Jump to content

Recommended Posts

Posted
low_STScI-H-p0534a-k-1340x520.png

NASA's Hubble Space Telescope snapped this picture of Mars on October 28, within a day of its closest approach to Earth on the night of October 29. The large regional dust storm appears as the brighter, redder cloudy region in the middle of the planet's disk. This storm, which measures 930 miles (1500 km) has been churning in the planet's equatorial regions for several weeks now, and it is likely responsible for the reddish, dusty haze and other dust clouds seen across this hemisphere of the planet. Hubble's Advanced Camera for Surveys High Resolution Imager took this image when the red planet was 43 million miles (69 million km) from Earth. Mars won't be this close again to Earth until 2018. Mars is now in its warmest months, closest to the Sun in its orbit, resulting in a smaller than normal south polar ice cap which has largely sublimated with the approaching summer.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      It’s a new year on Mars, and while New Year’s means winter in Earth’s northern hemisphere, it’s the start of spring in the same region of the Red Planet. And that means ice is thawing, leading to all sorts of interesting things. JPL research scientist Serina Diniega explains. NASA/JPL-Caltech Instead of a winter wonderland, the Red Planet’s northern hemisphere goes through an active — even explosive — spring thaw.
      While New Year’s Eve is around the corner here on Earth, Mars scientists are ahead of the game: The Red Planet completed a trip around the Sun on Nov. 12, 2024, prompting a few researchers to raise a toast.
      But the Martian year, which is 687 Earth days, ends in a very different way in the planet’s northern hemisphere than it does in Earth’s northern hemisphere: While winter’s kicking in here, spring is starting there. That means temperatures are rising and ice is thinning, leading to frost avalanches crashing down cliffsides, carbon dioxide gas exploding from the ground, and powerful winds helping reshape the north pole.
      “Springtime on Earth has lots of trickling as water ice gradually melts. But on Mars, everything happens with a bang,” said Serina Diniega, who studies planetary surfaces at NASA’s Jet Propulsion Laboratory in Southern California.
      Mars’ wispy atmosphere doesn’t allow liquids to pool on the surface, like on Earth. Instead of melting, ice sublimates, turning directly into a gas. The sudden transition in spring means a lot of violent changes as both water ice and carbon dioxide ice — dry ice, which is much more plentiful on Mars than frozen water — weaken and break.
      “You get lots of cracks and explosions instead of melting,” Diniega said. “I imagine it gets really noisy.”
      Using the cameras and other sensors aboard NASA’s Mars Reconnaissance Orbiter (MRO), which launched in 2005, scientists study all this activity to improve their understanding of the forces shaping the dynamic Martian surface. Here’s some of what they track.
      Frost Avalanches
      In 2015, MRO’s High-Resolution Imaging Science Experiment (HiRISE) camera captured a 66-foot-wide (20-meter-wide) chunk of carbon dioxide frost in freefall. Chance observations like this are reminders of just how different Mars is from Earth, Diniega said, especially in springtime, when these surface changes are most noticeable.
      Martian spring involves lots of cracking ice, which led to this 66-foot-wide (20-meter-wide) chunk of carbon dioxide frost captured in freefall by the HiRISE camera aboard NASA’s Mars Reconnaissance Orbiter in 2015NASA/JPL-Caltech/University of Arizona “We’re lucky we’ve had a spacecraft like MRO observing Mars for as long as it has,” Diniega said. “Watching for almost 20 years has let us catch dramatic moments like these avalanches.”
      Gas Geysers
      Diniega has relied on HiRISE to study another quirk of Martian springtime: gas geysers that blast out of the surface, throwing out dark fans of sand and dust. These explosive jets form due to energetic sublimation of carbon dioxide ice. As sunlight shines through the ice, its bottom layers turn to gas, building pressure until it bursts into the air, creating those dark fans of material.
      As light shines through carbon dioxide ice on Mars, it heats up its bottom layers, which, rather than melting into a liquid, turn into gas. The buildup gas eventually results in explosive geysers that toss dark fans of debris on to the surface.light shines through carbon dioxide ice on Mars But to see the best examples of the newest fans, researchers will have to wait until December 2025, when spring starts in the southern hemisphere. There, the fans are bigger and more clearly defined.
      Spiders
      Another difference between ice-related action in the two hemispheres: Once all the ice around some northern geysers has sublimated in summer, what’s left behind in the dirt are scour marks that, from space, look like giant spider legs. Researchers recently re-created this process in a JPL lab.
      Sometimes, after carbon dioxide geysers have erupted from ice-covered areas on Mars, they leave scour marks on the surface. When the ice is all gone by summer, these long scour marks look like the legs of giant spiders.NASA/JPL-Caltech/University of Arizona Powerful Winds
      For Isaac Smith of Toronto’s York University, one of the most fascinating subjects in springtime is the Texas-size ice cap at Mars’ north pole. Etched into the icy dome are swirling troughs, revealing traces of the red surface below. The effect is like a swirl of milk in a café latte.
      “These things are enormous,” Smith said, noting that some are a long as California. “You can find similar troughs in Antarctica but nothing at this scale.”
      As temperatures rise, powerful winds kick up that carve deep troughs into the ice cap of Mars’ north pole. Some of these troughs are as long as California, and give the Martian north pole its trademark swirls. This image was captured by NASA’s now-inactive Mars Global Surveyor.NASA/JPL-Caltech/MSSS Fast, warm wind has carved the spiral shapes over eons, and the troughs act as channels for springtime wind gusts that become more powerful as ice at the north pole starts to thaw. Just like the Santa Ana winds in Southern California or the Chinook winds in the Rocky Mountains, these gusts pick up speed and temperature as they ride down the troughs — what’s called an adiabatic process.
      Wandering Dunes
      The winds that carve the north pole’s troughs also reshape Mars’ sand dunes, causing sand to pile up on one side while removing sand from the other side. Over time, the process causes dunes to migrate, just as it does with dunes on Earth.
      This past September, Smith coauthored a paper detailing how carbon dioxide frost settles on top of polar sand dunes during winter, freezing them in place. When the frost all thaws away in the spring, the dunes begin migrating again.
      Surrounded by frost, these Martian dunes in Mars’ northern hemisphere were captured from above by NASA’s Mars Reconnaissance Orbiter using its HiRISE camera on Sept. 8, 2022. NASA/JPL-Caltech/University of Arizona Each northern spring is a little different, with variations leading to ice sublimating faster or slower, controlling the pace of all these phenomena on the surface. And these strange phenomena are just part of the seasonal changes on Mars: the southern hemisphere has its own unique activity.
      More About MRO
      The University of Arizona, in Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., in Boulder, Colorado. NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Reconnaissance Orbiter Project for NASA’s Science Mission Directorate, Washington.
      For more information, visit:
      https://science.nasa.gov/mission/mars-reconnaissance-orbiter
      News Media Contacts
      Andrew Good
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      2024-177
      Share
      Details
      Last Updated Dec 20, 2024 Related Terms
      Mars Reconnaissance Orbiter (MRO) Jet Propulsion Laboratory Mars Explore More
      5 min read Cutting-Edge Satellite Tracks Lake Water Levels in Ohio River Basin
      Article 3 days ago 5 min read NASA Mars Orbiter Spots Retired InSight Lander to Study Dust Movement
      Article 4 days ago 5 min read NASA’s Perseverance Rover Reaches Top of Jezero Crater Rim
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Regolith Adherence Characterization, or RAC, is one of 10 science and technology instruments flying on NASA’s next Commercial Lunar Payload Services (CLPS) flight as part of the Blue Ghost Misison-1. Developed by Aegis Aerospace of Webster, Texas, RAC is designed to study how lunar dust reacts to more than a dozen different types of material samples, located on the payload’s wheels. Photo courtesy Firefly Aerospace The Moon may look like barren rock, but it’s actually covered in a layer of gravel, pebbles, and dust collectively known as “lunar regolith.” During the Apollo Moon missions, astronauts learned firsthand that the fine, powdery dust – electromagnetically charged due to constant bombardment by solar and cosmic particles – is extremely abrasive and clings to everything: gloves, boots, vehicles, and mechanical equipment. What challenges does that dust pose to future Artemis-era missions to establish long-term outposts on the lunar surface?
      That’s the task of an innovative science instrument called RAC-1 (Regolith Adherence Characterization), one of 10 NASA payloads flying aboard the next delivery for the agency’s CLPS (Commercial Lunar Payload Services) initiative and set to be carried to the surface by Firefly Aerospace’s Blue Ghost 1 lunar lander.
      Developed by Aegis Aerospace of Webster, Texas, RAC will expose 15 sample materials – fabrics, paint coatings, optical systems, sensors, solar cells, and more – to the lunar environment to determine how tenaciously the lunar dust sticks to each one. The instrument will measure accumulation rates during landing and subsequent routine lander operations, aiding identification of those materials which best repel or shed dust. The data will help NASA and its industry partners more effectively test, upgrade, and protect spacecraft, spacesuits, habitats, and equipment in preparation for continued exploration of the Moon under the Artemis campaign.
      “Lunar regolith is a sticky challenge for long-duration expeditions to the surface,” said Dennis Harris, who manages the RAC payload for NASA’s CLPS initiative at the agency’s Marshall Space Flight Center in Huntsville, Alabama. “Dust gets into gears, sticks to spacesuits, and can block optical properties. RAC will help determine the best materials and fabrics with which to build, delivering more robust, durable hardware, products, and equipment.”
      Under the CLPS model, NASA is investing in commercial delivery services to the Moon to enable industry growth and support long-term lunar exploration. As a primary customer for CLPS deliveries, NASA aims to be one of many customers on future flights. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the development of seven of the 10 CLPS payloads carried on Firefly’s Blue Ghost lunar lander.
      Learn more about. CLPS and Artemis at:
      https://www.nasa.gov/clps
      Alise Fisher
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Headquarters, Washington
      202-358-2546
      Alise.m.fisher@nasa.gov
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256-544-0034  
      corinne.m.beckinger@nasa.gov 
      Share
      Details
      Last Updated Dec 20, 2024 EditorBeth RidgewayContactCorinne M. Beckingercorinne.m.beckinger@nasa.govLocationMarshall Space Flight Center Related Terms
      Commercial Lunar Payload Services (CLPS) Artemis Marshall Space Flight Center Explore More
      3 min read NASA Payload Aims to Probe Moon’s Depths to Study Heat Flow
      Article 2 days ago 4 min read NASA Technology Helps Guard Against Lunar Dust
      Article 8 months ago 4 min read NASA Collects First Surface Science in Decades via Commercial Moon Mission
      Article 10 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: With the festive season approaching, even Earth-observing satellites are getting into the spirit, capturing a stunning compilation of European cities that resemble stars. View the full article
    • By European Space Agency
      Step into the holidays with this picturesque ‘winter wonderland’ scene at the south pole of Mars, captured by ESA’s Mars Express.
      View the full article
    • By NASA
      Caption: An artist’s concept of the International Space Station orbiting Earth. In the distance is the Moon, and a red star representing Mars.Credit: NASA As part of the agency’s efforts to enable broader use of space, NASA has released its final goals and objectives for low Earth orbit, defining the long-term approach toward advancing microgravity science, technology, and exploration for the benefit of all. Developed with input from a wide range of stakeholders, NASA’s Low Earth Orbit Microgravity Strategy will guide the agency toward the next generation of continuous human presence in orbit, enable greater economic growth, and maintain international partnerships.
      “As we near the retirement of the International Space Station in 2030, these objectives are a pivotal next step in solidifying U.S. leadership in space,” said NASA Deputy Administrator Pam Melroy. “Our consultation with industry, academia, and international partners has helped refine a visionary roadmap for our future in low Earth orbit, which will be enabled by a continuous human presence. Together, we are ensuring that the benefits of exploring space continue to grow – advancing science, innovation, and opportunities for all, while preparing for humanity’s next giant leap of exploring the Moon, Mars and beyond.”
      In early 2024, NASA initiated a planning process that included drafting an initial set of goals and objectives for the low Earth orbit microgravity environment and seeking feedback from its workforce, government partners, industry, academia, international space agencies, and the public. The agency reviewed more than 1,800 comments and hosted two workshops, resulting in essential adjustments to the goals and objectives to better align with its partners. The final framework includes 13 goals and 44 objectives across seven key areas: commercial low Earth orbit infrastructure, operations, science, research and technology development for exploration, international cooperation, workforce development and science, technology, engineering, and mathematics (STEM) engagement, and public engagement.
      The agency’s efforts in low Earth orbit are integral to its broader ambitions for deep space exploration. The microgravity environment in low Earth orbit provides a cost-effective, easily accessible proving ground for technologies and research necessary for human missions to explore the solar system. With most of the journey to Moon and Mars occurring in microgravity, the objectives give the opportunity to continue vital human research, test future exploration systems, and retain the critical skills needed to operate in the microgravity environment.
      “These finalized objectives represent a clear path forward as NASA transitions from the International Space Station to a new era of commercial space stations,” said Robyn Gatens, director of the International Space Station and acting director of commercial spaceflight. “Low Earth orbit will remain a hub for scientific discovery, technological advancement, and international cooperation, while making strategic investments in a commercial space ecosystem that benefits not just NASA, but the entire space community.”
      The low Earth orbit microgravity goals and objectives, combined with significant stakeholder engagement, drive NASA’s need to maintain an unbroken, continuous heartbeat of humans in the commercial low Earth orbit destinations era. NASA requires long-duration flights to mitigate risk for future trips to the Red Planet. To ensure reliable access to and use of low Earth orbit, a diversity of providers operating on a regular cadence is essential. The objectives will also guide the development of requirements for future commercial space stations that will support NASA’s missions, while reducing risk for human missions to Mars, preserving operational skills, advancing critical scientific research, and sustaining engagement with international and commercial partners.
      “Collaboration and consultation remain a cornerstone of our low Earth orbit strategy,” said John Keefe, director of cross-agency strategy integration at NASA. “The objectives we’ve established will help NASA craft a work plan that ensures NASA is positioned to meet current and future needs and prioritizes the development of critical capabilities for low Earth orbit.”
      The low Earth orbit microgravity goals and objectives are available online at:
      https://go.nasa.gov/3DsMtNI
      -end-
      Amber Jacobson
      Headquarters, Washington
      202-358-1600
      amber.c.jacobson@nasa.gov
      Share
      Details
      Last Updated Dec 16, 2024 LocationNASA Headquarters Related Terms
      Pamela A. Melroy View the full article
  • Check out these Videos

×
×
  • Create New...