Jump to content

Annual Highlights of Results 2023: Introduction and Analyses


Recommended Posts

  • Publishers
Posted

After 25 years of international collaboration operating the largest and most technologically advanced laboratory in low Earth orbit, the current decade of research results has seen thousands of researchers around the world completing their investigations, analyzing their data, and publishing their findings.

Through close examination of station client feedback obtained since 2002, station program managers, administration personnel, and technical staff have improved their processes and software tools to enhance communication with research teams for better in-flight data collection and sample return. These refinements affect experiment results and the conclusions researchers draw. The enhanced planning and coordination of investigation launch, stowage, crew time allocation, accessibility to station’s research capabilities (i.e., facilities), and data delivery are critical to the effective operation of scientific projects for accurate results to be shared with the scientific community, sponsors, legislators, and the public.

Over 3,700 investigations have operated since Expedition 1, with more than 250 active research facilities, the participation of more than 100 countries, the work of more than 5,000 researchers, and over 4,000 publications. The growth in research (Figure 1) and international collaboration (Figure 2) has prompted the publication of over 560 research articles in top-tier scientific journals with about 75 percent of those groundbreaking studies occurring since 2018 (Figure 3).

Figure 1 . Bibliometric mapping of station research growth over time. Count of the keyword microgravity co-occurring at least five times with other research keywords at different time periods. A) 1999-2005: n=11; B) 2006-2011: n=49; C) 2012-2017 n=69; D) 2018-Sep. 2023: n=115. The node size represents the number of publications containing the research keywords (larger nodes = more publications), the distance between nodes represents relatedness between research keywords, and the colors represent different research areas.

figure-1a-wide.png?w=1280

Figure 1-A) 1999-2005: n=11

figure-1b-wide.png?w=1280

Figure 1-B) 2006-2011: n=49

figure-1c-wide.png?w=1280

Figure 1-C) 2012-2017 n=69

figure-1d.png?w=1698

Figure 1-D) 2018-Sep. 2023: n=115

Bibliometric analyses conducted through VOSviewer1 measure the impact of space station research by quantifying and visualizing networks of journals, citations, subject areas, and collaboration between authors, countries, or organizations. Using bibliometrics, a broad range of challenges in research management and research evaluation can be addressed. The network visualizations, stacked charts, and line graphs provided in this introduction demonstrate the growth and influence of station research.

Figure 2. Bibliometric mapping of station collaboration growth over time. Measurement of co-authorship strength (i.e., total line thicknesses) between the United States and other countries in the network at different time periods. A) 1999-2005: total link strength = 19 B) 2006-2011: total link strength = 74; C) 2012-2017: total link strength = 150; D) 2018-Sep. 2023: total link strength = 442. Nodes represent the number of publications for each country. Distance and color are not relevant indicators in this chart.

figure-2a.png?w=2048

Figure 2-A) 1999-2005: total link strength = 19

figure-2b.png?w=1317

Figure 2-B) 2006-2011: total link strength = 74

figure-2c.png?w=1335

Figure 2-C) 2012-2017: total link strength = 150

figure-2d.png?w=1281

Figure 2-D) 2018-Sep. 2023

top-100-journals.gif?w=1920

Figure 3. Count of publications reported in journals ranked in the top 100 according to global standards of Clarivate. A total of 567 top-tier publications through the end of FY-23 are shown by year and research category.

In this year’s edition of the Annual Highlights of Results, we report findings from a wide range of topics in biology and biotechnology, physics, human research, Earth and space science, and technology development – including investigations about plant root orientation, tissue damage and repair, bubbles, lightning, fire dynamics, neutron stars, cosmic ray nuclei, imaging technology improvements, brain and vascular health, solar panel materials, grain flow, as well as satellite and robot control.

The findings highlighted here are only a small sample representative of the research conducted by all the participating space agencies – ASI (Agenzia Spaziale Italiana), CSA (Canadian Space Agency), ESA (European Space Agency), JAXA (Japanese Aerospace Exploration Agency), Roscosmos, and NASA – on station in the past 12 months.

Many more studies in fiscal year (FY)-23 revealed remarkable results, such as finding reduced fat accumulation in the bone marrow (MARROW), identifying gene mutations that preserve muscle (Molecular Muscle), improving optical beams…detecting bacterial antibiotic resistance during spaceflight (Plazmida), observing abnormal cell division of human neural stem cells (STaARS Bioscience-4), among others. A full list of all the publications collected in FY-23 can be found at the end of this report.

A publicly accessible database of space station investigations and publications can be found in the Space Station Research Explorer (SSRE) website, and all editions of the Annual Highlights of Results from the International Space Station can be found through the Past Annual Highlights of Results from the Space Station Research Results Library.

Between Oct. 1, 2022, and Sept. 30, 2023, we identified a total of 330 articles associated with station research. Of these 330 articles, 268 appeared in peer-reviewed journals, 59 in conference proceedings, and 3 in gray literature such as books, magazines, technical reports, or patents. Articles are also categorized based on how authors obtained their results. There were 204 publications that reported direct implementation of the science aboard station (i.e., Results), 37 that reported development of the payload prior to operation on station (i.e., Flight Preparation), and 89 that emerged as follow-ups to station science (i.e., Derived). Because derived articles are new scientific studies generated from shared data, derived science is an additional return on the investment trusted to station science. For FY-23, this return on investment was 27 percent. Full definitions of these publication types (i.e, Results, Flight Preparation, and Derived) categories can be found on page 10 of this report.

figure-4.2.png?w=1280

Figure 4. Count of publications by agency and station research category. A total of 330 articles were collected in FY-23.

Figure 4 shows a stacked chart with the count of articles collected in FY-23 broken out by space agency and research category. In summary, we found three articles for CSA, 43 articles for ESA, 58 articles for JAXA, 10 articles for Roscosmos, and 216 articles for NASA.  Of the 330 articles collected in FY-23, 66 were articles published prior to Oct. 1, 2022. 

Measuring Space Station Impacts

The significant impact of sustained international multidisciplinary research in microgravity can be observed through the findings published in world-class scientific journals that adhere to a rigorous scientific peer-review process.

With the assistance of Clarivate, a global database that collects publication and journal information for annual journal ranking and metrics, we identified the top findings produced by station researchers. One parameter, the journal’s Eigenfactor Score2, ranks each journal based on readership and influence, including the different citation standards of each discipline. 

From Oct 1, 2022, to Sept 30, 2023, 78 articles appeared in top-tier journals. Of those 78 articles, 26 were reported in top 20 journals (see Table 1).  

table-1.2.png?w=1280

Table 1. A total of 78 articles were published in top-tier journals in FY-23: 21 articles in top 20 (green) and 57 articles in top 100 (yellow). Data ranked according to Clarivate Journal Citations Reports (JCR) Eigenfactor score.

In addition to the research diversity and top-tier results obtained from station, a comparison of station science to global and US standards of category-normalized citation impact (i.e., adjusted impact of a publication based on its research area) shows greater influence of station science since 2010 compared to other research endeavors taking place domestically or internationally. The authority of station research was particularly prominent in 2019, and it continues to hold its place in the scientific community to date. Figure 5 illustrates this important comparison.

citation-impact-2023.gif?w=1920

Figure 5. Citation impact (normalized by research area) of station science publications compared to national and global standards.

The high impact of space station is in great part attributed to the researchers who conduct transformative science in low Earth orbit. As shown in Table 2, four studies published in FY-23 have already received much acclaim from others in their field.

table-2.2-rev.png?w=1280

Table 2. List of articles published in FY-23 that have been widely recognized in a short period of time. *NICER reported two additional FY-23 publications with over 10 citations.

Advancements in technology and research on station have inspired students all over the world to pursue STEM careers, encouraged researchers to explore bold questions, and incentivized economies through the initiation of businesses in the space industry. While some of the most decisive steps toward space commercialization are recent, researchers from small and large companies, academic institutions, and government agencies have been conducting experiments in space since 2005 through the International Space Station National Lab. Today, the hard work is paying off. In FY-23, we collected 39 publications from investigations sponsored by National Lab with fascinating results in droplet behavior for the improvement of condensing systems (Drop Vibration), the reliable use of a genome examination and editing tool (Ax-1 CRSPR), the identification of specific gut bacteria involved in bone loss (Rodent Research-5), the use of neural networks for improved image analysis (Spaceborne Computer-2), and much more. In addition to the accomplishments of the International Partners and NASA on space station, National Lab’s alternative route to send investigations to space have demonstrated that new paths can be explored to expand research in microgravity for the advancement of science and benefit of humanity. 

Evolution of Space Station Results

The archive of space station investigations went online in 2004.  Since that time, changes to methods for tracking investigations and publications have been implemented, including increased differentiation between research disciplines and a re-characterization of publication fields. Currently, the following publication types are included in the Program Science Toolbox:  

  • Flight Preparation Results – publications about the development work performed for an investigation, facility, or project prior to operation on space station.  
  • Station Results – publications that provide information about the performance and results of an investigation, facility, or project as a direct implementation on station or on a vehicle to space station. 
  • Derived Results – publications that use data from an investigation that operated on station, but the authors of the article are not members of the original investigation team. Derived Results articles have emerged as a direct outcome of the open-source data initiative, which gives access to raw data for new researchers to analyze and publish innovative results, expanding global knowledge and scientific benefits.  
  • Patents – applications filed based on the performance and results of an investigation, facility, or project on station, or on a vehicle to space station. 
  • Related – publications that lead to the development of an investigation, facility, or project. 

Linking Space Station Benefits 

Space station research results lead to benefits for human exploration of space, benefits to humanity, and the advancement of scientific discovery. This year’s Annual Highlights of Results from the International Space Station includes descriptions of just a few of the results that were published from across the space station partnership during the past year.  

  • Space station investigation results have yielded updated insights into how to live and work more effectively in space by addressing such topics as understanding radiation effects on crew health, combating bone and muscle loss, improving designs of systems that handle fluids in microgravity, and determining how to maintain environmental control efficiently.
  • Results from the space station provide new contributions to the body of scientific knowledge in the physical sciences, life sciences, and Earth and space sciences to advance scientific discoveries in multi-disciplinary ways.
  • Space station science results have Earth-based applications, including understanding our climate, contributing to the treatment of disease, improving existing materials, and inspiring the future generation of scientists, clinicians, technologists, engineers, mathematicians, artists, and explorers.

Citations:

1Van Eck NJ, Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics. 2010; 84(2):523-538. DOI: 10.1007/s11192-009-0146-3.

2West JD, Bergstrom TC, Bergstrom CT. The Eigenfactor Metrics™: A Network approach to assessing scholarly journals. College and Research Libraries. 2010;71(3). DOI: 10.5860/0710236.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Office of Technology, Policy, and Strategy, shares highlights from the office in 2024, including key accomplishments and collaborations that support the NASA mission. Read the full report, NASA’s Office of Technology, Policy, and Strategy: A Year in Review 2024
      Share
      Details
      Last Updated Dec 18, 2024 EditorBill Keeter Related Terms
      Office of Technology, Policy and Strategy (OTPS) View the full article
    • By NASA
      7 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      2024 intro: As NASA’s Ames Research Center in California’s Silicon Valley enters its 85th year since its founding, join us as we take a look back at some of our highlights of science, engineering, research, and innovation from 2024.
      Ames Arc Jets Play Key Role in Artemis I Orion Spacecraft Heat Shield Findings 
      A block of Avcoat undergoes testing inside an arc jet test chamber at NASA Ames. The test article, configured with both permeable (upper) and non-permeable (lower) Avcoat sections for comparison, helped to confirm understanding of the root cause of the loss of charred Avcoat material that engineers saw on the Orion spacecraft after the Artemis I test flight beyond the Moon. NASA Researchers at Ames were part of the team tasked to better understand and identify the root cause of the unexpected char loss across the Artemis I Orion spacecraft’s heat shield. Using Avcoat material response data from Artemis I, the investigation team was able to replicate the Artemis I entry trajectory environment — a key part of understanding the cause of the issue — inside the arc jet facilities at NASA Ames. 
      Starling Swarm Completes Primary Mission 
      The four CubeSat spacecraft that make up the Starling swarm have demonstrated success in autonomous operations, completing all key mission objectives. NASA After ten months in orbit, the Starling spacecraft swarm successfully demonstrated its primary mission’s key objectives, representing significant achievements in the capability of swarm configurations in low Earth orbit, including distributing and sharing important information and autonomous decision making. 
      Another Step Forward for BioNutrients 
      Research scientists Sandra Vu, left, Natalie Ball, center, and Hiromi Kagawa, right, process BioNutrients production packs.NASA/Brandon Torres Navarrete NASA’s BioNutrients entered its fifth year in its mission to investigate how microorganisms can produce on-demand nutrients for astronauts during long-duration space missions. Keeping astronauts healthy is critical and as the project comes to a close, researchers have processed production packs on Earth on the same day astronauts processed production packs in space on the International Space Station to demonstrate that NASA can produce nutrients after at least five years in space, providing confidence it will be capable of supporting crewed missions to Mars.  
      Hyperwall Upgrade Helps Scientists Interpret Big Data
      The newly upgraded hyperwall visualization system provides four times the resolution of the previous system. NASA/Brandon Torres Navarrete Ames upgraded its powerful hyperwall system, a 300-square foot wall of LCD screens with over a billion pixels to display supercomputer-scale visualizations of the very large datasets produced by NASA supercomputers and instruments. The hyperwall is just one way researchers can utilize NASA’s high-end computing technology to better understand their data and advance the agency’s missions and research. 
      Ames Contributions to NASA Artificial Intelligence Efforts 
      NASA public affairs officer Melissa Howell moderates as chief scientist Kate Calvin speaks alongside chief technologist AC Charania, chief artificial intelligence officer David Salvagnini, and chief information officer Jeff Seaton at the agency’s first artificial intelligence town hall.NASA/Bill Ingalls Ames contributes to the agency’s artificial intelligence work through ongoing research and development, agencywide collaboration, and communications efforts. This year, NASA announced David Salvagnini as its inaugural chief artificial intelligence officer and held the first agencywide town hall on artificial intelligence sharing how the agency is safely using and developing artificial intelligence to advance missions and research. 
      Advanced Composite Solar Sail System Successfully Launches, Deploys Sail
      NASA’s Advanced Composite Solar Sail System seeks to advance future space exploration and expand our understanding of our Sun and Solar System.  NASA’s Advanced Composite Solar Sail System successfully launched from Māhia, New Zealand, in April, and successfully deployed its sail in August to begin mission operations. The small satellite represents a new future in solar sailing, using lightweight composite booms to support a reflective polymer sail that uses the pressure of sunlight as propulsion. 
      Understanding Our Planet 
      Samuel Suleiman, an instructor on NASA’s OCEANOS student training program, gathers loose corals to place around an endangered coral species to help attract fish and other wildlife, giving the endangered coral a better chance of survival.NASA/Milan Loiacono In 2024, Ames researchers studied Earth’s oceans and waterways from multiple angles – from supporting NASA’s Plankton, Aerosol, Cloud, ocean Ecosystem, or PACE, mission to bringing students in Puerto Rico experiences in oceanography and the preservation of coral reefs. Working with multiple partners, our scientists and engineers helped inform ecosystem management by joining satellite measurements of Earth with animal tracking data. In collaboration with the U.S. Geological Survey, a NASA team continued testing a specialized instrument package to stay in-the-know about changes in river flow rates. 
      Revealing the Mysteries of Asteroids in Our Solar System 
      NASA Ames researchers used a series of supercomputer simulations to reveal a potential new explanation for how the moons of Mars may have formed: The first step, the findings say, may have involved the destruction of an asteroid. 
      Using NASA’s powerful James Webb Space Telescope, another Ames scientist helped reveal the smallest asteroids ever found in the main asteroid belt. 
      Ames Helps Emerging Space Companies ‘Take the Heat’
      A heat shield made by NASA is visible on the blunt, upward-facing side of a space capsule after its landing in the Utah desert.Varda Space Industries/John Kraus A heat shield material invented and made at Ames helped to safely return a spacecraft containing the first product processed on an autonomous, free-flying, in-space manufacturing platform. February’s re-entry of the spacecraft from Varda Space Industries of El Segundo, California, in partnership with Rocket Lab USA of Long Beach, California, marked the first time a NASA-manufactured thermal protection material, called C-PICA (Conformal Phenolic Impregnated Carbon Ablator), ever returned from space. 
      Team Continues to Move Forward with Mission to Learn More about Our Star
      This illustration lays a depiction of the sun’s magnetic fields over an image captured by NASA’s Solar Dynamics Observatory on March 12, 2016. NASA/SDO/AIA/LMSAL HelioSwarm’s swarm of nine spacecraft will provide deeper insights into our universe and offer critical information to help protect astronauts, satellites, and communications signals such as GPS. The mission team continues to work toward launching in 2029. 
      CAPSTONE Continues to Chart a New Path Around the Moon 
      CAPSTONE revealed in lunar Sunrise: CAPSTONE will fly in cislunar space – the orbital space near and around the Moon. The mission will demonstrate an innovative spacecraft-to-spacecraft navigation solution at the Moon from a near rectilinear halo orbit slated for Artemis’ Gateway.Credits: Illustration by NASA/Daniel Rutter The microwave sized CubeSat, CAPSTONE, continues to fly in a cis-lunar near rectilinear halo orbit after launching in 2022. Flying in this unique orbit continues to pave the way for future spacecraft and Gateway, a Moon-orbiting outpost that is part of NASA’s Artemis campaign, as the team continues to collect data. 
      NASA Moves Drone Package Delivery Industry Closer to Reality 
      A drone is shown flying during a test of Unmanned Aircraft Systems Traffic Management (UTM) technical capability Level 2 (TCL2) at Reno-Stead Airport, Nevada in 2016. During the test, five drones simultaneously crossed paths, separated by different altitudes. Two drones flew beyond visual line of sight and three flew within line-of-sight of their operators. More UTM research followed, and it continues today. Dominic Hart NASA’s uncrewed aircraft system traffic management concepts paved the way for newly-approved package delivery drone flights in the Dallas area. 
      NASA Technologies Streamline Air Traffic Management Systems 
      This image shows an aviation version of a smartphone navigation app that makes suggestions for an aircraft to fly an alternate, more efficient route. The new trajectories are based on information available from NASA’s Digital Information Platform and processed by the Collaborative Departure Digital Rerouting tool.NASA Managing our busy airspace is a complex and important issue, ensuring reliable and efficient movement of commercial and public air traffic as well as autonomous vehicles. NASA, in partnership with AeroVironment and Aerostar, demonstrated a first-of-its-kind air traffic management concept that could pave the way for aircraft to safely operate at higher altitudes. The agency also saw continued fuel savings and reduction in commercial flight delays at Dallas Fort-Worth Airport, thanks to a NASA-developed tool that allows flight coordinators to identify more efficient, alternative takeoff routes.
      Small Spacecraft Gathers Big Solar Storm Data from Deep Space 
      Illustration of NASA’s BioSentinel spacecraft as it enters a heliocentric orbit.NASA/Daniel Rutter BioSentinel – a small satellite about the size of a cereal box – is currently more than 30 million miles from Earth, orbiting our Sun. After launching aboard NASA’s Artemis I more than two years ago, BioSentinel continues to collect valuable information for scientists trying to understand how solar radiation storms move through space and where their effects – and potential impacts on life beyond Earth – are most intense. In May 2024, the satellite was exposed to a coronal mass ejection without the protection of our planet’s magnetic field and gathered measurements of hazardous solar particles in deep space during a solar storm. 
      NASA, FAA Partner to Develop New Wildland Fire Technologies
      Artist’s rendering of remotely piloted aircraft providing fire suppression, monitoring and communications capabilities during a wildland fire. NASA NASA researchers continued to develop and test airspace management technologies to enable remotely-piloted aircraft to fight and monitor wildland fires 24 hours a day.  
      The Advanced Capabilities for Emergency Response Operations (ACERO) project seeks to use drones and advanced aviation technologies to improve wildland fire coordination and operations. 
      NASA and Forest Service Use Balloon to Help Firefighters Communicate
      The Aerostar Thunderhead balloon carries the STRATO payload into the sky to reach the stratosphere for flight testing. The balloon appears deflated because it will expand as it rises to higher altitudes where pressures are lower.Colorado Division of Fire Prevention and Control Center of Excellence for Advanced Technology Aerial Firefighting/Austin Buttlar  The Strategic Tactical Radio and Tactical Overwatch (STRATO) technology is a collaborative effort to use high-altitude balloons to improve real-time communications among firefighters battling wildland fires. Providing cellular communication from above can improve firefighter safety and firefighting efficiency.
      A Fully Reimagined Visitor Center 
      The NASA Ames Visitor Center includes exhibits and activities, sharing the work of NASA in Silicon Valley with the public. NASA/Don Richey The NASA Ames Visitor Center at Chabot Space & Science Center in Oakland, California includes a fully reimagined 360-degree experience, featuring new exhibits, models, and more. An interactive exhibit puts visitors in the shoes of a NASA Ames scientist, designing and testing rovers, planes, and robots for space exploration. 
      Ames Collaborations in the Community
      Former NASA astronauts Yvonne Cagle and Kenneth Cockrell pose with Eli Toribio and Rhydian Daniels at the University of California, San Francisco Bakar Cancer Hospital. Patients gathered to meet the astronauts and learn more about human spaceflight and NASA’s cancer research effortsNASA/Brandon Torres Navarrete NASA astronauts, scientists, and researchers, and leadership from the University of California, San Francisco (UCSF) met with cancer patients and gathered in a discussion about potential research opportunities and collaborations as part of President Biden and First Lady Jill Biden’s Cancer Moonshot initiative on Oct. 4. During the visit with patients, NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell answered questions about spaceflight and life in space. 
      Ames and the University of California, Berkeley, expanded their partnership, organizing workshops to exchange on their areas of technical expertise, including in Advanced Air Mobility, and to develop ideas for the Berkeley Space Center, an innovation hub proposed for development at Ames’ NASA Research Park. Under a new agreement, NASA also will host supercomputing resources for UC Berkeley, supporting the development of novel computing algorithms and software for a wide variety of scientific and technology areas.
      Share
      Details
      Last Updated Dec 17, 2024 Related Terms
      Ames Research Center General NASA Centers & Facilities Explore More
      5 min read Cutting-Edge Satellite Tracks Lake Water Levels in Ohio River Basin
      Article 1 hour ago 1 min read Airspace Operations and Safety Program (AOSP)
      Article 1 hour ago 2 min read Media Invited to Speak to NASA Ames Experts – Celebrating 85 Years
      Article 3 hours ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Video: 00:11:10 In 2024, ESA continued to drive Europe’s innovation and excellence in space, equipping the continent with advanced tools and knowledge to address global and local challenges. The year saw pioneering missions, cutting-edge satellites and the pivotal restoration of Europe’s independent access to space. 
      The first Ariane 6 launch was perhaps ‘the’ highlight of the year but it was only one of many achievements. We saw the last Vega launch and then the return to flight of Vega-C, the more powerful, upgraded version carrying Sentinel-1C.
      Far away in our Solar System, the ESA/JAXA BepiColombo spacecraft performed twoMercury flybys in 2024, needed so that it can enter orbit around Mercury in 2026. Juice also performed a crucial gravity assist, this time becoming the first spacecraft to conduct a Moon-Earth double flyby on its way to Jupiter. 
      Twenty years after ESA’s Rosetta was launched and 10 years since its historic arrival at the comet 67P/Churyumov-Gerasimenko, we launched another spacecraft to a small body, the Hera planetary defence mission to investigate asteroid Dimorphos.
      2024 was an important year for Europe’s Galileo constellation which continued to expand with the launch of four new satellites and an updated Galileo ground system. The year also saw the launch of ESA’s Proba-3 mission: two precision formation-flying satellites forming a solar coronagraph to study the Sun’s faint corona. 
      In human spaceflight, Europe continues to contribute to science from the ISS as Andreas Mogensen’s Huginn mission continued into 2024. Andreas even met up in space with ESA project astronaut Marcus Wandt who was launched on his Muninn mission, making it the first time two Scandinavians were in space together. 
      Meanwhile the latest class of ESA astronauts completed basic training and graduated in April. Two of them, Sophie and Raphaël, were then assigned to long-duration missions to the ISS in 2026.
      We made crucial steps for Europe in gaining access to the Moon: the inauguration of our LUNA facility with DLR, and the delivery of a third European Service Module for NASA’s Orion spacecraft as part of the Artemis programme.
      Europe is also contributing to the international Lunar Gateway and developing and ESA lunar lander called Argonaut. These landers will rely on ESA Moonlight, the programme to establish Europe’s first dedicated satellite constellation for lunar communication and navigation.
      As 2024 draws to a close, ESA’s achievements this year have reinforced Europe’s role in space. ESA’s journey continues to explore new frontiers, shaping the space landscape for generations to come.
      View the full article
    • By Space Force
      Maj. Gen. Timothy Sejba, commander of Space Training and Readiness Command, spoke about the command’s role in cultivating Guardian culture and discussed the initiatives that STARCOM leads to enhance Guardian development and education.

      View the full article
    • By Space Force
      The Space Force senior leader highlighted the ever-changing landscape of developing partnerships in the space domain.

      View the full article
  • Check out these Videos

×
×
  • Create New...