Jump to content

Recommended Posts

Posted
Scout missions

Further embracing the New Space era, ESA is to develop two new Scout satellites: NanoMagSat and Tango. NanoMagSat will measure Earth’s magnetic field to help assess space weather hazards and continue on from ESA’s current Swarm mission. Tango will measure greenhouse-gas emissions from human activity and complements the upcoming Copernicus Carbon Dioxide Monitoring mission and the Sentinel-5 mission, as well as the current Sentinel-5P mission.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronauts (left to right) Christina Koch, Victor Glover, Reid Wiseman, Canadian Space Agency Astronaut Jeremy Hansen. Credit: NASA/Josh Valcarcel The Artemis II test flight will be NASA’s first mission with crew under Artemis. Astronauts on their first flight aboard NASA’s Orion spacecraft will confirm all of the spacecraft’s systems operate as designed with crew aboard in the actual environment of deep space.  Through the Artemis campaign, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and to build the foundation for the first crewed missions to Mars – for the benefit of all.

      The unique Artemis II mission profile will build upon the uncrewed Artemis I flight test by demonstrating a broad range of SLS (Space Launch System) and Orion capabilities needed on deep space missions. This mission will prove Orion’s critical life support systems are ready to sustain our astronauts on longer duration missions ahead and allow the crew to practice operations essential to the success of Artemis III and beyond.

      Leaving Earth
      The mission will launch a crew of four astronauts from NASA’s Kennedy Space Center in Florida on a Block 1 configuration of the SLS rocket. Orion will perform multiple maneuvers to raise its orbit around Earth and eventually place the crew on a lunar free return trajectory in which Earth’s gravity will naturally pull Orion back home after flying by the Moon. The Artemis II astronauts are NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen.

      The initial launch will be similar to Artemis I as SLS lofts Orion into space, and then jettisons the boosters, service module panels, and launch abort system, before the core stage engines shut down and the core stage separates from the upper stage and the spacecraft. With crew aboard this mission, Orion and the upper stage, called the interim cryogenic propulsion stage (ICPS), will then orbit Earth twice to ensure Orion’s systems are working as expected while still close to home. The spacecraft will first reach an initial orbit, flying in the shape of an ellipse, at an altitude of about 115 by 1,400 miles. The orbit will last a little over 90 minutes and will include the first firing of the ICPS to maintain Orion’s path. After the first orbit, the ICPS will raise Orion to a high-Earth orbit. This maneuver will enable the spacecraft to build up enough speed for the eventual push toward the Moon. The second, larger orbit will take approximately 23.5 hours with Orion flying in an ellipse between about 115 and 46,000 miles above Earth. For perspective, the International Space Station flies a nearly circular Earth orbit about 250 miles above our planet. 

      After the burn to enter high-Earth orbit, Orion will separate from the upper stage. The expended stage will have one final use before it is disposed through Earth’s atmosphere—the crew will use it as a target for a proximity operations demonstration. During the demonstration, mission controllers at NASA’s Johnson Space Center in Houston will monitor Orion as the astronauts transition the spacecraft to manual mode and pilot Orion’s flight path and orientation. The crew will use Orion’s onboard cameras and the view from the spacecraft’s windows to line up with the ICPS as they approach and back away from the stage to assess Orion’s handling qualities and related hardware and software. This demonstration will provide performance data and operational experience that cannot be readily gained on the ground in preparation for critical rendezvous, proximity operations and docking, as well as undocking operations in lunar orbit beginning on Artemis III.

      Checking Critical Systems
      Following the proximity operations demonstration, the crew will turn control of Orion back to mission controllers at Johnson and spend the remainder of the orbit verifying spacecraft system performance in the space environment. They will remove the Orion Crew Survival System suit they wear for launch and spend the remainder of the in-space mission in plain clothes, until they don their suits again to prepare for reentry into Earth’s atmosphere and recovery from the ocean.

      While still close to Earth, the crew will assess the performance of the life support systems necessary to generate breathable air and remove the carbon dioxide and water vapor produced when the astronauts breathe, talk, or exercise. The long orbital period around Earth provides an opportunity to test the systems during exercise periods, where the crew’s metabolic rate is the highest, and a sleep period, where the crew’s metabolic rate is the lowest. A change between the suit mode and cabin mode in the life support system, as well as performance of the system during exercise and sleep periods, will confirm the full range of life support system capabilities and ensure readiness for the lunar flyby portion of the mission.

      Orion will also checkout the communication and navigation systems to confirm they are ready for the trip to the Moon. While still in the elliptical orbit around Earth, Orion will briefly fly beyond the range of GPS satellites and the Tracking and Data Relay Satellites of NASA’s Space Network to allow an early checkout of agency’s Deep Space Network communication and navigation capabilities. When Orion travels out to and around the Moon, mission control will depend on the Deep Space Network to communicate with the astronauts, send imagery to Earth, and command the spacecraft.

      After completing checkout procedures, Orion will perform the next propulsion move, called the translunar injection (TLI) burn. With the ICPS having done most of the work to put Orion into a high-Earth orbit, the service module will provide the last push needed to put Orion on a path toward the Moon. The TLI burn will send crew on an outbound trip of about four days and around the backside of the Moon where they will ultimately create a figure eight extending over 230,000 miles from Earth before Orion returns home.

      To the Moon and “Free” Ride Home
      On the remainder of the trip, astronauts will continue to evaluate the spacecraft’s systems, including demonstrating Earth departure and return operations, practicing emergency procedures, and testing the radiation shelter, among other activities.

      The Artemis II crew will travel approximately 4,600 miles beyond the far side of the Moon. From this vantage point, they will be able to see the Earth and the Moon from Orion’s windows, with the Moon close in the foreground and the Earth nearly a quarter-million miles in the background.

      With a return trip of about four days, the mission is expected to last about 10 days. Instead of requiring propulsion on the return, this fuel-efficient trajectory harnesses the Earth-Moon gravity field, ensuring that—after its trip around the far side of the Moon—Orion will be pulled back naturally by Earth’s gravity for the free return portion of the mission.

      Two Missions, Two Different Trajectories
      Following Artemis II, Orion and its crew will once again travel to the Moon, this time to make history when the next astronauts walk on the lunar surface. Beginning with Artemis III, missions will focus on establishing surface capabilities and building Gateway in orbit around the Moon.

      Through Artemis, NASA will explore more of the Moon than ever before and create an enduring presence in deep space.
      View the full article
    • By European Space Agency
      The first of the new generation of MetOp satellites, MetOp-SG Satellite-A, together with the instrument for the Copernicus Sentinel-5 mission, are now ready to be shipped to their launch site. But before the last leg of their terrestrial journey, they were on display to the media at Airbus’s facilities in Toulouse, France.
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The International Space Station is pictured from the SpaceX Dragon spacecraft by a Crew-8 member shortly after undocking from the Harmony module’s space-facing port as the orbital outpost was soaring 272 miles above the cloudy Patagonia region of South America.NASA NASA is seeking proposals for two new private astronaut missions to the International Space Station, targeted for 2026 and 2027, as the agency continues its commitment to expanding access to space. These private missions enable American commercial companies to further develop capabilities and support a continuous human presence in low Earth orbit.
      “We are in an incredible time for human spaceflight, with more opportunities to access space and grow a thriving commercial economy in low Earth orbit,” said Dana Weigel, program manager for the International Space Station at NASA’s Johnson Space Center in Houston. “NASA remains committed to supporting this expansion by leveraging our decades of expertise to help industry gain the experience needed to train and manage crews, conduct research, and develop future destinations. Private astronaut missions are a key part of this effort, providing companies with hands-on opportunities to refine their capabilities and build partnerships that will shape the future of low Earth orbit.”
      The new flight opportunities will be the fifth and sixth private astronaut missions to the orbiting laboratory coordinated by NASA. The first three missions were accomplished by Axiom Space in April 2022, May 2023, and January 2024, with a fourth scheduled for no earlier than May 2025.
      Each of the new missions may be docked to the space station for up to 14 days. Specific dates depend on spacecraft traffic at the space station and in-orbit activity planning and constraints. Private astronaut missions must be brokered by a U.S. entity and use U.S. transportation spacecraft that meet NASA’s International Space Station visiting vehicle requirements, policies, and procedures. For additional details, refer to Focus Area 4A of NASA Research Announcement (NRA) NNJ13ZBG001N.
      Proposals are due by 5 p.m. EDT on Friday, May 30, 2025.
      For solicitation information, visit:
      https://www.nasa.gov/johnson/jsc-procurement/pam
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon, where the agency is preparing for future human exploration of Mars.
      Learn more about the International Space Station at: 
      https://www.nasa.gov/station
      Keep Exploring Discover More Topics
      Low Earth Orbit Economy
      Commercial Space
      Commercial Crew Program
      Humans In Space
      View the full article
    • By NASA
      4 Min Read Ways Community College Students Can Get Involved With NASA
      For many students, the path to a NASA career begins at a community college. These local, two-year institutions offer valuable flexibility and options to those aspiring to be part of the nation’s next generation STEM workforce. NASA offers several opportunities for community college students to expand their horizons, make connections with agency experts, add valuable NASA experiences to their resumes, and home in on the types of STEM roles that best fit their skills and interests. Below are some of the exciting NASA activities and experiences available to community college students.
      NASA Community College Aerospace Scholars
      Get an introduction to NASA, its missions, and its workplace culture through NASA Community College Aerospace Scholars (NCAS). This three-part series enables students to advance their knowledge of the agency, grow their STEM capabilities, interact with NASA experts, and learn about the different pathways to a NASA career.
      Mission 1: Discover is a five-week, online orientation course that serves as an introduction to NASA.
      Mission 2: Explore is a gamified mission to the Moon or Mars in which students develop a design solution while learning about the agency as a workplace.
      Mission 3: Innovate is a three-week hybrid capstone project consisting of two weeks of online preparation and one week participating in a hands-on engineering design challenge at a NASA center.
      NCAS begins with Mission 1 and students must complete each mission to be eligible for the next.
      Members of a college student team monitor the performance of their robot during a NASA Community College Aerospace Scholars (NCAS) Mission 3: Innovate robotics competition.
      NASA Student Challenges
      NASA’s student challenges and competitions invite students across a range of ages and education levels to innovate and build solutions to many of the agency’s spaceflight and aviation needs – and community college students across the U.S. are eligible for many of these opportunities. In NASA’s Student Launch challenge, each team designs, builds, and tests a high-powered rocket carrying a scientific or engineering payload. In the MUREP Innovation Tech Transfer Idea Competition (MITTIC)Teams from U.S.-designated Minority-Serving Institutions, including community colleges, have the opportunity to brainstorm and pitch new commercial products based on NASA technology.
      NASA’s student challenges and competitions are active at varying times throughout the year – new challenges are sometimes added, and existing opportunities evolve – so we recommend students visit the NASA STEM Opportunities and Activities page and research specific challenges to enable planning and preparation for future participation.
      NASA’s Student Launch tasks student teams from across the U.S. to design, build, test, and launch a high-powered rocket carrying a scientific or engineering payload. The annual challenge culminates with a final launch in Huntsville, Alabama, home of NASA’s Marshall Space Flight Center.
      NASA NASA RockOn! and RockSat Programs
      Build an experiment and launch it aboard a sounding rocket! Through the hands-on RockOn! and RockSat programs, students gain experience designing and building an experiment to fly as a payload aboard a sounding rocket launched from NASA’s Wallops Flight Facility in Wallops Island, Virginia. In RockOn!, small teams get an introduction to creating a sounding rocket experiment, while RockSat-C and RockSat-X are more advanced experiment flight opportunities.
      Students watch as their experiments launch aboard a sounding rocket for the RockSat-X program from NASA’s Wallops Flight Facility Aug. 11, 2022, at 6:09 p.m. EDT. The Terrier-Improved Malemute rocket carried the experiments to an altitude of 99 miles before descending via a parachute and landing in the Atlantic Ocean.
      NASA Wallops/Terry Zaperach NASA Internships
      Be a part of the NASA team! With a NASA internship, students work side-by-side with agency experts, gaining authentic workforce experience while contributing to projects that align with NASA’s goals. Internships are available in a wide variety of disciplines in STEM and beyond, including communications, finance, and more. Each student has a NASA mentor to help guide and coach them through their internship.
      NASA interns gain hands-on experience while contributing to agency projects under the guidance of a NASA mentor.
      NASA National Space Grant College and Fellowship Program
      The National Space Grant College and Fellowship Project, better known as Space Grant, is a national network of colleges and universities working to expand opportunities for students and the public to participate in NASA’s aeronautics and space projects. Each state has its own Space Grant Consortium that may provide STEM education and training programs; funding for scholarships and/or internships; and opportunities to take part in research projects, public outreach, state-level student challenges, and more. Programs, opportunities, and offerings vary by state; students should visit their state’s Space Grant Consortium website to find out about opportunities available near them.
      Students from the Erie Huron Ottawa Vocational Education Career Center are pictured at the 3KVA Mobile Photovoltaic Power Plant at NASA’s Glenn Research Center.
      NASA Additional Resources
      NASA Community College Network NASA Earth Science Division Early Career Research NASA STEM Gateway Careers at NASA
      View the full article
    • By Space Force
      The U.S. Space Force and ULA launch team successfully completed the certification process of the Vulcan rocket. The first NSSL mission on Vulcan is expected this summer.

      View the full article
  • Check out these Videos

×
×
  • Create New...