Jump to content

Annual Highlights of Results 2023: Introduction and Analyses


Recommended Posts

  • Publishers
Posted

After 25 years of international collaboration operating the largest and most technologically advanced laboratory in low Earth orbit, the current decade of research results has seen thousands of researchers around the world completing their investigations, analyzing their data, and publishing their findings.

Through close examination of station client feedback obtained since 2002, station program managers, administration personnel, and technical staff have improved their processes and software tools to enhance communication with research teams for better in-flight data collection and sample return. These refinements affect experiment results and the conclusions researchers draw. The enhanced planning and coordination of investigation launch, stowage, crew time allocation, accessibility to station’s research capabilities (i.e., facilities), and data delivery are critical to the effective operation of scientific projects for accurate results to be shared with the scientific community, sponsors, legislators, and the public.

Over 3,700 investigations have operated since Expedition 1, with more than 250 active research facilities, the participation of more than 100 countries, the work of more than 5,000 researchers, and over 4,000 publications. The growth in research (Figure 1) and international collaboration (Figure 2) has prompted the publication of over 560 research articles in top-tier scientific journals with about 75 percent of those groundbreaking studies occurring since 2018 (Figure 3).

Figure 1 . Bibliometric mapping of station research growth over time. Count of the keyword microgravity co-occurring at least five times with other research keywords at different time periods. A) 1999-2005: n=11; B) 2006-2011: n=49; C) 2012-2017 n=69; D) 2018-Sep. 2023: n=115. The node size represents the number of publications containing the research keywords (larger nodes = more publications), the distance between nodes represents relatedness between research keywords, and the colors represent different research areas.

figure-1a-wide.png?w=1280

Figure 1-A) 1999-2005: n=11

figure-1b-wide.png?w=1280

Figure 1-B) 2006-2011: n=49

figure-1c-wide.png?w=1280

Figure 1-C) 2012-2017 n=69

figure-1d.png?w=1698

Figure 1-D) 2018-Sep. 2023: n=115

Bibliometric analyses conducted through VOSviewer1 measure the impact of space station research by quantifying and visualizing networks of journals, citations, subject areas, and collaboration between authors, countries, or organizations. Using bibliometrics, a broad range of challenges in research management and research evaluation can be addressed. The network visualizations, stacked charts, and line graphs provided in this introduction demonstrate the growth and influence of station research.

Figure 2. Bibliometric mapping of station collaboration growth over time. Measurement of co-authorship strength (i.e., total line thicknesses) between the United States and other countries in the network at different time periods. A) 1999-2005: total link strength = 19 B) 2006-2011: total link strength = 74; C) 2012-2017: total link strength = 150; D) 2018-Sep. 2023: total link strength = 442. Nodes represent the number of publications for each country. Distance and color are not relevant indicators in this chart.

figure-2a.png?w=2048

Figure 2-A) 1999-2005: total link strength = 19

figure-2b.png?w=1317

Figure 2-B) 2006-2011: total link strength = 74

figure-2c.png?w=1335

Figure 2-C) 2012-2017: total link strength = 150

figure-2d.png?w=1281

Figure 2-D) 2018-Sep. 2023

top-100-journals.gif?w=1920

Figure 3. Count of publications reported in journals ranked in the top 100 according to global standards of Clarivate. A total of 567 top-tier publications through the end of FY-23 are shown by year and research category.

In this year’s edition of the Annual Highlights of Results, we report findings from a wide range of topics in biology and biotechnology, physics, human research, Earth and space science, and technology development – including investigations about plant root orientation, tissue damage and repair, bubbles, lightning, fire dynamics, neutron stars, cosmic ray nuclei, imaging technology improvements, brain and vascular health, solar panel materials, grain flow, as well as satellite and robot control.

The findings highlighted here are only a small sample representative of the research conducted by all the participating space agencies – ASI (Agenzia Spaziale Italiana), CSA (Canadian Space Agency), ESA (European Space Agency), JAXA (Japanese Aerospace Exploration Agency), Roscosmos, and NASA – on station in the past 12 months.

Many more studies in fiscal year (FY)-23 revealed remarkable results, such as finding reduced fat accumulation in the bone marrow (MARROW), identifying gene mutations that preserve muscle (Molecular Muscle), improving optical beams…detecting bacterial antibiotic resistance during spaceflight (Plazmida), observing abnormal cell division of human neural stem cells (STaARS Bioscience-4), among others. A full list of all the publications collected in FY-23 can be found at the end of this report.

A publicly accessible database of space station investigations and publications can be found in the Space Station Research Explorer (SSRE) website, and all editions of the Annual Highlights of Results from the International Space Station can be found through the Past Annual Highlights of Results from the Space Station Research Results Library.

Between Oct. 1, 2022, and Sept. 30, 2023, we identified a total of 330 articles associated with station research. Of these 330 articles, 268 appeared in peer-reviewed journals, 59 in conference proceedings, and 3 in gray literature such as books, magazines, technical reports, or patents. Articles are also categorized based on how authors obtained their results. There were 204 publications that reported direct implementation of the science aboard station (i.e., Results), 37 that reported development of the payload prior to operation on station (i.e., Flight Preparation), and 89 that emerged as follow-ups to station science (i.e., Derived). Because derived articles are new scientific studies generated from shared data, derived science is an additional return on the investment trusted to station science. For FY-23, this return on investment was 27 percent. Full definitions of these publication types (i.e, Results, Flight Preparation, and Derived) categories can be found on page 10 of this report.

figure-4.2.png?w=1280

Figure 4. Count of publications by agency and station research category. A total of 330 articles were collected in FY-23.

Figure 4 shows a stacked chart with the count of articles collected in FY-23 broken out by space agency and research category. In summary, we found three articles for CSA, 43 articles for ESA, 58 articles for JAXA, 10 articles for Roscosmos, and 216 articles for NASA.  Of the 330 articles collected in FY-23, 66 were articles published prior to Oct. 1, 2022. 

Measuring Space Station Impacts

The significant impact of sustained international multidisciplinary research in microgravity can be observed through the findings published in world-class scientific journals that adhere to a rigorous scientific peer-review process.

With the assistance of Clarivate, a global database that collects publication and journal information for annual journal ranking and metrics, we identified the top findings produced by station researchers. One parameter, the journal’s Eigenfactor Score2, ranks each journal based on readership and influence, including the different citation standards of each discipline. 

From Oct 1, 2022, to Sept 30, 2023, 78 articles appeared in top-tier journals. Of those 78 articles, 26 were reported in top 20 journals (see Table 1).  

table-1.2.png?w=1280

Table 1. A total of 78 articles were published in top-tier journals in FY-23: 21 articles in top 20 (green) and 57 articles in top 100 (yellow). Data ranked according to Clarivate Journal Citations Reports (JCR) Eigenfactor score.

In addition to the research diversity and top-tier results obtained from station, a comparison of station science to global and US standards of category-normalized citation impact (i.e., adjusted impact of a publication based on its research area) shows greater influence of station science since 2010 compared to other research endeavors taking place domestically or internationally. The authority of station research was particularly prominent in 2019, and it continues to hold its place in the scientific community to date. Figure 5 illustrates this important comparison.

citation-impact-2023.gif?w=1920

Figure 5. Citation impact (normalized by research area) of station science publications compared to national and global standards.

The high impact of space station is in great part attributed to the researchers who conduct transformative science in low Earth orbit. As shown in Table 2, four studies published in FY-23 have already received much acclaim from others in their field.

table-2.2-rev.png?w=1280

Table 2. List of articles published in FY-23 that have been widely recognized in a short period of time. *NICER reported two additional FY-23 publications with over 10 citations.

Advancements in technology and research on station have inspired students all over the world to pursue STEM careers, encouraged researchers to explore bold questions, and incentivized economies through the initiation of businesses in the space industry. While some of the most decisive steps toward space commercialization are recent, researchers from small and large companies, academic institutions, and government agencies have been conducting experiments in space since 2005 through the International Space Station National Lab. Today, the hard work is paying off. In FY-23, we collected 39 publications from investigations sponsored by National Lab with fascinating results in droplet behavior for the improvement of condensing systems (Drop Vibration), the reliable use of a genome examination and editing tool (Ax-1 CRSPR), the identification of specific gut bacteria involved in bone loss (Rodent Research-5), the use of neural networks for improved image analysis (Spaceborne Computer-2), and much more. In addition to the accomplishments of the International Partners and NASA on space station, National Lab’s alternative route to send investigations to space have demonstrated that new paths can be explored to expand research in microgravity for the advancement of science and benefit of humanity. 

Evolution of Space Station Results

The archive of space station investigations went online in 2004.  Since that time, changes to methods for tracking investigations and publications have been implemented, including increased differentiation between research disciplines and a re-characterization of publication fields. Currently, the following publication types are included in the Program Science Toolbox:  

  • Flight Preparation Results – publications about the development work performed for an investigation, facility, or project prior to operation on space station.  
  • Station Results – publications that provide information about the performance and results of an investigation, facility, or project as a direct implementation on station or on a vehicle to space station. 
  • Derived Results – publications that use data from an investigation that operated on station, but the authors of the article are not members of the original investigation team. Derived Results articles have emerged as a direct outcome of the open-source data initiative, which gives access to raw data for new researchers to analyze and publish innovative results, expanding global knowledge and scientific benefits.  
  • Patents – applications filed based on the performance and results of an investigation, facility, or project on station, or on a vehicle to space station. 
  • Related – publications that lead to the development of an investigation, facility, or project. 

Linking Space Station Benefits 

Space station research results lead to benefits for human exploration of space, benefits to humanity, and the advancement of scientific discovery. This year’s Annual Highlights of Results from the International Space Station includes descriptions of just a few of the results that were published from across the space station partnership during the past year.  

  • Space station investigation results have yielded updated insights into how to live and work more effectively in space by addressing such topics as understanding radiation effects on crew health, combating bone and muscle loss, improving designs of systems that handle fluids in microgravity, and determining how to maintain environmental control efficiently.
  • Results from the space station provide new contributions to the body of scientific knowledge in the physical sciences, life sciences, and Earth and space sciences to advance scientific discoveries in multi-disciplinary ways.
  • Space station science results have Earth-based applications, including understanding our climate, contributing to the treatment of disease, improving existing materials, and inspiring the future generation of scientists, clinicians, technologists, engineers, mathematicians, artists, and explorers.

Citations:

1Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010; 84(2):523-538. DOI: 10.1007/s11192-009-0146-3.

2West JD, Bergstrom TC, Bergstrom CT. The Eigenfactor Metrics™: A Network approach to assessing scholarly journals. College and Research Libraries. 2010;71(3). DOI: 10.5860/0710236.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      First Results from the Eclipse Soundscapes Project: Webinar on May 7
      How do the sudden darkness and temperature changes of a solar eclipse impact life on Earth? The Eclipse Soundscapes project invited you to document changes in the environment during the week of the April 8, 2024 total solar eclipse, using your own senses or an audiomoth sound recorder. 
      Thanks to your participation, the Eclipse Soundscapes team collected 25 terabytes of audio data during the 2023 and 2024 solar eclipses. “It was really empowering for me to participate in a scientific research study with my son beside me so he could see how scientific data can be (collected),” said one Eclipse Soundscapes volunteer.
      More than 500 volunteers  collected data using AudioMoth recorders during the April 8, 2024 eclipse for the Eclipse Soundscapes project. Credit: Eclipse Soundscapes Since the eclipse, the Eclipse Soundscapes team has been turning the submitted data into a new, carefully validated data set. They have been assessing recording quality, verifying timestamps, and logging other kinds of information that support the submitted data. With the newly validated data, they are now using machine learning to study wildlife behavior and compare regional differences. They do some of this work using spectrographic analysis—spreading out the sound into different frequency ranges like a prism spreads light into a rainbow. The team is also working to make the validated data freely available to the public on the Zenodo website—a free, open-source research data repository developed by CERN (the European Organization for Nuclear Research) that allows researchers to share and preserve their work, regardless of discipline or format. 
      The team’s first inspection of the data suggests that some species may mimic dusk-like behavior during totality. Want to hear more early results? You can join the team’s live webinar on May 7, 2025, at 2:00 p.m. EST with Dr. Brent Pease. Register now at EclipseSoundscapes.org. You can also explore this interactive map of data analysis sites, with details about each site, including partner organizations.

      Register for the May 7 Preliminary Results WEBINAR


      Read the Preliminary Results Blog

      Share








      Details
      Last Updated Apr 22, 2025 Related Terms
      Citizen Science Heliophysics Explore More
      5 min read Can Solar Wind Make Water on Moon? NASA Experiment Shows Maybe 


      Article


      1 week ago
      7 min read Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights 


      Article


      2 weeks ago
      1 min read Join our Virtual Do NASA Science LIVE Event on April 10!


      Article


      3 weeks ago
      View the full article
    • By NASA
      7 min read
      Eclipses, Science, NASA Firsts: Heliophysics Big Year Highlights 
      One year ago today, a total solar eclipse swept across the United States. The event was a cornerstone moment in the Heliophysics Big Year, a global celebration of the Sun’s influence on Earth and the entire solar system. From October 2023 to December 2024 — a period encompassing two solar eclipses across the U.S., two new NASA heliophysics missions, and one spacecraft’s history-making solar flyby — NASA celebrated the Sun’s widespread influence on our lives.  
      An infographic showing key numbers summarizing the activities and events of the Heliophysics Big Year, which spanned from Oct. 14, 2023 – Dec. 24, 2024.  NASA/Miles Hatfield/Kristen Perrin Annular Solar Eclipse
      An annular (or “ring of fire”) solar eclipse occurred Oct. 14, 2023, and kicked off the Helio Big Year with a bang. Millions of people across North America witnessed the Moon crossing in front of the Sun, creating this brilliant celestial event. NASA’s live broadcast had more than 11 million views across different platforms.  
      On Oct. 14, 2023, an annular solar eclipse crossed North, Central, and South America. Visible in parts of the United States, Mexico, and many countries in South and Central America, millions of people in the Western Hemisphere were able to experience this “ring of fire” eclipse. NASA’s official broadcast and outreach teams were located in Kerrville, TX, and Albuquerque, NM, to capture the event and celebrate with the communities in the path of annularity. 
      Credit: NASA/Ryan Fitzgibbons  Before the eclipse, NASA introduced the 2023 Eclipse Explorer, an interactive map to explore eclipse details for any location in the United States. NASA shared tips on eclipse safety, including through a video with NSYNC’s Lance Bass and even with an augmented reality filter. 
      Scientists also studied conditions during the annular eclipse with sounding rockets, balloons, and amateur radio.  
      Total Solar Eclipse 
      On April 8, 2024, millions of people across North America experienced a total solar eclipse that darkened parts of 15 U.S. states in the path of totality.  
      Ahead of the event, NASA hosted a widespread safety campaign, handed out over 2 million solar viewing glasses, and produced an interactive map to help viewers plan their viewing experience. On eclipse day, NASA also hosted a live broadcast from locations across the country, drawing over 38 million views. 
      Researchers studied the eclipse and its effects on Earth using a variety of techniques, including international radar networks, scientific rockets, weather balloons, and even high-altitude NASA WB-57 jets. Several NASA-funded citizen science projects also conducted experiments. These projects included more than 49,000 volunteers who contributed an astounding 53 million observations.  
      This infographic shares metrics from citizen science projects that occurred during the total solar eclipse on April 8, 2024. NASA/Kristen Perrin “We have opened a window for all Americans to discover our connection to the Sun and ignited enthusiasm for engaging with groundbreaking NASA science, whether it’s through spacecraft, rockets, balloons, or planes,” said Kelly Korreck, a Heliophysics program scientist at NASA Headquarters in Washington. “Sharing the excitement of NASA heliophysics with our fellow citizens has truly been amazing.” 
      Science Across the Solar System 
      NASA’s heliophysics missions gather data on the Sun and its effects across the solar system.  
      The Atmospheric Waves Experiment (AWE) mission launched from NASA’s Kennedy Space Center in Florida Nov. 9, 2023, and was installed on the International Space Station nine days later. This mission studies atmospheric gravity waves, how they form and travel through Earth’s atmosphere, and their role in space weather. 
      Orbital footage from the International Space Station shows NASA’s Atmospheric Waves Experiment (AWE) as it was extracted from SpaceX’s Dragon cargo spacecraft. NASA/International Space Station On Nov. 4, 2024, the Coronal Diagnostic Experiment (CODEX) mission also launched to the space station, where it studies the solar wind, with a focus on what heats it and propels it through space.  
      Pictured is the CODEX instrument inside the integration and testing facility at NASA’s Goddard Space Flight Center. NASA/CODEX team The Aeronomy of Ice in the Mesosphere (AIM) mission ended after 16 years studying Earth’s highest clouds, called polar mesospheric clouds.  
      An artist’s concept shows the Aeronomy of Ice in the Mesosphere (AIM) spacecraft orbiting Earth.   NASA’s Goddard Space Flight/Center Conceptual Image Lab  NASA’s Ionospheric Connection Explorer (ICON) also ended after three successful years studying the outermost layer of Earth’s atmosphere, called the ionosphere. 
      NASA’s ICON, shown in this artist’s concept, studied the frontiers of space, the dynamic zone high in our atmosphere where terrestrial weather from below meets space weather above.  NASA’s Goddard Space Flight Center/Conceptual Image Lab  Voyager has been operating for more than 47 years, continuing to study the heliosphere and interstellar space. In October 2024, the Voyager 1 probe stopped communicating. The mission team worked tirelessly to troubleshoot and ultimately reestablish communications, keeping the mission alive to continue its research.  
      In this artist’s conception, NASA’s Voyager 1 spacecraft has a bird’s-eye view of the solar system. The circles represent the orbits of the major outer planets: Jupiter, Saturn, Uranus, and Neptune. Launched in 1977, Voyager 1 visited the planets Jupiter and Saturn. The spacecraft is now 13 billion miles from Earth, making it the farthest and fastest-moving human-made object ever built. In fact, Voyager 1 is now zooming through interstellar space, the region between the stars that is filled with gas, dust, and material recycled from dying stars. NASA’s Hubble Space Telescope is observing the material along Voyager’s path through space. NASA/STSci While the goal of the NASA heliophysics fleet is to study the Sun and its influence, these missions often make surprising discoveries that they weren’t originally designed to. From finding 5,000 comets to studying the surface of Venus, NASA highlighted and celebrated these bonus science connections during the Helio Big Year. 
      Solar Maximum 
      Similar to Earth, the Sun has its own seasons of activity, with a solar minimum and solar maximum during a cycle that lasts about 11 years. The Helio Big Year happened to coincide with the Sun’s active period, with NASA and NOAA announcing in October 2024 that the Sun had reached solar maximum, the highest period of activity. Some of the largest solar storms on current record occurred in 2024, and the largest sunspot in nearly a decade was spotted in the spring of 2024, followed by a colossal X9.0 solar flare Oct. 3, 2024.  
      Sunspots are cooler, darker areas on the solar surface where the Sun’s magnetic field gets especially intense, often leading to explosive solar eruptions. This sunspot group was so big that nearly 14 Earths could fit inside it! The eruptions from this region resulted in the historic May 2024 geomagnetic storms, when the aurora borealis, or northern lights, were seen as far south as the Florida Keys.
      Credit: NASA/Beth Anthony Viewers across the U.S. spotted auroras in their communities as a result of these storms, proving that you can capture amazing aurora photography without advanced equipment. 
      The Big Finale: Parker’s Close Approach to the Sun 
      NASA’s Parker Solar Probe holds the title as the closest human-made object to the Sun. On Dec. 24, 2024, Parker made history by traveling just 3.8 million miles from the Sun’s surface at a whopping 430,000 miles per hour.  
      “Flying this close to the Sun is a historic moment in humanity’s first mission to a star,” said Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters. 
      Controllers have confirmed NASA’s mission to “touch” the Sun survived its record-breaking closest approach to the solar surface on Dec. 24, 2024. 
      Credit: NASA/Joy Ng Parker Solar Probe’s close approach capped off a momentous Heliophysics Big Year that allowed NASA scientists to gather unprecedented data and invited everyone to celebrate how the Sun impacts us all. In the growing field of heliophysics, the Helio Big Year reminded us all how the Sun touches everything and how important it is to continue studying our star’s incredible influence.  
      A Big Year Ahead 
      Though the Helio Big Year is over, heliophysics is only picking up its pace in 2025. We remain in the solar maximum phase, so heightened solar activity will continue into the near future. In addition, several new missions are expected to join the heliophysics fleet by year’s end. 
      The PUNCH mission, a set of four Sun-watching satellites imaging solar eruptions in three dimensions, and EZIE, a trio of Earth-orbiting satellites tracing the electrical currents powering Earth’s auroras, have already launched. The LEXI instrument, an X-ray telescope studying Earth’s magnetosphere from the Moon, also launched through NASA’s CLPS (Commercial Lunar Payload Services) initiative. 
      Future missions slated for launch include TRACERS, which will investigate the unusual magnetic environment near Earth’s poles, and ESCAPADE, venturing to Mars to measure the planet’s unique magnetic environment. 
      The last two missions will share a ride to space. The Carruthers Geocorona Observatory will look back at home, studying ultraviolet light emitted by the outermost boundaries of our planet’s atmosphere. The IMAP mission will instead look to the outermost edges of our heliosphere, mapping the boundaries where the domain of our Sun transitions into interstellar space. 
      By Desiree Apodaca
      NASA’s Goddard Space Flight Center
      Share








      Details
      Last Updated Apr 08, 2025 Editor Miles Hatfield Related Terms
      Heliophysics Goddard Space Flight Center Heliophysics Division NASA Centers & Facilities NASA Directorates Science & Research Science Mission Directorate The Solar System The Sun Explore More
      5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves


      Article


      21 hours ago
      2 min read Hubble Studies a Nearby Galaxy’s Star Formation


      Article


      4 days ago
      3 min read Hubble Spots Stellar Sculptors in Nearby Galaxy


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Students from Universidad Católica Boliviana “San Pablo” compete during NASA’s 2024 Human Exploration Rover Challenge. The 2025 competition takes place Friday and Saturday, April 11-12, 2025, at the U.S. Space & Rocket Center’s Aviation Challenge course in Huntsville, Alabama. NASA NASA’s annual Human Exploration Rover Challenge returns Friday, April 11, and Saturday, April 12, with student teams competing at the U.S. Space & Rocket Center’s Aviation Challenge course near the agency’s Marshall Space Flight Center in Huntsville, Alabama.
      Media are invited to watch as hundreds of students from around the world attempt to navigate a complex obstacle course by piloting a vehicle of their own design and production. Media interested in attending or setting up interviews should contact Taylor Goodwin in the Marshall Office of Communications at 938-210-2891 no later than 2 p.m. Thursday, April 10. 
      In addition to the traditional human-powered rover division, this year’s competition expands the challenge to include a remote-control division. The 2025 HERC Handbook includes guidelines for the new remote-control division and updates for the human-powered division.
      Participating teams represent 35 colleges and universities, 38 high schools, and two middle schools from 20 states, Puerto Rico, and 16 other nations.
      The event is free and open to the public, with rover excursions from 7:30 a.m. to 3 p.m. CDT each day, or until the last rover completes the obstacle course. 
      Following the competition, NASA will host an in-person awards ceremony Saturday, April 12, at 5:30 p.m. inside the Space Camp Operations Center at the U.S. Space & Rocket Center. NASA and industry sponsors will present multiple awards highlighting team successes throughout the past eight-months-long engineering design project, including awards for best rover design, best pit crew, best social media presence, and many other accomplishments. 

      About the Challenge 
      Recognized as NASA’s leading international student challenge, the Human Exploration Rover Challenge aims to put competitors in the mindset of NASA’s Artemis campaign.  Teams pitch an engineering design for a lunar rover which simulates astronauts exploring the lunar surface while overcoming various obstacles. Eligible teams compete to be among the top three finishers in their divisions, and to win multiple awards, including best vehicle design, best rookie team, and more.  
      The annual challenge draws hundreds of students from around the world and reflects the goals of NASA’s Artemis campaign, which will establish the first long-term presence on the Moon and pave the way for eventual missions to Mars. 
      The event was launched in 1994 as the NASA Great Moonbuggy Race – a collegiate competition to commemorate the 25th anniversary of the Apollo 11 lunar landing. It expanded in 1996 to include high school teams, evolving again in 2014 into the NASA Human Exploration Rover Challenge. Since its inception, more than 15,000 students have participated – with many former students now working in the aerospace industry, including with NASA.   
      The Human Exploration Rover Challenge is managed by NASA Marshall’s Southeast Regional Office of STEM Engagement and is one of eight Artemis Student Challenges. NASA’s Office of STEM Engagement uses challenges and competitions to further the agency’s goal of encouraging students to pursue degrees and careers in science, technology, engineering, and mathematics.  
      To learn more about the challenge, visit: 
      https://www.nasa.gov/roverchallenge/
      Taylor Goodwin 
      256-544-0034
      Marshall Space Flight Center, Huntsville, Alabama
      taylor.goodwin@nasa.gov
      Facebook logo @RoverChallenge@NASAMarshallCenter @RoverChallenge@NASA_Marshall Instagram logo @NASA_Marshall Share
      Details
      Last Updated Apr 04, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      General Explore More
      3 min read Caroline Cawthon: Supporting America’s Future in Low Earth Orbit 
      Article 17 hours ago 6 min read Back to Earth, Forward to the Future: NASA’s SpaceX Crew-9 Returns  
      Article 23 hours ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
      Article 4 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      128 Air Force Reserve Professionals who will transfer into the Space Force in a full-time capacity.
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This ultra high-definition video featuring an orange tabby cat named Taters, was streamed from nearly 19 million miles away via laser by NASA’s Deep Space Optical Communications (DSOC) experiment, marking a historic milestone for space communications.Jet Propulsion Laboratory Since it began in 1958, NASA has been charged by law with spreading the word about its work to the widest extent practicable. From typewritten press releases to analog photos and film, the agency has effectively moved into social media and other online communications. NASA’s broad reach across digital platforms has been recognized by the International Academy of Digital Arts and Sciences (IADAS), with 10 nominations across multiple categories for the academy’s 29th annual Webby Awards.
      The 2025 Webby nominations demonstrate NASA's dedication to sharing the wonders of space through digital platforms. We believe in the power of digital storytelling to inspire the next generation of explorers.
      Michelle R. Jones
      Acting Associate Administrator for Communications
      Public Voting Opportunities
      Voting for the Webby People’s Voice Awards—chosen by the public—is open now through Thursday, April 17. Voting links for each category are listed below.
      29th Annual Webby Award Nominees
      AI, Immersive & Games
      NASA’s Snap It! An Eclipse Photo Adventure
      NASA
      Kids and Family
      Social
      NASA Instagram
      NASA
      Education and Science
      Matt Dominick’s X Account: A Visual Journey from Space
      NASA, Leidos
      Best Photography & Design
      NASA’s 2024 Total Solar Eclipse Campaign
      NASA
      Events and Live streams
      NASA’s Webb Telescope: Unfolding a Universe of Wonders
      NASA Goddard
      Education and Science
      Video & Film
      2024 Total Solar Eclipse: Through the Eyes of NASA
      NASA, Leidos
      Events and Live
      NASA Streams Historic Cat Video From Deep Space
      NASA’s Jet Propulsion Laboratory
      Events and Live streams
      Websites & Mobile Sites
      NASA Website
      NASA
      Government & Associations
      NASA+ Streaming Service
      NASA
      Television, Film & Streaming
      NASA Newsletter
      NASA
      Business, News and Technology
      About the Webby Awards
      Established in 1996 during the web’s infancy, The Webbys is presented by the IADAS—a 3000+ member judging body. The Academy is comprised of Executive Members—leading Internet experts, business figures, luminaries, visionaries, and creative celebrities—and associate members who are former Webby winners, nominees and other internet professionals.
      The Webby Awards presents two honors in every category—the Webby Award and the Webby People’s Voice Award. Members of the International Academy of Digital Arts and Sciences (IADAS) select the nominees for both awards in each category, as well as the winners of the Webby Awards. In the spirit of the open web, the Webby People’s Voice is chosen by the voting public, and garners millions of votes from all over the world.

      View the full article
  • Check out these Videos

×
×
  • Create New...