Jump to content

Recommended Posts

  • Publishers
Posted
A large white spacecraft component stands in the center of a large room. At the top, the NASA "worm" logo and ESA (European Space Agency) insignia are painted on the crew module adapter.
The Orion spacecraft for NASA’s Artemis II mission received its latest makeover. Teams adhered the agency’s iconic “worm” logo and ESA (European Space Agency) insignia on the spacecraft’s crew module adapter on Sunday, Jan. 28, inside the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida.
NASA/Rad Sinyak

NASA’s iconic “worm” logo and ESA’s (European Space Agency) insignia are painted on the Orion spacecraft’s crew module adapter in this image from Feb. 1, 2024. The adapter houses electronic equipment for communications, power, and control, and includes an umbilical connector that bridges the electrical, data, and fluid systems between the main modules.

In October 2023, technicians joined the crew and service modules together. The crew module will house the four Artemis II astronauts as they journey around the Moon and back to Earth on an approximately 10-day trip. The spacecraft’s service module, provided by ESA, will supply the vehicle with electricity, propulsion, thermal control, air, and water in space.

See photos of the crew module adapter and the SLS (Space Launch System) solid rocket boosters, which were also recently adorned with the “worm” logo.

Image Credit: NASA/Rad Sinyak

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 3 min read
      Sols 4498-4499: Flexing Our Arm Once Again
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 30, 2025 — Sol 4496, or Martian day 4,496 of the Mars Science Laboratory mission — at 20:12:48 UTC. NASA/JPL-Caltech Written by Conor Hayes, Graduate Student at York University
      Earth planning date: Monday, March 31, 2025
      Planning today began with two pieces of great news. First, our 50-meter drive (about 164 feet) from the weekend plan completed successfully, bringing us oh-so-close to finally driving out of the small canyon that we’ve been traversing through and toward the “boxwork” structures to our southwest. Second, we passed our “Slip Risk Assessment Process” (SRAP), confirming that all six of Curiosity’s wheels are parked firmly on solid ground. Avid readers of this blog will be familiar with last week’s SRAP challenges, which prevented us from using the rover’s arm for the entire week. With a green light on SRAP, we were finally able to put our suite of contact science instruments back to work today.
      The arm gets to work early on the first sol of this plan, with an APXS integration on “Los Osos,” a bedrock target in our workspace, after it has been cleared of the ubiquitous Martian dust by DRT. The rest of our arm activities consist of a series of MAHLI observations later in the afternoon, both of Los Osos and “Black Star Canyon.”
      Of course, just because we managed to get contact science in this plan doesn’t mean we’re letting our remote sensing instruments take a break. In fact, we have more than two hours of remote sensing, split between the two sols and the two science teams (Geology and Mineralogy [GEO] and Atmosphere and Environment [ENV]). GEO will be using Mastcam to survey both the highs and the lows of the terrain, with mosaics of “Devil’s Gate” (some stratigraphy in a nearby ledge) and some small troughs close to the rover. We’ll also be getting even more Mastcam images of “Gould Mesa,” an imaging target in many previous plans, as we continue to drive past it. ChemCam gets involved with a LIBS observation of “Fishbowls,” which will also be imaged by Mastcam, a post-drive AEGIS, and two RMI mosaics of Gould Mesa and “Torote Bowl,” which was also imaged over the weekend.
      ENV’s activities are fairly typical for this time of year as Curiosity monitors the development of the Aphelion Cloud Belt (ACB) with several Navcam cloud movies, as well as seasonal changes in the amount of dust in and above Gale with Navcam line-of-sight observations and Mastcam taus. We’ll also be taking a Navcam dust devil movie to see if we can catch any cold-weather wind-driven dust movement. ENV also filled this plan with their usual set of REMS, RAD, and DAN observations.
      The drive planned today is significantly shorter than the one over the weekend, at just about 10 meters (about 33 feet). This is because we’re driving up a small ridge, which limits our ability to see what’s on the other side. Although our rover knows how to keep itself safe, we still prefer not to drive through terrain that we can’t see in advance, if it can be avoided. Once we’ve got a better eye on what lies in front of us, we will hopefully be able to continue our speedy trek toward the boxwork structures.
      Share








      Details
      Last Updated Apr 03, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4495-4497: Yawn, Perched, and Rollin’


      Article


      3 days ago
      3 min read Visiting Mars on the Way to the Outer Solar System


      Article


      6 days ago
      2 min read Sols 4493-4494: Just Looking Around


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Amazing Space
      Incredible Video Of Our Sun TODAY - 17th March
    • By Amazing Space
      Views of the Moon - Captured During Our Livestreams
    • By USH
      EBANI stands for "Unidentified Anomalous Biological Entity," referring to a mysterious class of airborne phenomena that may be biological rather than mechanical in nature. These entities are often described as elongated, flexible, and tubular, moving through the sky in a serpentine or twisting manner. 

      They exhibit advanced flight capabilities, including high-speed travel, precise control, and even self-illumination. Some have been observed rendering themselves invisible, raising questions about their energy sources and possible technological origins. 
      Recent observations have revealed formations of translucent spheres in red, white, and blue, challenging conventional classifications of both biology and aerodynamics. 

      Some of these entities have a massive structure composed of thousands of clustered spheres. These entities appear to function as an aircraft carrier, releasing these smaller spheres into Earth's atmosphere for an unknown purpose. 
      While some researchers propose that EBANIs are natural organisms evolving in Earth's upper atmosphere under unfamiliar physical laws, others speculate they may be advanced artificial (eventually biological) constructs, potentially extraterrestrial probes or surveillance devices, given the presence of large structures expelling numerous smaller spheres. 

      Are they living UFOs, advanced biological organisms that function autonomously within the spheres, without the need for pilots?
        View the full article
    • By NASA
      Official NASA portrait of Norman D. Knight. Credit: NASA NASA has selected Norman Knight as acting deputy director of Johnson Space Center. Knight currently serves as Director of Johnson’s Flight Operations Directorate (FOD), responsible for astronaut training and for overall planning, directing, managing, and implementing overall mission operations for NASA human spaceflight programs. This also includes management for all Johnson aircraft operations and aircrew training. Knight will serve in this dual deputy director and FOD director role for the near term.
      “It is an honor to accept my new role as acting deputy director for Johnson,” Knight said. “Human spaceflight is key to our agency’s mission and our Johnson team is unified in that goal. The successes we see every day are the evidence of that. It never ceases to amaze me what our team is capable of.”
      Knight began his career at the Johnson Space Center as a Space Shuttle mechanical systems flight controller, working 40 missions in this capacity. He progressed through management roles with increasing responsibility, and in 2000, he was selected as a flight director and worked in that capacity for numerous International Space Station expeditions and Space Shuttle missions. In 2009, he became the deputy chief of the Flight Director Office and participated in a NASA fellowship at Harvard Business School in general management. In 2012, Knight was selected as the chief of the Flight Director Office and then in 2018 as deputy director of the Flight Operations Directorate after serving a temporary assignment as the assistant administrator, Human Exploration and Operations Mission Directorate at NASA Headquarters. In 2021, Knight was selected as the director of FOD.
      “Norm has an accomplished career within the agency,” said Steven Koerner, Johnson acting director. “His leadership, expertise, and dedication to the mission will undoubtably drive our continued success.”
      Throughout his career, Knight has been recognized for outstanding technical achievements and leadership, receiving a Spaceflight Awareness Honoree award for STS-82. He also received several center and agency awards, including two Exceptional Achievement medals, multiple Johnson and agency group achievement awards, two Superior Accomplishment awards, an Outstanding Leadership medal, the Johnson Director’s Commendation award, and the Distinguished Service medal.
      Knight earned a bachelor’s degree in aeronautical engineering from the Embry Riddle Aeronautical University in 1990.
      View the full article
  • Check out these Videos

×
×
  • Create New...