Jump to content

55 Years Ago: Five Months Until the Moon Landing


Recommended Posts

  • Publishers
Posted

Following the success of the Apollo 8 circumlunar mission, NASA believed that it could achieve a Moon landing by the summer of 1969 and meet President John F. Kennedy’s goal. Much work remained to accomplish that objective. Three crews and their backups trained for the next three Apollo missions while workers at NASA’s Kennedy Space Center (KSC) in Florida prepared the spacecraft and rockets for those flights. With Apollo 9 in the home stretch to test the Lunar Module (LM) in Earth orbit in early March, preparations also continued for Apollo 10 in May, a lunar orbit test of the LM that served as a dress rehearsal for the Moon landing, and for Apollo 11, the landing mission itself planned for July.

Apollo 8

Apollo 8 astronaut Frank Borman and his wife Susan, at left, meet the Royal family at Buckingham Palace during the London stop of their European tour Borman, left, meets with French President Charles de Gaulle and U.S. Ambassador to France R. Sargent Shriver during the Paris stop of the tour In Den Haag, The Netherlands, Apollo 8 astronaut Borman, right, describes the Lunar Module to Queen Juliana
Left: Apollo 8 astronaut Frank Borman and his wife Susan, at left, meet the Royal family at Buckingham Palace during the London stop of their European tour. Middle: Borman, left, meets with French President Charles de Gaulle and U.S. Ambassador to France R. Sargent Shriver during the Paris stop of the tour. Right: In Brussels, Borman, left, presents a model of the Saturn V rocket to Jean Rey, president of the European Commission.

In Den Haag, The Netherlands, Apollo 8 astronaut Borman, right, describes the Lunar Module to Queen Juliana At The Vatican, Borman, left, presents a photograph of the Moon from Apollo 8 to Pope Paul VI The Bormans, Frank, left, Susan, and sons Edwin and Frederick, hold a press conference in Lisbon, the last stop of their European tour
Left: In Den Haag, The Netherlands, Apollo 8 astronaut Borman, right, describes the Lunar Module to Queen Juliana. Middle: At The Vatican, Borman, left, presents a photograph of the Moon from Apollo 8 to Pope Paul VI. Right: The Bormans, Frank, left, Susan, and sons Edwin and Frederick, hold a press conference in Lisbon, the last stop of their European tour.

As President Richard M. Nixon announced on Jan. 30, Apollo 8 astronaut Frank Borman, his wife Susan, and their two children Frederick and Edwin, set off on their European goodwill tour on Feb. 2, flying aboard a presidential Air Force jet. Borman’s Apollo 8 crewmates James A. Lovell and William A. Anders could not participate in the tour because they had already begun training as part of the Apollo 11 backup crew. The Bormans’ 19-day tour took them to London, Paris, Brussels, Den Haag, Bonn, West Berlin, Rome, Madrid, and Lisbon. They met with royalty, politicians, scientists, and Pope Paul VI, gave lectures during which Borman narrated a film from his flight, and held numerous press conferences.

Apollo 9

Apollo 9 astronauts Russell L. Schweickart, left, James A. McDivitt, and David R. Scott pose in front of the control panel for the spacecraft simulators Fisheye lens view of Schweickart, left, and McDivitt in the Lunar Module simulator A technician poses in the Apollo A7L spacesuit, including the Portable Life Support System backpack used for the first time during Apollo 9
Left: Apollo 9 astronauts Russell L. Schweickart, left, James A. McDivitt, and David R. Scott pose in front of the control panel for the spacecraft simulators. Middle: Fisheye lens view of Schweickart, left, and McDivitt in the Lunar Module simulator. Right: A technician poses in the Apollo A7L spacesuit, including the Portable Life Support System backpack used for the first time during Apollo 9.

Apollo 9 astronauts James A. McDivitt, David R. Scott, and Russell L. Schweickart planned to conduct the first crewed test of the LM during their 10-day Earth orbital mission. They and their backups Charles “Pete” Conrad, Richard F. Gordon, and Alan L. Bean spent many hours in the spacecraft simulators and training for the spacewalk component of the mission. The planned spacewalk, the first and only one before the Moon landing mission, would not only test the spacesuit and its Portable Life Support System but also demonstrate an external crew transfer should a problem arise with the internal transfer tunnel or hatches. McDivitt, Scott, and Schweickart provided details of their mission to reporters during a press conference on Feb. 8 at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. They explained that during the mission phase when the two vehicles fly separately, they will use the call signs Spider for the LM and Gumdrop for the Command Module (CM), lighthearted references to the shapes of the respective spacecraft.

Apollo 9 astronauts Russell L. Schweickart, left, James A. McDivitt, and David R. Scott during the preflight crew press conference at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston Senior NASA management assembled for the Apollo 9 Flight Readiness Review at NASA’s Kennedy Space Center (KSC): Associate Administrator for Manned Flight George E. Mueller, left, Apollo Program Director Samuel C. Phillips, KSC Director Kurt H. Debus, MSC Director Robert R. Gilruth, and Marshall Space Flight Center Director Wernher von Braun
Left: Apollo 9 astronauts Russell L. Schweickart, left, James A. McDivitt, and David R. Scott during the preflight crew press conference at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Right: Senior NASA management assembled for the Apollo 9 Flight Readiness Review at NASA’s Kennedy Space Center (KSC): Associate Administrator for Manned Flight George E. Mueller, left, Apollo Program Director Samuel C. Phillips, KSC Director Kurt H. Debus, MSC Director Robert R. Gilruth, and Marshall Space Flight Center Director Wernher von Braun.

Senior NASA managers met at NASA’s Kennedy Space Center (KSC) in Florida for Apollo 9’s Flight Readiness Review the first week of February. At the end of the meeting, they set the launch date for Feb. 28. The following week, engineers in Firing Room 2 of KSC’s Launch Control Center conducted the Countdown Demonstration Test (CDDT), essentially a dress rehearsal for the actual countdown. On Feb. 12, McDivitt, Scott, and Schweickart participated in the final portion of the CDDT, as they would on launch day, by donning their spacesuits and climbing aboard their spacecraft for the final two hours of the test. Engineers began the countdown to launch on Feb. 26 but had to halt it the next day when the astronauts developed head colds. Managers reset the launch date to March 3, and the countdown restarted on March 1.

The Apollo 9 Saturn V at Launch Pad 39A at NASA’s Kennedy Space Center in Florida during the Countdown Demonstration Test (CDDT) Engineers in the Launch Control Center’s Firing Room 2 monitor the rocket and spacecraft during the CDDT Apollo 9 astronauts Russell L. Schweickart, left, David R. Scott, and James A. McDivitt pose in front of their Saturn V following the CDDT
Left: The Apollo 9 Saturn V at Launch Pad 39A at NASA’s Kennedy Space Center in Florida during the Countdown Demonstration Test (CDDT). Middle: Engineers in the Launch Control Center’s Firing Room 2 monitor the rocket and spacecraft during the CDDT. Right: Apollo 9 astronauts Russell L. Schweickart, left, David R. Scott, and James A. McDivitt pose in front of their Saturn V following the CDDT.

Apollo 10

The three stages of the Saturn V stacked on Mobile Launcher-3 The Apollo 10 spacecraft, the Command and Service Modules and the Lunar Module (LM) encased in the Spacecraft LM Adapter, arrives from the Manned Spacecraft Operations Building Workers lift the spacecraft for stacking onto the rocket, the footpads of the LM’s folded landing gear visible Workers lower the spacecraft onto the Saturn V rocket’s third stage
Stacking of the Apollo 10 vehicle in High Bay 2 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Left: The three stages of the Saturn V stacked on Mobile Launcher-3. Middle left: The Apollo 10 spacecraft, the Command and Service Modules and the Lunar Module (LM) encased in the Spacecraft LM Adapter, arrives from the Manned Spacecraft Operations Building. Middle right: Workers lift the spacecraft for stacking onto the rocket, the footpads of the LM’s folded landing gear visible. Right: Workers lower the spacecraft onto the Saturn V rocket’s third stage.

With Apollo 9 on Launch Pad 39A and almost ready to launch, workers in High Bay 2 of KSC’s Vehicle Assembly Building (VAB) completed stacking of the Apollo 10 launch vehicle. The spacecraft, consisting of the Command and Service Modules atop the LM encased in the Spacecraft LM Adapter, arrived from the Manned Spacecraft Operations Building (MSOB) on Feb. 6 and VAB workers stacked it on the Saturn V rocket the same day. Engineers began to conduct integrated tests on the launch vehicle in preparation for rollout to Launch Pad 39B in mid-March. Apollo 10 astronauts Thomas P. Stafford, John W. Young, and Eugene A. Cernan and their backups L. Gordon Cooper, Donn F. Eisele, and Edgar D. Mitchell spent much time in spacecraft simulators and testing their spacesuits in vacuum chambers.

Apollo 11

Apollo 11 astronaut Edwin E. “Buzz” Aldrin, left, confers with support astronauts Ronald E. Evans and Harrison H. “Jack” Schmitt, the only geologist in the astronaut corps at the time, during training for deployment of the Early Apollo Science Experiment Package (EASEP) Astronaut Don L. Lind, suited, practices deploying the EASEP instruments as Aldrin, in white shirt behind the dish antenna, oberves
Left: Apollo 11 astronaut Edwin E. “Buzz” Aldrin, left, confers with support astronauts Ronald E. Evans and Harrison H. “Jack” Schmitt, the only geologist in the astronaut corps at the time, during training for deployment of the Early Apollo Science Experiment Package (EASEP). Right: Astronaut Don L. Lind, suited, practices deploying the EASEP instruments as Aldrin, in white shirt behind the dish antenna, oberves.

With their historic mission only five months away, the Apollo 11 prime crew of Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin and their backups James A. Lovell, William A. Anders, and Fred W. Haise busied themselves training for the Moon landing. Although the primary goal of the first Moon landing mission centered on demonstrating that the Apollo spacecraft systems could safely land two astronauts on the surface and return them safely to Earth, the surface operations also included collecting lunar samples and deploying experiments. During their two-and-a-half-hour surface excursion, Armstrong and Aldrin planned to deploy three instruments comprising the Early Apollo Surface Experiment Package (EASEP) – a passive seismometer, a laser ranging retro-reflector, and a solar wind composition experiment. On Jan. 21, 1969, astronauts Harrison H. “Jack” Schmitt, the only geologist in the astronaut corps, and Don L. Lind conducted a simulation of the EASEP deployment in MSC’s Building 9. Aldrin observed the simulation, obviously with great interest.

Apollo 11 astronauts Edwin E. “Buzz” Aldrin, left, and Neil A. Armstrong during geology training at Sierra Blanco, Texas Apollo 11 backup astronauts Fred W. Haise, left, and James A. Lovell at the Sierra Blanco geology training session
Left: Apollo 11 astronauts Edwin E. “Buzz” Aldrin, left, and Neil A. Armstrong during geology training at Sierra Blanco, Texas. Right: Apollo 11 backup astronauts Fred W. Haise, left, and James A. Lovell at the Sierra Blanco geology training session.

Generic instruction in geology, including classroom work and field trips, became part of overall NASA astronaut training beginning in 1964. Once assigned to a crew that had a very good chance of actually walking on the lunar surface and collecting rock and soil samples, those astronauts received specialized instruction in geology. On Feb. 24, 1969, the two prime moonwalkers Armstrong and Aldrin, along with their backups Lovell and Haise, participated in their only trip specifically dedicated to geology training. The field exercise in west Texas took place near Sierra Blanca and the ruins of Fort Quitman, about 90 miles southeast of El Paso. Accompanied by a team from MSC’s Geology Branch, the astronauts practiced sampling the variety of rocks present at the site to obtain a representative collection, skills needed to choose the best sample candidates during their brief excursion on the lunar surface. 

Workers mount the S-IC first stage on its Mobile Launcher in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida Neil A. Armstrong stands in front of the Lunar Module simulator at the Lunar Landing Research Facility (LLRF) at NASA’s Langley Research Center in Hampton, Virginia Aerial view of the LLRF at Langley
Left: Workers mount the S-IC first stage on its Mobile Launcher in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Middle: Neil A. Armstrong stands in front of the Lunar Module simulator at the Lunar Landing Research Facility (LLRF) at NASA’s Langley Research Center in Hampton, Virginia. Right: Aerial view of the LLRF at Langley.

By mid-February, all three stages of the Apollo 11 Saturn V had arrived in the VAB, and on Feb. 21, workers stacked the S-IC first stage on its Mobile Launcher in High Bay 1. They finished assembling the rocket in March. In an altitude chamber in the nearby MSOB, on Feb. 10, engineers conducted a docking test between the CM and the LM. Five days later, they mated the ascent and descent stages of the LM for further testing. With the Lunar Landing Training Vehicle (LLTV) still grounded following its December 1968 crash, the Lunar Landing Research Facility (LLRF) at NASA’s Langley Research Center in Hampton, Virginia, remained as the only high-fidelity trainer for the descent and landing of the LM on the Moon. Armstrong practiced landings in the LLRF on Feb 12.

Lunar Receiving Laboratory and Mobile Quarantine Facility

To minimize the risk of back contamination of the Earth with any possible lunar microorganisms, NASA designed and built the 83,000-square-foot Lunar Receiving Laboratory (LRL), residing in MSC’s Building 37. The facility isolated the astronauts, their spacecraft, and lunar samples to prevent any Moon germs from escaping into the environment, and also maintained the lunar samples in as pristine a condition as possible. The Mobile Quarantine Facility (MQF) provided isolation for the returning astronauts from shortly after splashdown until their delivery to the LRL, an activity that required transport of the MQF on a cargo jet aircraft. On Feb. 6, following its return from sea trials, workers placed the MQF inside Chamber A of MSC’s Space Environment Simulation Facility. The test in the large vacuum chamber checked out the MQF’s emergency oxygen supply during a simulated aircraft pressure loss. Three test subjects successfully completed the test.

Workers truck the Mobile Quarantine Facility (MQF) into the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston Workers install the MQF in Chamber A of the SESL for a test of the emergency oxygen system Test subjects inside the MQF prepare for the emergency oxygen system test in the SESL
Left: Workers truck the Mobile Quarantine Facility (MQF) into the Space Environment Simulation Laboratory (SESL) at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston. Middle: Workers install the MQF in Chamber A of the SESL for a test of the emergency oxygen system. Right: Test subjects inside the MQF prepare for the emergency oxygen system test in the SESL.

To be continued …

News from around the world in February 1969:

Feb. 3 – Ibuprofen launched in the United Kingdom as a prescription anti-inflammatory analgesic.

Feb. 5 – The population of the United States reaches 200 million.

Feb. 7 – British band The Who record their song “Pinball Wizard.”

Feb. 7 – Diane Krump becomes the first woman jockey at a major U.S. racetrack (Hialeah, Florida).

Feb. 8 – The Allende meteorite weighing nearly two tons explodes in mid-air and fragments fall on Pueblito de Allende, Chihuahua, Mexico.

Feb. 9 – First flight of the Boeing 747 Jumbo Jet from Everett, Washington.

Feb. 21 – First launch of U.S.S.R.’s N-1 Moon rocket, not successful.

Feb. 24 – U.S. launches Mariner 6 to fly-by Mars.

Share

Details

Last Updated
Feb 20, 2024

Related Terms

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Astronaut Don Pettit Soyuz MS-26 Re-entry and Landing
    • By NASA
      Scientists have hypothesized since the 1960s that the Sun is a source of ingredients that form water on the Moon. When a stream of charged particles known as the solar wind smashes into the lunar surface, the idea goes, it triggers a chemical reaction that could make water molecules.   
      Now, in the most realistic lab simulation of this process yet, NASA-led researchers have confirmed this prediction.  
      The finding, researchers wrote in a March 17 paper in JGR Planets, has implications for NASA’s Artemis astronaut operations at the Moon’s South Pole. A critical resource for exploration, much of the water on the Moon is thought to be frozen in permanently shadowed regions at the poles.  
      “The exciting thing here is that with only lunar soil and a basic ingredient from the Sun, which is always spitting out hydrogen, there’s a possibility of creating water,” Li Hsia Yeo, a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “That’s incredible to think about,” said Yeo, who led the study. 
      Solar wind flows constantly from the Sun. It’s made largely of protons, which are nuclei of hydrogen atoms that have lost their electrons. Traveling at more than one million miles per hour, the solar wind bathes the entire solar system. We see evidence of it on Earth when it lights up our sky in auroral light shows. 
      Computer-processed data of the solar wind from NASA’s STEREO spacecraft. Download here: https://svs.gsfc.nasa.gov/20278/ NASA/SwRI/Craig DeForest Most of the solar particles don’t reach the surface of Earth because our planet has a magnetic shield and an atmosphere to deflect them. But the Moon has no such protection. As computer models and lab experiments have shown, when protons smash into the Moon’s surface, which is made of a dusty and rocky material called regolith, they collide with electrons and recombine to form hydrogen atoms.
      Then, the hydrogen atoms can migrate through the lunar surface and bond with the abundant oxygen atoms already present in minerals like silica to form hydroxyl (OH) molecules, a component of water, and water (H2O) molecules themselves.  
      Scientists have found evidence of both hydroxyl and water molecules in the Moon’s upper surface, just a few millimeters deep. These molecules leave behind a kind of chemical fingerprint — a noticeable dip in a wavy line on a graph that shows how light interacts with the regolith. With the current tools available, though, it is difficult to tell the difference between hydroxyl and water, so scientists use the term “water” to refer to either one or a mix of both molecules.
      Many researchers think the solar wind is the main reason the molecules are there, though other sources like micrometeorite impacts could also help by creating heat and triggering chemical reactions. 
      In 2016, scientists discovered that water is released from the Moon during meteor showers. When a speck of comet debris strikes the moon, it vaporizes on impact, creating a shock wave in the lunar soil. With a sufficiently large impactor, this shock wave can breach the soil’s dry upper layer and release water molecules from a hydrated layer below. NASA’s LADEE spacecraft detected these water molecules as they entered the tenuous lunar atmosphere. NASA’s Goddard Space Flight Center Conceptual Image Lab Spacecraft measurements had already hinted that the solar wind is the primary driver of water, or its components, at the lunar surface. One key clue, confirmed by Yeo’s team’s experiment: the Moon’s water-related spectral signal changes over the course of the day.  
      In some regions, it’s stronger in the cooler morning and fades as the surface heats up, likely because water and hydrogen molecules move around or escape to space. As the surface cools again at night, the signal peaks again. This daily cycle points to an active source — most likely the solar wind—replenishing tiny amounts of water on the Moon each day.  
      To test whether this is true, Yeo and her colleague, Jason McLain, a research scientist at NASA Goddard, built a custom apparatus to examine Apollo lunar samples. In a first, the apparatus held all experiment components inside: a solar particle beam device, an airless chamber that simulated the Moon’s environment, and a molecule detector. Their invention allowed the researchers to avoid ever taking the sample out of the chamber — as other experiments did — and exposing it to contamination from the water in the air. 
      “It took a long time and many iterations to design the apparatus components and get them all to fit inside,” said McLain, “but it was worth it, because once we eliminated all possible sources of contamination, we learned that this decades-old idea about the solar wind turns out to be true.” 
      Using dust from two different samples picked up on the Moon by NASA’s Apollo 17 astronauts in 1972, Yeo and her colleagues first baked the samples to remove any possible water they could have picked up between air-tight storage in NASA’s space-sample curation facility at NASA’s Johnson Space Center in Houston and Goddard’s lab. Then, they used a tiny particle accelerator to bombard the dust with mock solar wind for several days — the equivalent of 80,000 years on the Moon, based on the high dose of the particles used. 
      They used a detector called a spectrometer to measure how much light the dust molecules reflected, which showed how the samples’ chemical makeup changed over time. 
      In the end, the team saw a drop in the light signal that bounced to their detector precisely at the point in the infrared region of the electromagnetic spectrum — near 3 microns — where water typically absorbs energy, leaving a telltale signature.  
      While they can’t conclusively say if their experiment made water molecules, the researchers reported in their study that the shape and width of the dip in the wavy line on their graph suggests that both hydroxyl and water were produced in the lunar samples.  
      By Lonnie Shekhtman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      5 min read NASA’s Hubble Tracks a Roaming Magnetar of Unknown Origin


      Article


      2 hours ago
      3 min read What Does NASA Science Do For Me?


      Article


      4 hours ago
      3 min read Exploring the Universe Through Sight, Touch, and Sound


      Article


      20 hours ago
      View the full article
    • By Amazing Space
      LIVE Stream Of The Moon - Backyard Astronomy 11th April
    • By NASA
      NASA NASA astronauts Jim Lovell, Fred Haise, and Jack Swigert launch aboard the Apollo 13 spacecraft from NASA’s Kennedy Space Center in Florida on April 11, 1970. The mission seemed to be going smoothly until 55 hours and 55 minutes in when an oxygen tank ruptured. The new mission plan involved abandoning the Moon landing, looping around the Moon and getting the crew home safely as quickly as possible. The crew needed to go into “lifeboat mode,” using the lunar module Aquarius to save the spacecraft and crew. On April 17, the crew returned to Earth, splashing down in the Pacific Ocean near Samoa.
      Image credit: NASA
      View the full article
    • By NASA
      NASA Deep Space Station 43 (DSS-43), a 230-foot-wide (70-meter-wide) radio antenna at NASA’s Deep Space Network facility in Canberra, Australia, is seen in this March 4, 2020, image. DSS-43 was more than six times as sensitive as the original antenna at the Canberra complex, so it could communicate with spacecraft at greater distances from Earth. In fact, Canberra is the only complex that can send commands to, and receive data from, Voyager 2 as it heads south almost 13 billion miles (21 billion kilometers) through interstellar space. More than 15 billion miles (24 billion kilometers) away, Voyager 1 sends its data down to the Madrid and Goldstone complexes, but it, too, can only receive commands via Canberra.
      As the Canberra facility celebrated its 60th anniversary on March 19, 2025, work began on a new radio antenna. Canberra’s newest addition, Deep Space Station 33, will be a 112-foot-wide (34-meter-wide) multifrequency beam-waveguide antenna. Buried mostly below ground, a massive concrete pedestal will house cutting-edge electronics and receivers in a climate-controlled room and provide a sturdy base for the reflector dish, which will rotate during operations on a steel platform called an alidade.
      When it goes online in 2029, the new Canberra dish will be the last of six parabolic dishes constructed under NASA’s Deep Space Network Aperture Enhancement Program, which is helping to support current and future spacecraft and the increased volume of data they provide. The network’s Madrid facility christened a new dish in 2022, and the Goldstone, California, facility is putting the finishing touches on a new antenna.
      Image credit: NASA
      View the full article
  • Check out these Videos

×
×
  • Create New...