Jump to content

55 Years Ago: Five Months Until the Moon Landing


NASA

Recommended Posts

  • Publishers

Following the success of the Apollo 8 circumlunar mission, NASA believed that it could achieve a Moon landing by the summer of 1969 and meet President John F. Kennedy’s goal. Much work remained to accomplish that objective. Three crews and their backups trained for the next three Apollo missions while workers at NASA’s Kennedy Space Center (KSC) in Florida prepared the spacecraft and rockets for those flights. With Apollo 9 in the home stretch to test the Lunar Module (LM) in Earth orbit in early March, preparations also continued for Apollo 10 in May, a lunar orbit test of the LM that served as a dress rehearsal for the Moon landing, and for Apollo 11, the landing mission itself planned for July.

Apollo 8

Apollo 8 astronaut Frank Borman and his wife Susan, at left, meet the Royal family at Buckingham Palace during the London stop of their European tour Borman, left, meets with French President Charles de Gaulle and U.S. Ambassador to France R. Sargent Shriver during the Paris stop of the tour In Den Haag, The Netherlands, Apollo 8 astronaut Borman, right, describes the Lunar Module to Queen Juliana
Left: Apollo 8 astronaut Frank Borman and his wife Susan, at left, meet the Royal family at Buckingham Palace during the London stop of their European tour. Middle: Borman, left, meets with French President Charles de Gaulle and U.S. Ambassador to France R. Sargent Shriver during the Paris stop of the tour. Right: In Brussels, Borman, left, presents a model of the Saturn V rocket to Jean Rey, president of the European Commission.

In Den Haag, The Netherlands, Apollo 8 astronaut Borman, right, describes the Lunar Module to Queen Juliana At The Vatican, Borman, left, presents a photograph of the Moon from Apollo 8 to Pope Paul VI The Bormans, Frank, left, Susan, and sons Edwin and Frederick, hold a press conference in Lisbon, the last stop of their European tour
Left: In Den Haag, The Netherlands, Apollo 8 astronaut Borman, right, describes the Lunar Module to Queen Juliana. Middle: At The Vatican, Borman, left, presents a photograph of the Moon from Apollo 8 to Pope Paul VI. Right: The Bormans, Frank, left, Susan, and sons Edwin and Frederick, hold a press conference in Lisbon, the last stop of their European tour.

As President Richard M. Nixon announced on Jan. 30, Apollo 8 astronaut Frank Borman, his wife Susan, and their two children Frederick and Edwin, set off on their European goodwill tour on Feb. 2, flying aboard a presidential Air Force jet. Borman’s Apollo 8 crewmates James A. Lovell and William A. Anders could not participate in the tour because they had already begun training as part of the Apollo 11 backup crew. The Bormans’ 19-day tour took them to London, Paris, Brussels, Den Haag, Bonn, West Berlin, Rome, Madrid, and Lisbon. They met with royalty, politicians, scientists, and Pope Paul VI, gave lectures during which Borman narrated a film from his flight, and held numerous press conferences.

Apollo 9

Apollo 9 astronauts Russell L. Schweickart, left, James A. McDivitt, and David R. Scott pose in front of the control panel for the spacecraft simulators Fisheye lens view of Schweickart, left, and McDivitt in the Lunar Module simulator A technician poses in the Apollo A7L spacesuit, including the Portable Life Support System backpack used for the first time during Apollo 9
Left: Apollo 9 astronauts Russell L. Schweickart, left, James A. McDivitt, and David R. Scott pose in front of the control panel for the spacecraft simulators. Middle: Fisheye lens view of Schweickart, left, and McDivitt in the Lunar Module simulator. Right: A technician poses in the Apollo A7L spacesuit, including the Portable Life Support System backpack used for the first time during Apollo 9.

Apollo 9 astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart planned to conduct the first crewed test of the LM during their 10-day Earth orbital mission. They and their backups Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean spent many hours in the spacecraft simulators and training for the spacewalk component of the mission. The planned spacewalk, the first and only one before the Moon landing mission, would not only test the spacesuit and its Portable Life Support System but also demonstrate an external crew transfer should a problem arise with the internal transfer tunnel or hatches. McDivitt, Scott, and Schweickart provided details of their mission to reporters during a press conference on Feb. 8 at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. They explained that during the mission phase when the two vehicles fly separately, they will use the call signs Spider for the LM and Gumdrop for the Command Module (CM), lighthearted references to the shapes of the respective spacecraft.

Apollo 9 astronauts Russell L. Schweickart, left, James A. McDivitt, and David R. Scott during the preflight crew press conference at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston Senior NASA management assembled for the Apollo 9 Flight Readiness Review at NASA’s Kennedy Space Center (KSC): Associate Administrator for Manned Flight George E. Mueller, left, Apollo Program Director Samuel C. Phillips, KSC Director Kurt H. Debus, MSC Director Robert R. Gilruth, and Marshall Space Flight Center Director Wernher von Braun
Left: Apollo 9 astronauts Russell L. Schweickart, left, James A. McDivitt, and David R. Scott during the preflight crew press conference at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Right: Senior NASA management assembled for the Apollo 9 Flight Readiness Review at NASA’s Kennedy Space Center (KSC): Associate Administrator for Manned Flight George E. Mueller, left, Apollo Program Director Samuel C. Phillips, KSC Director Kurt H. Debus, MSC Director Robert R. Gilruth, and Marshall Space Flight Center Director Wernher von Braun.

Senior NASA managers met at NASA’s Kennedy Space Center (KSC) in Florida for Apollo 9’s Flight Readiness Review the first week of February. At the end of the meeting, they set the launch date for Feb. 28. The following week, engineers in Firing Room 2 of KSC’s Launch Control Center conducted the Countdown Demonstration Test (CDDT), essentially a dress rehearsal for the actual countdown. On Feb. 12, McDivitt, Scott, and Schweickart participated in the final portion of the CDDT, as they would on launch day, by donning their spacesuits and climbing aboard their spacecraft for the final two hours of the test. Engineers began the countdown to launch on Feb. 26 but had to halt it the next day when the astronauts developed head colds. Managers reset the launch date to March 3, and the countdown restarted on March 1.

The Apollo 9 Saturn V at Launch Pad 39A at NASA’s Kennedy Space Center in Florida during the Countdown Demonstration Test (CDDT) Engineers in the Launch Control Center’s Firing Room 2 monitor the rocket and spacecraft during the CDDT Apollo 9 astronauts Russell L. Schweickart, left, David R. Scott, and James A. McDivitt pose in front of their Saturn V following the CDDT
Left: The Apollo 9 Saturn V at Launch Pad 39A at NASA’s Kennedy Space Center in Florida during the Countdown Demonstration Test (CDDT). Middle: Engineers in the Launch Control Center’s Firing Room 2 monitor the rocket and spacecraft during the CDDT. Right: Apollo 9 astronauts Russell L. Schweickart, left, David R. Scott, and James A. McDivitt pose in front of their Saturn V following the CDDT.

Apollo 10

The three stages of the Saturn V stacked on Mobile Launcher-3 The Apollo 10 spacecraft, the Command and Service Modules and the Lunar Module (LM) encased in the Spacecraft LM Adapter, arrives from the Manned Spacecraft Operations Building Workers lift the spacecraft for stacking onto the rocket, the footpads of the LM’s folded landing gear visible Workers lower the spacecraft onto the Saturn V rocket’s third stage
Stacking of the Apollo 10 vehicle in High Bay 2 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Left: The three stages of the Saturn V stacked on Mobile Launcher-3. Middle left: The Apollo 10 spacecraft, the Command and Service Modules and the Lunar Module (LM) encased in the Spacecraft LM Adapter, arrives from the Manned Spacecraft Operations Building. Middle right: Workers lift the spacecraft for stacking onto the rocket, the footpads of the LM’s folded landing gear visible. Right: Workers lower the spacecraft onto the Saturn V rocket’s third stage.

With Apollo 9 on Launch Pad 39A and almost ready to launch, workers in High Bay 2 of KSC’s Vehicle Assembly Building (VAB) completed stacking of the Apollo 10 launch vehicle. The spacecraft, consisting of the Command and Service Modules atop the LM encased in the Spacecraft LM Adapter, arrived from the Manned Spacecraft Operations Building (MSOB) on Feb. 6 and VAB workers stacked it on the Saturn V rocket the same day. Engineers began to conduct integrated tests on the launch vehicle in preparation for rollout to Launch Pad 39B in mid-March. Apollo 10 astronauts Thomas P. Stafford, John W. Young, and Eugene A. Cernan and their backups L. Gordon Cooper, Donn F. Eisele, and Edgar D. Mitchell spent much time in spacecraft simulators and testing their spacesuits in vacuum chambers.

Apollo 11

Apollo 11 astronaut Edwin E. “Buzz” Aldrin, left, confers with support astronauts Ronald E. Evans and Harrison H. “Jack” Schmitt, the only geologist in the astronaut corps at the time, during training for deployment of the Early Apollo Science Experiment Package (EASEP) Astronaut Don L. Lind, suited, practices deploying the EASEP instruments as Aldrin, in white shirt behind the dish antenna, oberves
Left: Apollo 11 astronaut Edwin E. “Buzz” Aldrin, left, confers with support astronauts Ronald E. Evans and Harrison H. “Jack” Schmitt, the only geologist in the astronaut corps at the time, during training for deployment of the Early Apollo Science Experiment Package (EASEP). Right: Astronaut Don L. Lind, suited, practices deploying the EASEP instruments as Aldrin, in white shirt behind the dish antenna, oberves.

With their historic mission only five months away, the Apollo 11 prime crew of Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin and their backups James A. Lovell, William A. Anders, and Fred W. Haise busied themselves training for the Moon landing. Although the primary goal of the first Moon landing mission centered on demonstrating that the Apollo spacecraft systems could safely land two astronauts on the surface and return them safely to Earth, the surface operations also included collecting lunar samples and deploying experiments. During their two-and-a-half-hour surface excursion, Armstrong and Aldrin planned to deploy three instruments comprising the Early Apollo Surface Experiment Package (EASEP) – a passive seismometer, a laser ranging retro-reflector, and a solar wind composition experiment. On Jan. 21, 1969, astronauts Harrison H. “Jack” Schmitt, the only geologist in the astronaut corps, and Don L. Lind conducted a simulation of the EASEP deployment in MSC’s Building 9. Aldrin observed the simulation, obviously with great interest.

Apollo 11 astronauts Edwin E. “Buzz” Aldrin, left, and Neil A. Armstrong during geology training at Sierra Blanco, Texas Apollo 11 backup astronauts Fred W. Haise, left, and James A. Lovell at the Sierra Blanco geology training session
Left: Apollo 11 astronauts Edwin E. “Buzz” Aldrin, left, and Neil A. Armstrong during geology training at Sierra Blanco, Texas. Right: Apollo 11 backup astronauts Fred W. Haise, left, and James A. Lovell at the Sierra Blanco geology training session.

Generic instruction in geology, including classroom work and field trips, became part of overall NASA astronaut training beginning in 1964. Once assigned to a crew that had a very good chance of actually walking on the lunar surface and collecting rock and soil samples, those astronauts received specialized instruction in geology. On Feb. 24, 1969, the two prime moonwalkers Armstrong and Aldrin, along with their backups Lovell and Haise, participated in their only trip specifically dedicated to geology training. The field exercise in west Texas took place near Sierra Blanca and the ruins of Fort Quitman, about 90 miles southeast of El Paso. Accompanied by a team from MSC’s Geology Branch, the astronauts practiced sampling the variety of rocks present at the site to obtain a representative collection, skills needed to choose the best sample candidates during their brief excursion on the lunar surface. 

Workers mount the S-IC first stage on its Mobile Launcher in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida Neil A. Armstrong stands in front of the Lunar Module simulator at the Lunar Landing Research Facility (LLRF) at NASA’s Langley Research Center in Hampton, Virginia Aerial view of the LLRF at Langley
Left: Workers mount the S-IC first stage on its Mobile Launcher in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Middle: Neil A. Armstrong stands in front of the Lunar Module simulator at the Lunar Landing Research Facility (LLRF) at NASA’s Langley Research Center in Hampton, Virginia. Right: Aerial view of the LLRF at Langley.

By mid-February, all three stages of the Apollo 11 Saturn V had arrived in the VAB, and on Feb. 21, workers stacked the S-IC first stage on its Mobile Launcher in High Bay 1. They finished assembling the rocket in March. In an altitude chamber in the nearby MSOB, on Feb. 10, engineers conducted a docking test between the CM and the LM. Five days later, they mated the ascent and descent stages of the LM for further testing. With the Lunar Landing Training Vehicle (LLTV) still grounded following its December 1968 crash, the Lunar Landing Research Facility (LLRF) at NASA’s Langley Research Center in Hampton, Virginia, remained as the only high-fidelity trainer for the descent and landing of the LM on the Moon. Armstrong practiced landings in the LLRF on Feb 12.

Lunar Receiving Laboratory and Mobile Quarantine Facility

To minimize the risk of back contamination of the Earth with any possible lunar microorganisms, NASA designed and built the 83,000-square-foot Lunar Receiving Laboratory (LRL), residing in MSC’s Building 37. The facility isolated the astronauts, their spacecraft, and lunar samples to prevent any Moon germs from escaping into the environment, and also maintained the lunar samples in as pristine a condition as possible. The Mobile Quarantine Facility (MQF) provided isolation for the returning astronauts from shortly after splashdown until their delivery to the LRL, an activity that required transport of the MQF on a cargo jet aircraft. On Feb. 6, following its return from sea trials, workers placed the MQF inside Chamber A of MSC’s Space Environment Simulation Facility. The test in the large vacuum chamber checked out the MQF’s emergency oxygen supply during a simulated aircraft pressure loss. Three test subjects successfully completed the test.

Workers truck the Mobile Quarantine Facility (MQF) into the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston Workers install the MQF in Chamber A of the SESL for a test of the emergency oxygen system Test subjects inside the MQF prepare for the emergency oxygen system test in the SESL
Left: Workers truck the Mobile Quarantine Facility (MQF) into the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Workers install the MQF in Chamber A of the SESL for a test of the emergency oxygen system. Right: Test subjects inside the MQF prepare for the emergency oxygen system test in the SESL.

To be continued …

News from around the world in February 1969:

Feb. 3 – Ibuprofen launched in the United Kingdom as a prescription anti-inflammatory analgesic.

Feb. 5 – The population of the United States reaches 200 million.

Feb. 7 – British band The Who record their song “Pinball Wizard.”

Feb. 7 – Diane Krump becomes the first woman jockey at a major U.S. racetrack (Hialeah, Florida).

Feb. 8 – The Allende meteorite weighing nearly two tons explodes in mid-air and fragments fall on Pueblito de Allende, Chihuahua, Mexico.

Feb. 9 – First flight of the Boeing 747 Jumbo Jet from Everett, Washington.

Feb. 21 – First launch of U.S.S.R.’s N-1 Moon rocket, not successful.

Feb. 24 – U.S. launches Mariner 6 to fly-by Mars.

Share

Details

Last Updated
Feb 20, 2024

Related Terms

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Soyuz MS-25 Reentry and Landing with Tracy Dyson
    • By NASA
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from The University of California, Santa Barbara won the $1 million grand prize in NASA’s Watts on the Moon Challenge. Their team developed a low-mass, high efficiency cable and featured energy storage batteries on both ends of their power transmission and energy storage system. Credit: NASA/GRC/Sara Lowthian-Hanna NASA has awarded a total of $1.5 million to two U.S. teams for their novel technology solutions addressing energy distribution, management, and storage as part of the agency’s Watts on the Moon Challenge. The innovations from this challenge aim to support NASA’s Artemis missions, which will establish long-term human presence on the Moon.
      This two-phase competition has challenged U.S. innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions to advance the nation’s lunar exploration goals. The final phase of the challenge concluded with a technology showcase and winners’ announcement ceremony Friday at Great Lakes Science Center, home of the visitor center for NASA’s Glenn Research Center in Cleveland.
      “Congratulations to the finalist teams for developing impactful power solutions in support of NASA’s goal to sustain human presence on the Moon,” said Kim Krome-Sieja, acting program manager for NASA Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These technologies seek to improve our ability to explore and make discoveries in space and could have implications for improving power systems on Earth.”
      The winning teams are:
      First prize ($1 million): H.E.L.P.S.  (High Efficiency Long-Range Power Solution) of Santa Barbara, California Second prize ($500,000): Orbital Mining Corporation of Golden, Colorado Four teams were invited to refine their hardware and deliver full system prototypes in the final stage of the competition, and three finalist teams completed their technology solutions for demonstration and assessment at NASA Glenn. The technologies were the first power transmission and energy storage prototypes to be tested by NASA in a vacuum chamber mimicking the freezing temperature and absence of pressure found at the permanently shadowed regions of the Lunar South Pole. The simulation required the teams’ power systems to demonstrate operability over six hours of solar daylight and 18 hours of darkness with the user three kilometers (nearly two miles) away from the power source.
      During this competition stage, judges scored the finalists’ solutions based on a Total Effective System Mass (TESM) calculation, which measures the effectiveness of the system relative to its size and weight – or mass – and the total energy provided by the power source. The highest-performing solution was identified based on having the lowest TESM value – imitating the challenges that space missions face when attempting to reduce mass while meeting the mission’s electrical power needs.
      Team H.E.L.P.S. (High Efficiency Long-Range Power Solution) from University of California, Santa Barbara, won the grand prize for their hardware solution, which had the lowest mass and highest efficiency of all competitors. The technology also featured a special cable operating at 800 volts and an innovative use of energy storage batteries on both ends of the transmission system. They also employed a variable radiation shield to switch between conserving heat during cold periods and disposing of excess heat during high power modes. The final 48-hour test proved their system design effectively met the power transmission, energy storage, and thermal challenges in the final phase of competition.
      Orbital Mining Corporation, a space technology startup, received the second prize for its hardware solution that also successfully completed the 48-hour testwith high performance. They employed a high-voltage converter system coupled with a low-mass cable and a lithium-ion battery.
      “The energy solutions developed by the challenge teams are poised to address NASA’s space technology priorities,” said Amy Kaminski, program executive for Prizes, Challenges, and Crowdsourcing in NASA’s Space Technology Mission Directorate at NASA Headquarters in Washington. “These solutions support NASA’s recently ranked civil space shortfalls, including in the top category of surviving and operating through the lunar night.”
      During the technology showcase and winners’ announcement ceremony, NASA experts, media, and members of the public gathered to see the finalist teams’ technologies and hear perspectives from the teams’ participation in the challenge. After the winners were announced, event attendees were also welcome to meet NASA astronaut Stephen Bowen.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall Space Flight Center manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA contracted HeroX to support the administration of this challenge.
      For more information on NASA’s Watts on the Moon Challenge, visit:
      https://www.nasa.gov/wattson
      -end-

      Jasmine Hopkins
      Headquarters, Washington
      321-432-4624
      jasmine.s.hopkins@nasa.gov
      Lane Figueroa 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034
      lane.e.figueroa@nasa.gov 
      Brian Newbacher
      Glenn Research Center, Cleveland
      216-469-9726
      Brian.t.newbacher@nasa.gov
      Share
      Details
      Last Updated Sep 20, 2024 LocationGlenn Research Center Related Terms
      Science Mission Directorate View the full article
    • By NASA
      In September 1969, celebrations continued to mark the successful first human Moon landing two months earlier, and NASA prepared for the next visit to the Moon. The hometowns of the Apollo 11 astronauts held parades in their honor, the postal service recognized their accomplishment with a stamp, and the Smithsonian put a Moon rock on display. They addressed Congress and embarked on a 38-day presidential round the world goodwill tour. Eager scientists received the first samples of lunar material to study in their laboratories. Meanwhile, NASA prepared Apollo 12 for November launch as the astronauts trained for the mission with an increased emphasis on lunar science. Plans called for additional Moon landings in 1970, with spacecraft under construction and astronauts in training.
      Apollo 11
      For Apollo 11 astronauts Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin, their busy August 1969 postflight schedule continued into September with events throughout the United States and beyond. These included attending hometown parades, dedicating a stamp to commemorate their historic mission, unveiling a display of a Moon rock they collected, addressing a Joint Meeting of Congress, and visiting contractor facilities that built parts of their rocket and spacecraft. They capped off the hectic month with their departure, accompanied by their wives, on a presidential round-the-world goodwill tour that lasted into early November.

      Left: Neil A. Armstrong at his hometown parade in Wapakoneta, Ohio. Image credit: Ohio Historical Society. Middle: Edwin E. “Buzz” Aldrin at his hometown parade in Montclair, New Jersey. Image credit: Star-Register. Right: Michael Collins at his adopted hometown parade in New Orleans, Louisiana. Image credit: AP Photo.
      On Sep. 6, each astronaut appeared at hometown events held in their honor. Apollo 11 Commander Armstrong’s hometown of Wapakoneta, Ohio, welcomed him with a parade and other events.  Montclair, New Jersey, held a parade to honor hometown hero Lunar Module Pilot (LMP) Aldrin. And New Orleans, Louisiana, the adopted hometown of Command Module Pilot (CMP) Michael Collins, honored him with a parade.

      Left: Apollo 11 astronauts Michael Collins, left, Neil A. Armstrong, and Edwin E. “Buzz” Aldrin with Postmaster General Winton M. Blount display an enlargement of the stamp commemorating the first Moon landing. Right: Aldrin, left, Collins, and Armstrong examine a Moon rock with Smithsonian Institution Director General of Museums Frank A. Taylor.
      Three days later, the astronauts reunited in Washington, D.C., where they appeared at the dedication ceremony of a new postage stamp that honored their mission. The U.S. Postal Service had commissioned artist Paul Calle in 1968 to design the stamp. The Apollo 11 astronauts had carried the stamp’s master die to the Moon aboard the Lunar Module (LM) Eagle and after its return to Earth the Postal Service used it to make the printing pages for the 10¢ postage stamp. At the National Postal Forum, Armstrong, Collins, and Aldrin unveiled the stamp together with Postmaster General Winton M. Blount, and each astronaut received an album with 30 of the “First Man on the Moon” stamps. On Sep. 15, the crew returned to Washington to present a two-pound rock they collected in the Sea of Tranquility during their historic Moon walk to Frank A. Taylor, the Director General of Museums at the Smithsonian Institution in Washington, D.C. The rock went on public display two days later at the Smithsonian’s Arts and Industries Building, the first time the public could view a Moon rock. 

      Left: Apollo 11 astronauts Michael Collins, left, Edwin E. “Buzz Aldrin, and Neil A. Armstrong each addressed a Joint Meeting of Congress, with Vice President Spiro T. Agnew and Speaker of the House John W. McCormack seated behind them. Middle: Apollo 11 astronauts’ wives Joan Aldrin, left, Patricia Collins, and Janet Armstrong receive recognition in the Visitors Gallery of the House Chamber. Right: The Apollo 11 astronauts and their wives cut at a cake at a reception at the Capitol.
      With their wives observing from the Visitors Gallery of the House of Representatives, on Sep. 16 Armstrong, Aldrin, and Collins addressed a Joint Meeting of Congress. In this same chamber in May 1961, President John F. Kennedy committed the nation to land a man on the Moon and return him safely to the Earth before the end of decade. In a sense, the astronauts reported on the safe and successful completion of that challenge. Speaker of the House John W. McCormack introduced the astronauts to the gathering, as Vice President Spiro T. Agnew looked on. Each astronaut reflected on the significance of the historic mission.
      Armstrong noted that their journey truly began in the halls of Congress when the Space Act of 1958 established NASA. Aldrin commented that “the Apollo lesson is that national goals can be met when there is a strong enough will to do so.” Collins shared a favorite quotation of his father’s to describe the value of the Apollo 11 mission: “He who would bring back the wealth of the Indies must take the wealth of the Indies with him.” Armstrong closed with, “We thank you, on behalf of all the men of Apollo, for giving us the privilege of joining you in serving – for all mankind.” After their speeches, the astronauts presented one American flag each to Vice President Agnew in his role as President of the Senate and to Speaker McCormack. The flags, that had flown over the Senate and House of Representatives, had traveled to the Moon and back with the astronauts. Speaker McCormack recognized the astronauts’ wives Jan Armstrong, Joan Aldrin, and Pat Collins for their contributions to the success of the Apollo 11 mission.

      Left: Neil A. Armstrong and Michael Collins address North American Rockwell employees in Downey, California. Right: Presidential Boeing VC-137B jet at Ellington Air Force Base in Houston to take the Apollo 11 astronauts and their wives on the Giantstep goodwill world tour. 
      On Sep. 26, Armstrong and Collins visited two facilities in California of North American Rockwell (NAR) Space Division, the company that built parts of the Saturn V rocket and Apollo 11 spacecraft. First, they stopped at the Seal Beach plant that built the S-II second stage of the rocket, where 3,000 employees turned out to welcome them. Armstrong commented to the assembled crowd that during the July 16, 1969, liftoff, “the S-II gave us the smoothest ride ever.” Collins added that despite earlier misgivings about using liquid hydrogen as a rocket fuel, “after the ride you people gave us, I sure don’t have doubts any longer.” About 7,000 employees greeted the two astronauts and showered them with confetti at their next stop, the facility in Downey that built the Apollo Command and Service Modules. Both Armstrong and Collins thanked the team for building an outstanding spacecraft that took them to the Moon and returned them safely to Earth. The astronauts inspected the Command Module (CM) for Apollo 14, then under construction at the plant.
      On the morning of Sep. 29, a blue and white Boeing VC-137B presidential jet touched down at Ellington Air Force Base in Houston. Neil and Jan Armstrong, Buzz and Joan Aldrin, and Mike and Pat Collins boarded the plane and joined their entourage of State Department and NASA support personnel. They departed Houston for Mexico City, the first stop on the Apollo 11 Giantstep goodwill world tour. They didn’t return to the United States until Nov. 5, having visited 29 cities in 24 countries, just nine days before Apollo 12 took off on humanity’s second journey to land on the Moon.

      Distribution of Apollo 11 lunar samples to scientists at the Lunar Receiving Laboratory at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston.
      Back in Houston, distribution to scientists of samples of the lunar material returned by the Apollo 11 astronauts began on Sep. 17 at the Lunar Receiving Laboratory (LRL) at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Daniel H. Anderson, curator of lunar samples at the LRL, supervised the distribution of approximately 18 pounds – about one-third of the total Apollo 11 lunar material – to 142 principal investigators from the United States and eight other countries according to prior agreements. The scientists examined the samples at their home institutions and reported their results at a conference in Houston in January 1970. They returned to the LRL any of the samples not destroyed during the examination process.
      Apollo 12
      In September 1969, NASA continued preparations for the second Moon landing mission, Apollo 12, scheduled for launch on Nov. 14. The Apollo 12 mission called for a pinpoint landing in Oceanus Procellarum (Ocean of Storms) near where the robotic spacecraft Surveyor 3 had touched down in April 1967. They planned to stay on the lunar surface for about 32 hours, compared to Apollo 11’s 21 hours, and conduct two surface spacewalks totaling more than 5 hours. During the first of their two excursions, the astronauts planned to deploy the Apollo Lunar Surface Experiments Package (ALSEP) and collect lunar samples. During the second spacewalk, they planned to visit Surveyor 3 and remove some of its equipment for return to Earth and collect additional lunar samples. The Apollo 12 prime crew of Commander Charles “Pete” Conrad, CMP Richard F. Gordon, and LMP Alan L. Bean and their backups David R. Scott, Alfred M. Worden, and James B. Irwin continued intensive training for the mission.

      Left: The Apollo 12 Saturn V exits the Vehicle Assembly Building on its way to Launch Pad 39A. Middle: The Apollo 12 Saturn V rolling up the incline as it approaches Launch Pad 39A. Right: Apollo 12 astronauts Alan L. Bean, left, Richard F. Gordon, and Charles “Pete” Conrad pose in front of their Saturn V during the rollout to the pad.
      On Sep. 8, the Saturn V rocket with the Apollo 12 spacecraft on top rolled out from Kennedy Space Center’s (KSC) Vehicle Assembly Building to Launch Pad 39A. The rocket made the 3.5-mile trip to the pad in about 6 hours, with Conrad, Gordon, and Bean on hand to observe the rollout. Workers at the pad spent the next two months thoroughly checking out the rocket and spacecraft to prepare it for its mission to the Moon. The two-day Flight Readiness Test at the end of September ensured that the launch vehicle and spacecraft systems were in a state of flight readiness. In addition to spending many hours in the spacecraft simulators, Conrad and Bean as well as their backups Scott and Irwin rehearsed their lunar surface spacewalks including the visit to Surveyor 3. Workers at NASA’s Jet Propulsion Laboratory in Pasadena, California, shipped an engineering model of the robotic spacecraft to KSC, and for added realism, engineers there mounted the model on a slope to match its relative position on the interior of the crater in which it stood on the Moon. Conrad and Scott used the Lunar Landing Training Vehicle (LLTV) at Ellington Air Force Base (AFB) near MSC to train for the final 200 feet of the descent to the lunar surface.

      Left: Apollo 12 astronauts Alan L. Bean, left, and Charles “Pete” Conrad rehearse their lunar surface spacewalks at NASA’s Kennedy Space Center in Florida. Middle: Conrad trains in the use of the Hasselblad camera he and Bean will use on the Moon. Right: Bean, left, and Conrad train with an engineering model of a Surveyor spacecraft.
      With regard to lunar geology training, the Apollo 12 astronauts had one advantage over their predecessors – they could inspect actual Moon rocks and soil returned by the Apollo 11 crew. On Sep. 19, Conrad and Bean arrived at the LRL, where Lunar Sample Curator Anderson met them. Anderson brought out a few lunar rocks and some lunar soil that scientists had already tested and didn’t require to be stored under vacuum or other special conditions, allowing Conrad and Bean to examine them closely and compare them with terrestrial rocks and soil they had seen during geology training field trips. This first-hand exposure to actual lunar samples significantly augmented Conrad and Bean’s geology training. To highlight the greater emphasis placed on lunar surface science, the Apollo 12 crews (prime and backup) went on six geology field trips compared to just one for the Apollo 11 crews.

      Left: Apollo 12 astronauts Charles “Pete” Conrad, left, Richard F. Gordon, and Alan L. Bean prepare for water egress training aboard the MV Retriever in the Gulf of Mexico. Middle: Wearing Biological Isolation Garments and assisted by a decontamination officer, standing in the open hatch, Apollo 12 astronauts await retrieval in the life raft. Right: The recovery helicopter hoists the third crew member using a Billy Pugh net.
      Although the Apollo 11 astronauts returned from the Moon in excellent health and scientists found no evidence of any harmful lunar microorganisms, NASA managers still planned to continue the postflight quarantine program for the Apollo 12 crew members, their spacecraft, and the lunar samples they brought back. The first of these measures involved the astronauts donning Biological Isolation Garments (BIG) prior to exiting the spacecraft after splashdown. Since they didn’t carry the BIGs with them to the Moon and back, one of the recovery personnel, also clad in a BIG, opened the hatch to the capsule after splashdown and handed the suits to the astronauts inside, who donned them before exiting onto a life raft.
      On Sep. 20, the Apollo 12 astronauts rehearsed these procedures, identical to the ones used after the first Moon landing mission, in the Gulf of Mexico near Galveston, Texas, using a boilerplate Apollo CM and supported by the Motorized Vessel (MV) Retriever. As it turned out, NASA later removed the requirement for the crew to wear BIGs, and after their splashdown the Apollo 12 crew wore overalls and respirators.
      Apollo 13

      Left: Apollo 13 prime crew members James A. Lovell and Thomas K. “Ken” Mattingly in the Command Module (CM) for an altitude chamber test – Fred W. Haise is out of the picture at right – at NASA’s Kennedy Space Center in Florida. Middle: Apollo 13 backup astronaut John L. “Jack” Swigert prepares to enter the CM for an altitude chamber test. Right: Apollo 13 backup crew members John W. Young, left, and Swigert in the CM for an altitude chamber test – Charles M. Duke is out of the picture at right.
      Preparations for Apollo 13 continued in parallel. In KSC’s Manned Spacecraft Operations Building (MSOB), Apollo 13 astronauts completed altitude chamber tests of their mission’s CM and LM. Prime crew members Commander James A. Lovell, CMP Thomas K. “Ken” Mattingly, and LMP Fred W. Haise completed the CM altitude test on Sep. 10, followed by their backups John W. Young, Jack L. Swigert, and Charles M. Duke on Sep. 17. The next day, Lovell and Haise completed the altitude test of the LM, followed by Young and Duke on Sep. 22. At the time of these tests, Apollo 13 planned to launch on March 12, 1970, on a 10-day mission to visit the Fra Mauro highlands region of the Moon. To prepare for their lunar surface excursions, Lovell, Haise, Young, and Duke, accompanied by geologist-astronaut Harrison H. “Jack” Schmitt and Caltech geologist Leon T. “Lee” Silver, spent the last week of September in Southern California’s Orocopia Mountains immersed in a geology boot camp.
      Apollo 14 and 15

      Left: At North American Rockwell’s (NAR) Downey, California, facility, workers assemble the Apollo 14 Command Module (CM), left, and Service Module. Right: NAR engineers work on the CM originally intended for Apollo 15.
      Looking beyond Apollo 13, the Apollo 14 crew of Commander Alan B. Shepard, CMP Stuart A. Roosa, and LMP Edgar D. Mitchell and their backups Eugene A. Cernan, Ronald E. Evans, and Joe H. Engle had started training for their mission planned for mid-year 1970. At the NAR facility in Downey, engineers prepared the CM and SM and shipped them to KSC in November 1969. Also at Downey, workers continued assembling the CM and SM planned for the Apollo 15 mission in late 1970. As events transpired throughout 1970, plans for those two missions changed significantly.
      NASA management changes

      Left: Portrait of NASA astronaut James A. McDivitt. Right: NASA Administrator Thomas O. Paine, right, swears in George M. Low as NASA deputy administrator.
      On Sept. 25, NASA appointed veteran astronaut James A. McDivitt as the Manager of the Apollo Spacecraft Program Office at MSC. McDivitt, selected as an astronaut in 1962, commanded two spaceflights, Gemini IV in June 1965 that included the first American spacewalk and Apollo 9 in March 1969, the first test of the LM in Earth orbit. He succeeded George M. Low who, in that position since April 1967, led the agency’s efforts to recover from the Apollo 1 fire and originated the idea to send Apollo 8 on a lunar orbital mission. Under his tenure, NASA successfully completed five crewed Apollo missions including the first human Moon landing. MSC Director Robert R. Gilruth initially assigned Low to plan future programs until Nov. 13, when President Richard M. Nixon nominated him as NASA deputy administrator. The Senate confirmed Low’s nomination on Nov. 25, and NASA Administrator Thomas O. Paine swore him in on Dec. 3. Low filled the position vacant since March 20, 1969.
      To be continued …
      News from around the world in September 1969:
      September 2 – The first automated teller machine is installed at a Chemical Bank branch in Rockville Center, New York.
      September 13 – Hannah-Barbera’s “Scooby Doo, Where Are You?” debuts on CBS.
      September 20 – John Lennon announces in a private meeting his intention to leave The Beatles.
      September 22 – San Francisco Giant Willie Mays becomes the second player, after Babe Ruth, to hit 600 career home runs.
      September 23 – “Butch Cassidy and the Sundance Kid,” starring Paul Newman and Robert Redford, premieres.
      September 24 – Tokyo’s daily newspaper Asahi Shimbun announced that it would be the first to deliver an edition electronically, using a FAX machine that could print a page in five minutes.
      September 26 – Apple Records releases “Abbey Road,” The Beatles’ 11th studio album.
      Explore More
      8 min read 65 Years Ago: First Powered Flight of the X-15 Hypersonic Rocket Plane 
      Article 2 days ago 8 min read 55 Years Ago: Space Task Group Proposes Post-Apollo Plan to President Nixon
      Article 3 days ago 7 min read 15 Years Ago: Japan launches HTV-1, its First Resupply Mission to the Space Station
      Article 1 week ago View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      While astronaut Gene Cernan was on the lunar surface during the Apollo 17 mission, his spacesuit collected loads of lunar dust. The gray, powdery substance stuck to the fabric and entered the capsule causing eye, nose, and throat irritation dubbed “lunar hay fever.” Credit: NASACredit: NASA Moon dust, or regolith, isn’t like the particles on Earth that collect on bookshelves or tabletops – it’s abrasive and it clings to everything. Throughout NASA’s Apollo missions to the Moon, regolith posed a challenge to astronauts and valuable space hardware.

      During the Apollo 17 mission, astronaut Harrison Schmitt described his reaction to breathing in the dust as “lunar hay fever,” experiencing sneezing, watery eyes, and a sore throat. The symptoms went away, but concern for human health is a driving force behind NASA’s extensive research into all forms of lunar soil.
      The need to manage the dust to protect astronaut health and critical technology is already beneficial on Earth in the fight against air pollution.

      Working as a contributor on a habitat for NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) program, Lunar Outpost Inc. developed an air-quality sensor system to detect and measure the amount of lunar soil in the air that also detects pollutants on Earth. 

      Originally based in Denver, the Golden, Colorado-based company developed an air-quality sensor called the Space Canary and offered the sensor to Lockheed Martin Space for its NextSTEP lunar orbit habitat prototype. After the device was integrated into the habitat’s environmental control system, it provided distinct advantages over traditional equipment.

      Rebranded as Canary-S (Solar), the sensor is now meeting a need for low-cost, wireless air-quality and meteorological monitoring on Earth. The self-contained unit, powered by solar energy and a battery, transmits data using cellular technology. It can measure a variety of pollutants, including particulate matter, carbon monoxide, methane, sulfur dioxide, and volatile organic compounds, among others. The device sends a message up to a secure cloud every minute, where it’s routed to either Lunar Outpost’s web-based dashboard or a customer’s database for viewing and analysis.

      The oil and gas industry uses the Canary-S sensors to provide continuous, real-time monitoring of fugitive gas emissions, and the U.S. Forest Service uses them to monitor forest-fire emissions.

      “Firefighters have been exhibiting symptoms of carbon monoxide poisoning for decades. They thought it was just part of the job,” explained Julian Cyrus, chief operating officer of Lunar Outpost. “But the sensors revealed where and when carbon monoxide levels were sky high, making it possible to issue warnings for firefighters to take precautions.”

      The Canary-S sensors exemplify the life-saving technologies that can come from the collaboration of NASA and industry innovations. 
      Read More Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
      2 min read Printed Engines Propel the Next Industrial Revolution
      Efforts to 3D print engines produce significant savings in rocketry and beyond
      Article 5 days ago 2 min read Tech Today: Flipping NASA Tech and Sticking the Landing 
      NASA tech adds gecko grip to phone accessory
      Article 1 month ago 2 min read Tech Today: Space Age Swimsuit Reduces Drag, Breaks Records
      SpeedoUSA worked with Langley Research Center to design a swimsuit with reduced surface drag.
      Article 2 months ago Keep Exploring Discover Related Topics
      Technology Transfer and Spinoffs News
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit around Jupiter. The mission is targeting an Oct. 10, 2024, launch.NASA/JPL-Caltech The first NASA spacecraft dedicated to studying an ocean world beyond Earth, Europa Clipper aims to find out if the ice-encased moon Europa could be habitable.
      NASA’s Europa Clipper spacecraft, the largest the agency has ever built for a planetary mission, will travel 1.8 billion miles (2.9 billion kilometers) from the agency’s Kennedy Space Center in Florida to Europa, an intriguing icy moon of Jupiter. The spacecraft’s launch period opens Thursday, Oct. 10.
      Learn more about how NASA’s Europa Clipper came together – and how it will explore an ocean moon of Jupiter. Credit: NASA/JPL-Caltech  Data from previous NASA missions has provided scientists with strong evidence that an enormous salty ocean lies underneath the frozen surface of the moon. Europa Clipper will orbit Jupiter and conduct 49 close flybys of the moon to gather data needed to determine whether there are places below its thick frozen crust that could support life.
      Here are eight things to know about the mission:
      1. Europa is one of the most promising places to look for currently habitable conditions beyond Earth.
      There’s scientific evidence that the ingredients for life — water, the right chemistry, and energy — may exist at Europa right now. This mission will gather the information scientists need to find out for sure. The moon may hold an internal ocean with twice the water of Earth’s oceans combined, and it may also host organic compounds and energy sources under its surface. If the mission determines that Europa is habitable, it would mean there may be more habitable worlds in our solar system and beyond than we have imagined.
      2. The spacecraft will fly through one of the most punishing radiation environments in our solar system — second only to the Sun’s.
      Jupiter is surrounded by a gigantic magnetic field 20,000 times stronger than Earth’s. As the field spins, it captures and accelerates charged particles, creating radiation that can damage spacecraft. Mission engineers designed a spacecraft vault to shield sensitive electronics from radiation, and they plotted orbits that will limit the time Europa Clipper spends in most radiation-heavy areas around Jupiter.
      3. Europa Clipper will orbit Jupiter, studying Europa while flying by the moon dozens of times.
      The spacecraft will make looping orbits around Jupiter that bring it close to Europa for 49 science-dedicated flybys. On each orbit, the spacecraft will spend less than a day in Jupiter’s dangerous radiation zone near Europa before zipping back out. Two to three weeks later, it will repeat the process, making another flyby.
      4. Europa Clipper features NASA’s most sophisticated suite of science instruments yet.
      To determine if Europa is habitable, Europa Clipper must assess the moon’s interior, composition, and geology. The spacecraft carries nine science instruments and a gravity experiment that uses the telecommunications system. In order to obtain the best science during each flyby, all the science instruments will operate simultaneously on every pass. Scientists will then layer the data together to paint a full picture of the moon.
      5. With antennas and solar arrays fully deployed, Europa Clipper is the largest spacecraft NASA has ever developed for a planetary mission.
      The spacecraft extends 100 feet (30.5 meters) from one end to the other and about 58 feet (17.6 meters) across. That’s bigger than a basketball court, thanks in large part to the solar arrays, which need to be huge so they can collect enough sunlight while near Jupiter to power the instruments, electronics, and other subsystems.
      6. It’s a long journey to Jupiter.
      Jupiter is on average some 480 million miles (about 770 million kilometers) from Earth; both planets are in motion, and a spacecraft can carry only a limited amount of fuel. Mission planners are sending Europa Clipper past Mars and then Earth, using the planets’ gravity as a slingshot to add speed to the spacecraft’s trek. After journeying about 1.8 billion miles (2.9 billion kilometers) over 5½ years, the spacecraft will fire its engines to enter orbit around Jupiter in 2030.
      7. Institutions across the U.S. and Europe have contributed to Europa Clipper.
      Currently, about a thousand people work on the mission, including more than 220 scientists from both the U.S. and Europe. Since the mission was officially approved in 2015, more than 4,000 people have contributed to Europa Clipper, including teams who work for contractors and subcontractors.
      8. More than 2.6 million of us are riding along with the spacecraft, bringing greetings from one water world to another.
      As part of a mission campaign called “Message in a Bottle,” the spacecraft is carrying a poem by U.S. Poet Laureate Ada Limón, cosigned by millions of people from nearly every country in the world. Their names have been stenciled onto a microchip attached to a tantalum metal plate that seals the spacecraft’s electronics vault. The plate also features waveforms of people saying the word “water” in over 100 spoken languages.
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. The main spacecraft body was designed by APL in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
      NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.
      Find more information about Europa here:
      https://europa.nasa.gov
      Europa Clipper Teachable Moment See Europa’s Chaos Terrain in Crisp Detail Europa Clipper Gets Its Super-Size Solar Arrays News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215
      gretchen.p.mccartney@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-125
      Share
      Details
      Last Updated Sep 17, 2024 Related Terms
      Europa Clipper Jet Propulsion Laboratory Jupiter The Solar System Explore More
      4 min read NASA’s Artemis II Crew Uses Iceland Terrain for Lunar Training
      At first glance, it seems like a scene from an excursion on the Moon’s surface…except…
      Article 4 days ago 3 min read NASA to Develop Lunar Time Standard for Exploration Initiatives 
      Article 5 days ago 23 min read The Next Full Moon is a Partial Lunar Eclipse; a Supermoon; the Corn Moon; and the Harvest Moon
      The next full Moon will be Tuesday, September 17, 2024, at 10:35 PM EDT. The…
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...