulmonary disease. In June 2023, smoke from the Canadian wildfires drifted southward into the United States. The northeastern United States reported unhealthy levels of air quality due to the transportation of the smoke. In particular, Pennsylvania reported that Canadian wildfires caused portions of the state to have “Hazardous” air quality. Our research focused on how Allentown, PA experienced hazardous levels of air quality from this event. To analyze the concentrations of PM2.5 at the surface level, NASA’s Hazardous Air Quality Ensemble System (HAQES) and the EPA’s Air Quality System (AQS) ground-based site data were utilized. By comparing HAQES’s forecast of hazardous air quality events with recorded daily average PM2.5 with the EPA’s AQS, we were able to compare how well the ensemble system was at predicting total PM2.5 during unhealthy air quality days. NOAA’s Hybrid Single-Particle Lagrangian Integrated Trajectory model, pyrsig, and the Canadian National Fire Database were used. These datasets revealed the trajectory of aerosols from the wildfires to Allentown, Pennsylvania, identified the densest regions of the smoke plumes, and provided a map of wildfire locations in southeastern Canada. By integrating these datasets, we traced how wildfire smoke transported aerosols from the source at the ground level.

      Michele Iraci
      Trends and Transport of Tropospheric Ozone From New York City to Connecticut in the Summer of 2023
      Michele Iraci
      Tropospheric Ozone, or O₃, is a criteria pollutant contributing to most of Connecticut and New York City’s poor air quality days. It has adverse effects on human health, particularly for high-risk individuals. Ozone is produced by nitrogen oxides and volatile organic compounds from fuel combustion reacting with sunlight. The Ozone Transport Region (OTR) is a collection of states in the Northeast and Mid-Atlantic United States that experience cross-state pollution of O₃. Connecticut has multiple days a year where O₃ values exceed the National Ambient Air Quality Standards requiring the implementation of additional monitoring and standards because it falls in the OTR. Partially due to upstream transport from New York City, Connecticut experiences increases in O₃ concentrations in the summer months. Connecticut has seen declines in poor air quality days from O₃ every year due to the regulations on ozone and its precursors. We use ground-based Lidar, Air Quality System data, and a back-trajectory model to examine a case of ozone enhancement in Connecticut caused by air pollutants from New York between June and August 2023. In this time period, Connecticut’s ozone enhancement was caused by air pollutants from New York City. As a result, New York City and Connecticut saw similar O₃ spikes and decline trends. High-temperature days increase O₃ in both places, and wind out of the southwest may transport O₃ to Connecticut. Production and transport of O₃ from New York City help contribute to Connecticut’s poor air quality days, resulting in the need for interstate agreements on pollution management.

      Stefan Sundin
      Correlations Between the Planetary Boundary Layer Height and the Lifting Condensation Level
      Stefan Sundin
      The Planetary Boundary Layer (PBL) characterizes the lowest layer in the atmosphere that is coupled with diurnal heating at the surface. The PBL grows during the day as solar heating causes pockets of air near the surface to rise and mix with cooler air above. Depending on the type of terrain and surface albedo that receives solar heating, the depth of the PBL can vary to a great extent. This makes PBL height (PBLH) a difficult variable to quantify spatially and temporally. While several methods have been used to obtain the PBLH such as wind profilers and lidar techniques, there is still a level of uncertainty associated with PBLH. One method of predicting seasonal PBLH fluctuation and potentially lessening uncertainty that will be discussed in this study is recognizing a correlation in PBLH with the lifting condensation level (LCL). Like the PBL, the LCL is used as a convective parameter when analyzing upper air data, and classifies the height in the atmosphere at which a parcel becomes saturated when lifted by a forcing mechanism, such as a frontal boundary, localized convergence, or orographic lifting. A reason to believe that PBLH and LCL are interconnected is their dependency on both the amount of surface heating and moisture that is present in the environment. These thermodynamic properties are of interest in heavily populated metropolitan areas within the Great Plains, as they are more susceptible to severe weather outbreaks and associated economic losses. Correlations between PBLH and LCL over the Minneapolis-St. Paul metropolitan statistical area during the summer months of 2019-2023 will be discussed.

      Angelica Kusen
      Coupling of Chlorophyll-a Concentrations and Aerosol Optical Depth in the Subantarctic Southern Ocean and South China Sea (2019-2021)
      Angelica Kusen
      Air-sea interactions form a complex feedback mechanism, whereby aerosols impact physical and biogeochemical processes in marine environments, which, in turn, alter aerosol properties. One key indicator of these interactions is chlorophyll-a (Chl-a), a pigment common to all phytoplankton and a widely used proxy for primary productivity in marine ecosystems. Phytoplankton require soluble nutrients and trace metals for growth, which typically come from oceanic processes such as upwelling. These nutrients can also be supplied via wet and dry deposition, where atmospheric aerosols are removed from the atmosphere and deposited into the ocean. To explore this interaction, we analyze the spatial and temporal variations of satellite-derived chl-a and AOD, their correlations, and their relationship with wind patterns in the Subantarctic Southern Ocean and the South China Sea from 2019 to 2021, two regions with contrasting environmental conditions.
      In the Subantarctic Southern Ocean, a positive correlation (r²= 0.26) between AOD and Chl-a was found, likely due to dust storms following Austrian wildfires. Winds deposit dust aerosols rich in nutrients, such as iron, to the iron-limited ocean, enhancing phytoplankton photosynthesis and increasing chl-a. In contrast, the South China Sea showed no notable correlation (r² = -0.02) between AOD and chl-a. Decreased emissions due to COVID-19 and stricter pollution controls likely reduced the total AOD load and shifted the composition of aerosols from anthropogenic to more natural sources.
      These findings highlight the complex interrelationship between oceanic biological activity and the chemical composition of the atmosphere, emphasizing that atmospheric delivery of essential nutrients, such as iron and phosphorus, promotes phytoplankton growth. Finally, NASA’s recently launched PACE mission will contribute observations of phytoplankton community composition at unprecedented scale, possibly enabling attribution of AOD levels to particular groups of phytoplankton.

      Chris Hautman
      Estimating CO₂ Emission from Rocket Plumes Using in Situ Data from Low Earth Atmosphere
      Chris Hautman
      Rocket emissions in the lower atmosphere are becoming an increasing environmental concern as space exploration and commercial satellite launches have increased exponentially in recent years. Rocket plumes are one of the few known sources of anthropogenic emissions directly into the upper atmosphere. Emissions in the lower atmosphere may also be of interest due to their impacts on human health and the environment, in particular, ground level pollutants transported over wildlife protected zones, such as the Everglades, or population centers near launch sites. While rockets are a known source of atmospheric pollution, the study of rocket exhaust is an ongoing task. Rocket exhaust can have a variety of compositions depending on the type of engine, the propellants used, including fuels, oxidizers, and monopropellants, the stoichiometry of the combustion itself also plays a role. In addition, there has been increasing research into compounds being vaporized in atmospheric reentry. These emissions, while relatively minimal compared to other methods of travel, pose an increasing threat to atmospheric stability and environmental health with the increase in human space activity. This study attempts to create a method for estimating the total amount of carbon dioxide released by the first stage of a rocket launch relative to the mass flow of RP-1, a highly refined kerosene (C₁₂H₂₆)), and liquid oxygen (LOX) propellants. Particularly, this study will focus on relating in situ CO₂ emission data from a Delta II rocket launch from Vandenberg Air Force Base on April 15, 1999, to CO₂ emissions from popular modern rockets, such as the Falcon 9 (SpaceX) and Soyuz variants (Russia). The findings indicate that the CO₂ density of any RP-1/LOX rocket is 6.9E-7 times the mass flow of the sum of all engines on the first stage. The total mass of CO₂ emitted can be further estimated by modeling the volume of the plume as cylindrical. Therefore, the total mass can be calculated as a function of mass flow and first stage main engine cutoff. Future CO₂ emissions on an annual basis are calculated based on these estimations and anticipated increases in launch frequency.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      10 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Dom Ciruzzi, College of William & Mary
      Graduate Mentor:
      Marley Majetic, Pennsylvania State University

      Marley Majetic, Graduate Mentor
      Marley Majetic, graduate mentor for the 2024 SARP Hydroecology group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.
      Jordan DiPrima
      How are different land cover types affected by land subsidence on the U.S. Atlantic Coast?
      Jordan DiPrima
      Land subsidence is a frequently overlooked geologic hazard that is caused by natural processes and, more recently, anthropogenic stressors. The goal of this study is to observe subsidence trends and hotspots among land cover types on Virginia’s Eastern Shore and Long Island, New York. This study utilizes interferometric synthetic aperture radar, or InSAR, satellite data from Sentinel-1 to map vertical land motion from 2017 to 2023. Land cover data were sourced from Landsat 8 satellite imagery. Subsidence was mapped within the following land cover types on the Eastern Shore: urban, wetland, cropland, temperate or sub-polar grassland, temperate or sub-polar shrubland, mixed forest, and temperate or subpolar needleleaf forest. These land cover types have mean vertical velocities ranging from -0.2 mm/yr to -5.2 mm/yr. Results suggest that land subsidence is most severe in cropland areas on the Eastern Shore, with a mean vertical velocity of -5.2 mm/yr. In contrast, wetlands display the most subsidence on Long Island with a mean vertical velocity of -2.1 mm/yr. Long Island lacked distinct trends among land cover types and instead showed evidence of subsidence hotspots. These hotspots exist in the following land cover types: temperate or sub-polar grassland, barren lands, wetland, cropland, and temperate or sub-polar broadleaf deciduous forest. Overall, Eastern Shore croplands and Long Island wetlands were determined to be the most susceptible land cover types. These findings highlight regions at risk of sea level rise, flooding, and coastal erosion as a result of subsidence. With further research, we can map subsiding landscapes on a global scale to improve resource allocation and mitigation techniques.

      Isabelle Peterson
      Total Thermokarst Lake Changes on the Seward Peninsula, Alaska: 2016 to 2024
      Isabelle Peterson
      Thermokarst landscapes have and will continue to change as the arctic landscape warms due to climate change. Permafrost underlies much of these arctic landscapes, and as it melts, thermokarst landscapes are left behind. The Seward Peninsula in Alaska has an abundance of these landscapes, and thermokarst lakes are present in the northernmost portion. Several lakes have come and gone, but with increasing climate instability and warming of the area, there is a possibility of more permafrost melting, creating more of these lakes. To capture these changes, Harmonized Landsat Sentinel-2 (HLS) imagery were used to create annual lake maps of the northern portion of the Seward Peninsula from 2016 to 2024. Much of the methodology was informed from Jones et al. (2011); however, their study used eCognition, while the present study used ArcGIS Pro. This caused some differences in results likely due to the differences in software, satellite imagery, and the proposed study area. Lake number changes were observed annually. From this annual change, several 10 to 40 ha lakes disappeared and reappeared within the study period, along with smaller lakes filling in where larger lakes once were. Thermokarst lake drainage is a process described by Jones and Arp (2015) which has devastating geomorphological impacts on the surrounding area, creating large drainage troughs which diminish surrounding permafrost in a quick time frame. To capture these events and overall changes, satellite imagery is essential. This is especially true in remote regions which are hard to reach by foot and require flight missions to be scheduled over the area for aerial photography. However, LVIS and other higher resolution aerial instruments would provide higher accuracy when identifying smaller lakes, as satellite imagery does not accurately capture lakes below 1 ha in the study area. This assertion is made due to conflicting results compared to Jones et al (2011). While the methodologies of this study have been executed manually, Qin, Zhang, and Lu (2023) have proposed the idea of using Sentinel-2 imagery to map thermokarst lakes through automatic methods. While automatization has not yet been perfected, the potential is there and can be used to analyze thermokarst areas effectively. With more satellite imagery, annual, monthly, and potentially daily changes can be captured in favorable months to monitor changing landscapes in arctic regions. Thermokarst lakes have been changing, and monitoring them can help in the process of understanding the changing climate in arctic areas, especially through the lens melting permafrost.

      Emmanelle Cuasay
      Finding Refuge in Climate Crisis: Analyzing the Differences between Refugia and Non-Refugia in the Northern Philippines Using Remote Sensing
      Emmanelle Cuasay
      Refugia are areas that are characterized by stable environmental conditions that can act as a refuge for species as Earth’s climate warms. In this study, fourteen Harmonized Landsat Sentinel-2 images from February 2014 – March 2024 of the northern Philippines region were used. The region of interest is the terrestrial biome by Lake Taal. Normalized Difference Vegetation Index (NDVI) maps were created from all fourteen images to determine the NDVI 25th highest quartiles of the long-term average NDVI images and of a dry and wet year NDVI image. These values were then used to create refugia and non-refugia maps using ArcGIS Pro. Land cover data from Sentinel-2 and a digital elevation model (DEM), using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), were plotted in ArcGIS Pro to determine the slope and aspect of the area. Global Ecosystems Dynamics Investigation (GEDI) data were used to look at forest height of the study area, and the distribution of forest height, slope, aspect, and elevation were plotted to determine their probability densities in refugia and non-refugia areas. Results of this study show increased biomass in refugia areas. This suggests that conservation practices are crucial to aid in the preservation of biodiversity and biomass within these refugia areas.

      Jayce Crayne
      Site-Based Observations of a Saharan Dust Storm’s Impacts on Evapotranspiration in North-Central Florida
      Jayce Crayne
      Saharan dust storms serve an important role in the western Atlantic’s climate in their contribution to Earth’s radiation budget, modulating sea surface temperatures (SSTs), fertilizing ecosystems, and suppressing cloud and precipitation patterns (Yuan et al., 2020). However, Saharan dust storms are expected to become less frequent in this region as SSTs continue to rise (Yuan et al., 2020). Predicting the climate response to this change requires a keen understanding of how the presence of these storms affect evapotranspiration (ET) and its indicators. This study utilizes site-based observational data from an AmeriFlux tower near Gainesville, FL recorded during a large dust storm in late June 2020. The storm’s progression was documented using satellite imagery from Aqua and Terra and aerosol optical depth (AOD) measurements from an Aerosol Robotic Network (AERONET) station co-located with the AmeriFlux tower. Indicators of ET such as surface air temperature, vapor pressure deficit, photosynthetic photon flux density, and net radiation were analyzed. Findings were compared to modeled ET and latent energy flux reanalysis data provided by the Global Land Data Assimilation System (GLDAS). Both model simulations and on-site observations support that ET decreased during the days dust concentrations were heaviest and for a short time thereafter. Cloud cover data adopted from meteorological aerodrome reports (METARs) provided by an automated surface observing system (ASOS) located in Gainesville showed that clouds were not a major contributor in decreasing ET during the days of heaviest dust. The results of this study show a considerable decrease in ET as a result of dust aerosols. Further research is necessary to determine whether changes in ET due to Saharan dust storms are significant enough to alter climates in the western Atlantic and, if so, what the climate response will be if the frequency of storms decreases.

      Brandon Wilson
      Predicting 2025 and 2028 dNBR and dNDIV for Csarf Smith River Complex / Evaluating the Effects of 2019 California Wildfire Fund
      Brandon Wilson
      Biodiverse regions across California remain vulnerable to harmful wildfires year round. Quantifying and measuring these regions’ wildfire resilience is necessary for understanding where/how to allocate environmental resources. Several ecological wildfire studies have been conducted utilizing artificial intelligence and remote sensing to analyze and predict biodiversity damage across wildfire prone regions, including Northern Algeria and Arkansas, USA. The current case study aims to analyze biodiversity damage from the 2023 Csarf Smith River Complex Fire in Six Rivers National Forest, California and predict the difference in Normalized Burn Ratio (dNBR) and difference in Normalized Difference Vegetation Index (dNDVI) for 2025 and 2028 using remote-sensing-based random forest (RF) regression. Furthermore, to observe, holistically, a practical method California has implemented to address state-wide wildfire damage, the 2019 California Wildfire Fund (AB 1054 and AB 111) was evaluated using the synthetic control method (SCM). For this case study, remote sensing data from the United States Geological Survey (USGS) and NASA (Landsat 9 Satellite C2 L2, TerraClimate and the Land Data Assimilation System) were utilized for processing relevant spectral indexes for the RF. Data from NOAA, Energy Information Agency, International Monetary Fund and Bureau of Economic Analysis were utilized as synthetic control datasets to evaluate the effects of the 2019 California Wildfire Fund. Elevated topography in this study area is susceptible to high severity burn effects, while less elevated topography burns less. This result affected dNBR and dNDVI predictions as elevated areas seemingly did not have strong resilience to rampant burns. This demonstrates a direct correlation to potential lower transpiration rates for elevated areas, warranting further analysis. Results of low variance, post-treatment, between the treated unit and the synthetic control unit, poses concern for the positive effect of the 2019 Wildfire Fund.

      Carrie Hashimoto
      Describing changes in evapotranspiration following the 2020 Creek Fire in the southern Sierra Nevada
      Carrie Hashimoto
      Climatic warming and high tree density have caused larger and more severe wildfires to occur in western United States forests over time. Wildfires affect both the hydrology and ecology of forests via alterations to the water balance (e.g., evapotranspiration, streamflow, infiltration, and more) and could shift vegetation communities and subsequent ecosystem structure and function. This project explores ecological characteristics of a landscape that predict the extent to which the Creek Fire in the southern Sierra Nevada has affected evapotranspiration. Strides in understanding of consequential evapotranspiration changes can create pathways to address emerging forest health challenges posed by similar western fires. For analysis, various remote sensing and modeled data were collected from OpenET, the North American Land Data Assimilation System, TerraClimate, Harmonized LandSat Sentinel-2 data, and the Shuttle Radar Topography Mission. Multiple linear regression and generalized additive models were constructed. Relative change in evapotranspiration served as the response variable. Model covariates included average temperature, total precipitation in the preceding months, average soil moisture, elevation, slope, aspect, northness, latitude, pre-fire normalized difference vegetation index (NDVI), and post-fire change in normalized burn ratio (dNBR). Best subset selection with cross validation demonstrated minimization of cross-validation error with a 7-covariate model. This reduced model yields lower complexity and more interpretability while sustaining an adjusted R2 of 0.626, compared to the full model’s adjusted R2 of 0.663. A reduced generalized additive model (GAM) with interaction terms drawn from the linear model variable selection demonstrated an adjusted R2 of 0.695, indicating a better fit that comes at the cost of reduced interpretability and higher computational requirements than the linear models. The goal of this work is to disentangle environmental indicators of post-fire evapotranspiration change, such that predictive modeling of future wildfire impacts on evapotranspiration can be achieved.


      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 11 min read SARP East 2024 Terrestrial Fluxes Group
      Article 22 mins ago View the full article
    • By NASA
      11 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Return to 2024 SARP Closeout Faculty Advisors:
      Dr. Lisa Haber, Virginia Commonwealth University
      Dr. Brandon Alveshere, Virginia Commonwealth University
      Dr. Chris Gough, Virginia Commonwealth University
      Graduate Mentor:
      Mindy Priddy, Virginia Commonwealth University

      Mindy Priddy, Graduate Mentor
      Mindy Priddy, graduate mentor for the 2024 SARP Terrestrial Fluxes group, provides an introduction for each of the group members and shares behind-the scenes moments from the internship.

      Angelina De La Torre
      Using NDVI as a Proxy for GPP to Predict Carbon Dioxide Fluxes
      Angelina De La Torre
      Climate change, driven primarily by greenhouse gases, poses a threat to the future of our planet. Among these gases is carbon dioxide (CO₂), which has a much longer atmospheric residence time compared to other greenhouse gases. One potential factor in reducing atmospheric CO₂ enrichment is plant productivity. Gross Primary Productivity (GPP) estimates the amount of CO₂ fixed during photosynthesis. The Normalized Difference Vegetation Index (NDVI) provides insight into the health of an ecosystem by measuring the density and greenness of vegetation. Therefore, it can be inferred that there is a relationship between NDVI and GPP, as greener plants are likely more productive. In this study, we used NDVI as a proxy for GPP and analyzed the effect NDVI had on CO₂ fluxes during California’s wet season between January and March 2023 in a restored tidal freshwater wetland. GPP and CO₂ flux data were obtained from the Dutch Slough AmeriFlux tower in Oakley, California. Landsat data were used to calculate the average NDVI. The influence of NDVI on GPP was assessed using linear regression. A second linear regression was then performed using NDVI and CO₂ flux, of which GPP is one component. We anticipate that wetlands with greater vegetation density will have lower CO₂ emissions.

      Because Landsat data scans in 16-day intervals, daily variation in NDVI could not be observed. This translates to a frequency discrepancy between the Landsat and AmeriFlux data, as AmeriFlux towers measure in half-hour intervals. Additionally, the wet season represented was limited by data availability, as the data before 2023 were unavailable. Despite data limitations in this study, the outlined process could be repeated in various wetland and climate classifications for further analysis of a larger sample size. This study could assist in developing strategies to increase CO₂ sequestration in an attempt to slow the effects of climate change.

      Samarth Jayadev
      Using Machine Learning to Assess Relationships between NDVI and Net Carbon Exchange During the COVID-19 Pandemic
      Samarth Jayadev
      Understanding the movement of carbon between Earth’s land surface and atmosphere is essential for ecosystem monitoring, creating climate change mitigation strategies, and assessing the carbon budget on national to global scales. Measures of greenness serve as indicators of processes such as photosynthesis that control carbon exchange and are vital in modeling of carbon fluxes. NASA’s Orbiting Carbon Observatory (OCO-2) provides high quality measurements of column-averaged CO₂ concentrations that can be used to derive net carbon exchange (NCE), a measure of CO₂ flux between terrestrial ecosystems and the atmosphere.
      From OCO-2, NCE data collected at the land nadir, land glint satellite position combined with in situ sampling can provide accurate measurements on a 1°x1° scale suitable for carbon flux characterization across the contiguous United States (CONUS). Normalized difference vegetation index (NDVI), which ranges from -1 to +1, measures the greenness of vegetation, serving as an indicator of plant density and health. This can help to understand ecosystem to carbon-cycle interactions and be leveraged for determining patterns with NCE. We examined the relationship between NDVI and NCE across CONUS during 2020 using Gradient Boosting Decision Trees (GBDT) which specialize in classifying and predicting non-linear relationships. This algorithm takes multiple weak learners (decision trees) and combines their predictions in an iterative ensemble method to improve prediction accuracy. Feature and permutation importance tests found that January and August (trough and peak NDVI, respectively) were the highest weighted predictor variables related to NCE. The dataset was split in a 90% training 10% test ratio across latitude/longitude grid cells to assess and verify model performance. Using the mean squared error loss function and hyperparameters with optimal estimators, tree depth, sample split, and learning rate the algorithm was able to converge the test predictions to match the deviance of the training data. The gradient boosting model can be applied to different months and years of NDVI/NCE to further explore these relationships or a multitude of research questions. Further studies should consider integrating land use and land cover change variables such as bare land and urbanization to improve predictions of NCE.

      Makai Ogoshi
      Deep-learning Derived Spaceborne Canopy Structural Metrics Predict Forest Carbon Fluxes
      Makai Ogoshi
      Terrestrial and airborne lidar data products describing canopy structure are potent predictors of forest carbon fluxes, but whether satellite data products produce similarly robust indicators of canopy structure is not known. The assessment of contemporary spaceborne lidar and other remote sensing data products as predictors of carbon fluxes is crucial to next generation instrument and data product design and large-spatial scale modeling. We investigated relationships between deciduous broadleaf forest canopy structure, derived from deep-learning models created with lidar data from GEDI and optical imagery from Sentinel-2, and forest carbon exchange. These included comparisons to in-situ continuous net ecosystem exchange (NEE), gross primary production (GPP), and net primary production (NPP). We find that the mean  canopy height from the gridded spaceborne product has a strong correlation with forest NPP, similar to prior analysis with ground-based lidar (portable canopy lidar; PCL). For comparison to NPP, heights taken from the gridded spaceborne product were compared by overlapping the product with nine terrestrial forest sites from the National Ecological Observatory Network (NEON). We used standard deviation of canopy height as a measure of canopy structural complexity. Complexity derived from the gridded spaceborne product does not show the same strong correlation with NPP as found when using PCL. Mean annual GPP and NEE across five years were compared to the gridded spaceborne product at six Fluxnet2015-tower sites with continuous, gap-filled carbon flux data. When compared to in-situ flux tower data, neither mean canopy height nor structural complexity strongly correlate to annual NEE or GPP. Primarily, the finding that derived spaceborne products exhibit a strong correlation between forest canopy height and NPP will advance global-scale application of forest-carbon flux predictions. Secondarily, a variety of limitations highlight shortcomings in the current terrestrial flux data network. A small number of available study sites, both spatially and temporally, and lack of resolution in vertical complexity of canopy structure both contribute to uncertainty in assessing the relationships to NEE and GPP.

      Sebastian Reed
      Porewater Methane Concentrations Vary Significantly Across A Freshwater Tidal Wetland
      Sebastian Reed
      Methane is a potent greenhouse gas that is over 80 times more powerful than CO₂ at trapping heat and accounts for an estimated 30% of global temperature rise associated with climate change. The largest natural source of methane worldwide is wetlands. Despite the role of methane in driving climate change, the magnitude of global annual wetland methane flux remains highly uncertain. This study analyzes the effects of greenness (assessed using Normalized Difference Vegetation Index; NDVI), plant species composition, rooting depth, atmospheric methane concentration, and plant longevity on porewater methane concentration at the Kimages Rice Rivers Center tidal freshwater wetland. Samples for atmospheric and porewater concentrations were conducted in situ in June 2024. For each sampling location (n = 23) we collected whole air samples (WAS) 2m above the marsh surface and porewater samples 5cm below the marsh surface. We visually assessed species composition at each sample location, with 12 species of wetland plants present overall. We used the TRY plant database to find the rooting depth, leaf nitrogen content, and lifespan of each species. Drone multispectral data from 2023 was used to estimate NDVI values. These variables were compared to the pore water methane concentration via stepwise linear regression. Leaf N content, NDVI, plant species, and WAS sampling did not show statistically significant correlation to porewater methane concentration. Rooting depth showed a slight positive correlation with porewater methane (alpha = 0.1, p = 0.08, R^2 = 0.1). Samples with only perennial plants (as opposed to annual plants) had a higher mean value of porewater methane (p = 0.1). Analyzing porewater methane provides insight as to what wetland components affect methanogenesis and methane release, which aids in assessing which plant functional traits are most responsible for driving or mitigating climate change. Results from this study and future research in this area has the potential to more accurately assess how methane cycles through wetlands to the atmosphere.

      Nohemi Rodarte
      Understanding the vertical profile of CO₂ concentration: How carbon dioxide levels change with altitude
      Nohemi Rodarte
      Carbon dioxide (CO₂) is one of the main greenhouse gasses that contribute to global warming.While the relationship between CO₂ concentrations and land cover types, such as forests and urban areas, is well documented, there is limited knowledge of how CO₂ concentrations vary with altitude at fine spatial scales. Guided by our hypothesis that CO₂ levels vary with altitude and increase with elevation, we used airborne data collected from the B200 aircraft, which flew at different altitudes (400 to 1200 feet) above the urban area of Hopewell, Virginia, between 9:40 AM and 10:40 AM. We analyzed the CO₂ concentrations recorded by the flight to obtain the median and range for each 100 feet of altitude. Our results reveal that carbon dioxide concentrations varied significantly across the range of altitudes investigated. Within the area studied, CO₂ concentrations were found to range between 410 and 470 ppm. The distribution of these concentrations along the altitude gradient shows a bimodal pattern, with notable peaks at altitudes of 700 to 800 feet and 1100 to 1200 feet. Although CO₂ levels were present at all measured altitudes, there was a noticeable drop in the mean concentration at 800 feet,which then stabilized until reaching 1,000 feet before rising again. This pattern indicates that the concentrations of this greenhouse gas are not uniformly distributed with altitude, but rather vary significantly, showing higher concentrations at certain elevations and lower concentrations at others. The CO₂ distribution fluctuates with altitude, showing higher or lower levels at specific heights rather than a smooth gradient, indicating that altitude impacts CO₂ concentrations. While we did not identify the drivers of this change, future studies could evaluate how factors such as surface emissions, atmospheric mixing, and local conditions may contribute to vertical CO₂ profiles, since the altitudes we considered in this research are within the troposphere.

      Camille Shaw
      Linking NDVI with CO₂ and CH₄ Fluxes: Insights into Vegetation and Urban Source-Sink Dynamics in the Great Dismal Swamp
      Camille Shaw
      In recent years, carbon dioxide, methane, and other greenhouse gases have gained attention because of their contribution to the rise in Earth’s global mean temperature. Methane and carbon dioxide have various sources and sinks, but an expanding array of sources have created a need to assess ongoing change in carbon balance. This study aims to quantify the relationship between Normalized Difference Vegetation Index, or NDVI, and methane and carbon dioxide fluxes. We measured carbon dioxide and methane concentrations within the boundary layer using the PICARRO instrument, focusing on the Great Dismal Swamp, a forested wetland, and surrounding areas in the Eastern Mid-Atlantic Region. Data collection occurred at various times of day and along different flight paths in 2016, 2017, and 2024, with each year representing data from a single season, either spring or fall, for temporal analysis. We calculated methane and carbon dioxide fluxes along the flight paths using airborne eddy covariance, a method for capturing accurate flux measurements while accounting for the mixing of gases in the boundary layer caused by heat. Additionally, we calculated NDVI for this area using NASA’s Landsat 8 and 9 satellite imagery. Analysis of the afternoon flight data revealed a negative linear correlation between NDVI and carbon dioxide flux. Urban areas, characterized by low NDVI, exhibit a positive carbon dioxide flux as a consequence of emissions from vehicles, while forested areas, with high NDVI, show a negative carbon dioxide flux because of photosynthesis. In contrast, methane flux shows minimal correlation with NDVI. The lack of correlation arises because forested wetlands, with high NDVI, emit substantial amounts of methane, while urban areas, despite having low NDVI, still produce significant methane emissions from landfills and industrial activities. Future research could further investigate how seasonal and diurnal variations influence the correlations between NDVI and greenhouse gases by collecting comprehensive data across all seasons within a given year and at various times of the day.

      Return to 2024 SARP Closeout Share
      Details
      Last Updated Nov 22, 2024 Related Terms
      General Explore More
      8 min read SARP East 2024 Ocean Remote Sensing Group
      Article 21 mins ago 10 min read SARP East 2024 Atmospheric Science Group
      Article 21 mins ago 10 min read SARP East 2024 Hydroecology Group
      Article 21 mins ago View the full article
  • Check out these Videos

×
×
  • Create New...