Jump to content

La NASA recibe al ministro de Relaciones Exteriores de Uruguay para la firma de los Acuerdos de Artemis


NASA

Recommended Posts

  • Publishers
From left to right, Uruguayan Ambassador to the United States Andrés Augusto Durán Hareau, U.S. Department of State Deputy Assistant Secretary Kevin Sullivan, NASA Administrator Bill Nelson, and Uruguayan Foreign Minister Omar Paganini pose for a photo during an Artemis Accords signing ceremony, Thursday, Feb. 15, 2024, at the Mary W. Jackson NASA Headquarters building in Washington.
De izquierda a derecha, el embajador de Uruguay en Estados Unidos, Andrés Augusto Durán Hareau, el subsecretario adjunto del Departamento de Estado de Estados Unidos, Kevin Sullivan, el administrador de la NASA, Bill Nelson, y el ministro de Relaciones Exteriores uruguayo, Omar Paganini, posan para una foto durante la ceremonia de firma de los Acuerdos de Artemis, el jueves 15 de febrero de 2024, en el edificio Mary W. Jackson de la sede de la NASA en Washington. Uruguay es el 36.º país en firmar los Acuerdos de Artemis, que establecen un conjunto práctico de principios para guiar la cooperación en la exploración espacial entre las naciones que participan en el programa Artemis de la NASA. Créditos: NASA/Keegan Barber

En una ceremonia celebrada el jueves 15 de febrero en la sede de la NASA en Washington, Uruguay se convirtió en el trigésimo sexto país en firmar los Acuerdos de Artemis. El administrador de la NASA, Bill Nelson, participó en la ceremonia de firma por parte de la agencia, y el ministro de Relaciones Exteriores, Omar Paganini, firmó estos acuerdos en nombre de Uruguay.

Los Acuerdos de Artemis establecen un conjunto práctico de principios para guiar la cooperación en materia de exploración espacial entre naciones.

También participaron en el evento:

• Pam Melroy, administradora adjunta de la NASA

• Karen Feldstein, administradora asociada de la Oficina de Relaciones Internacionales e Interinstitucionales de la NASA

• Kevin Sullivan, subsecretario adjunto del Departamento de Estado de Estados Unidos

• Andrés Augusto Durán Hareau, embajador de Uruguay en Estados Unidos

• Heide Fulton, embajadora de Estados Unidos en Uruguay

“La NASA da la bienvenida a Uruguay como el miembro más reciente de la familia de los Acuerdos de Artemis”, dijo Nelson. “Estados Unidos y Uruguay comparten un compromiso con la democracia y la paz y, ahora, extendimos estos principios hacia el cosmos para comprometernos con la exploración del espacio de forma segura y transparente”.

Los Acuerdos de Artemis fueron establecidos en 2020 por Estados Unidos junto con otros siete países fundadores. Desde entonces, los signatarios de estos acuerdos han mantenido debates centrados en la mejor manera de poner en práctica los principios de los Acuerdos de Artemis.

“Nos sentimos honrados de tener la oportunidad de presentar la cooperación espacial como un nuevo capítulo en la sólida agenda bilateral entre Uruguay y Estados Unidos”, dijo Paganini. “Estamos seguros de que esta ceremonia de firma no es un fin en sí misma, sino el comienzo de una nueva vía bilateral basada en actividades intensivas en conocimiento y de nuevas oportunidades para nuestro pueblo”.

Los Acuerdos de Artemis fortalecen e implementan obligaciones clave del Tratado sobre el Espacio Ultraterrestre de 1967. También fortalecen el compromiso de Estados Unidos y las naciones signatarias con el Convenio de Registro y el Acuerdo de Rescate y Devolución, así como las mejores prácticas que tienen el respaldo de la NASA y sus socios, incluyendo la divulgación pública de datos científicos

Se espera que en los próximos meses y años más países firmen estos acuerdos, los cuales fomentan actividades seguras, pacíficas y prósperas en el espacio. Aprende más acerca de los Acuerdos de Artemis en el siguiente sitio web en inglés:

https://www.nasa.gov/artemis-accords

-fin-

Faith McKie / Roxana Bardan
Sede, Washington
202-358-1600
faith.mckie@nasa.gov / roxana.bardan@nasa.gov

María José Viñas
Sede, Washington
202-358-1600
maria-jose.vinasgarcia@nasa.gov

Share

Details

Last Updated
Feb 16, 2024
Editor
Roxana Bardan

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
      The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
      Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
      “Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
      A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
      There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
      Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
      NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
      NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on HLS, visit: 
      https://www.nasa.gov/humans-in-space/human-landing-system
      News Media Contact
      Corinne Beckinger 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      corinne.m.beckinger@nasa.gov 
      Explore More
      8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
      Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
      Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
      Article 1 day ago
      r
      View the full article
    • By NASA
      2 Min Read Why NASA Is a Great Place to Launch Your Career 
      Students at NASA's Jet Propulsion Laboratory pose for photos around the laboratory wearing their eclipse glasses. Credits: NASA/JPL-Caltech  Recently recognized as the most prestigious internship program by Vault.com, NASA has empowered countless students and early-career professionals to launch careers in science, technology, engineering, and mathematics (STEM) fields. NASA interns make real contributions to space and science missions, making it one of the best places to start your career. 
      “NASA internships give students the chance to work on groundbreaking projects alongside experts, providing impactful opportunities for professional growth,” said Mike Kincaid, associate administrator for NASA’s Office of STEM Engagement. “Since starting my career as an intern at NASA’s Johnson Space Center in Houston, I’ve experienced firsthand how NASA creates lasting connections and open doors—not just for me, but for former interns who are now colleagues across the agency. These internships build STEM skills, confidence, and networks, preparing the next generation of innovators and leaders.” 
      NASA interns achieve impressive feats, from discovering new exoplanets to becoming astronauts and even winning Webby Awards for their science communication efforts. These valuable contributors play a crucial role in NASA’s mission to explore the unknown for the benefit of all. Many NASA employees start their careers as interns, a testament to the program’s lasting impact. 
      Students congratulate the 23rd astronaut class at NASA’s Johnson Space Center in Houston on March 5, 2024.NASA/Josh Valcarcel Additionally, NASA is recognized as one of America’s Best Employers for Women and one of America’s Best Employers for New Graduates by Forbes, reflecting the agency’s commitment to fostering a diverse and inclusive environment. NASA encourages people from underrepresented groups to apply, creating a diverse cohort of interns who bring a wide range of perspectives and ideas to the agency.  
      “My internship experience has been incredible. I have felt welcomed by everyone I’ve worked with, which has been so helpful as a Navajo woman as I’ve often felt like an outsider in male-dominated STEM spaces,” said Tara Roanhorse, an intern for NASA’s Office of STEM Engagement. 
      If you’re passionate about space, technology, and making a difference in the world, NASA’s internship program is the perfect place to begin your journey toward a fulfilling and impactful career.  
      To learn more about NASA’s internship programs, visit: https://www.intern.nasa.gov/ 
      Keep Exploring Discover More STEM Topics From NASA
      For Colleges and Universities
      For Students Grades 9-12
      Join Artemis
      Learning Resources
      View the full article
    • By NASA
      The future of human space exploration took a bold step forward at NASA’s Johnson Space Center in Houston on Nov. 15, 2024, as Texas A&M University leaders’ broke ground for the Texas A&M University Space Institute.

      Texas state officials, NASA leaders, and distinguished guests participated in the ceremony, held near the future development site of Johnson’s new Exploration Park, marking an important milestone in a transformative partnership to advance research, innovation, and human spaceflight.
      NASA’s Johnson Space Center Director Vanessa Wyche gives remarks at the Texas A&M University Space Institute groundbreaking ceremony in Houston on Nov. 15, 2024. NASA/Robert Markowitz “This groundbreaking is not just a physical act of breaking ground or planting a flag,” said Johnson Director Vanessa Wyche. “This is the moment our vision—to dare to expand frontiers and unite with our partners to explore for the benefit of all humanity—will be manifested.”

      The Texas A&M University Space Institute will be the first tenant at NASA’s 240-acre Exploration Park to support facilities that enhance commercial access, foster a collaborative development environment, and strengthen the United States’ competitiveness in the space and aerospace industries.
      Chairman Bill Mahomes Jr. of the Texas A&M University System Board of Regents, left, Chancellor John Sharp of the Texas A&M University System, and Johnson Director Vanessa Wyche hold a commemorative plaque celebrating the establishment of the Texas A&M University Space Institute at Exploration Park. NASA/Robert Markowitz Exploration Park aims to foster research, technology transfer, and a sustainable pipeline of career development for the Artemis Generation and Texas workers transitioning to the space economy. The park represents a key achievement of Johnson’s 2024 Dare | Unite | Explore commitments, emphasizing its role as the hub of human spaceflight, developing strategic partnerships, and paving the way for a thriving space economy.

      Research conducted at the Space Institute is expected to accelerate human spaceflight by providing opportunities for the brightest minds worldwide to address the challenges of living in low Earth orbit, on the Moon, and on Mars.
      Senior leadership from Johnson Space Center gathers for the groundbreaking ceremony of the Texas A&M University Space Institute. NASA/Robert Markowitz Industry leaders and Johnson executives stood alongside NASA’s Lunar Terrain Vehicle and Space Exploration Vehicle, symbolizing their commitment to fostering innovation and collaboration.

      Texas A&M University Space Institute director and retired NASA astronaut Dr. Nancy Currie-Gregg and Dr. Rob Ambrose, Space Institute associate director, served as the masters of ceremony for the event. Johnson leaders present included Deputy Director Stephen Koerner; Associate Director Donna Shafer; Associate Director for Vision and Strategy Douglas Terrier; Director of External Relations Office Arturo Sanchez; and Chief Technologist and Director of the Business Development and Technology Integration Office Nick Skytland.

      Also in attendance were Texas State Rep. Greg Bonnen; Texas A&M University System Board of Regents Chairman William Mahomes Jr.; Texas A&M University System Chancellor John Sharp; Texas A&M University President and Retired Air Force Gen. Mark Welsh III; and Texas A&M Engineering Vice Chancellor and Dean Robert Bishop.
      Texas A&M University Space Institute Director and retired NASA astronaut Nancy Currie-Gregg plants a Texas A&M University Space Institute flag at Johnson Space Center, symbolizing the partnership between the institute and NASA.NASA/Robert Markowitz The institute, expected to open in September 2026, will feature the world’s largest indoor simulation spaces for lunar and Martian surface operations, high-bay laboratories, and multifunctional project rooms.

      “The future of Texas’ legacy in aerospace is brighter than ever as the Texas A&M Space Institute in Exploration Park will create an unparalleled aerospace, economic, business development, research, and innovation region across the state,” Wyche said. “Humanity’s next giant leap starts here!”
      View the full article
    • By NASA
      NASA Read this story in English here.
      La Estación Espacial Internacional es el hogar de la humanidad en el espacio y una estación de investigación que gira en órbita sobre la Tierra a unos 400 kilómetros (250 millas) de altura. La NASA y sus socios internacionales han mantenido una presencia humana continua a bordo de la estación espacial durante más de 24 años, haciendo investigaciones que no es posible realizar en la Tierra.
      La gente que vive y trabaja a bordo de este laboratorio en microgravedad también forma parte de las investigaciones que se llevan a cabo, y ellos ayudan a abordar complejos problemas de la salud humana en la Tierra y preparan a la humanidad para viajar más lejos que nunca, incluyendo la Luna y Marte.
      Estas son algunas de las preguntas frecuentes sobre cómo la NASA y su equipo de médicos, psicólogos, nutricionistas, científicos del ejercicio y otros profesionales especializados garantizan la salud y la condición física de los astronautas a bordo del laboratorio orbital.
      ¿Cuánto dura una estadía típica a bordo de la Estación Espacial Internacional?
      Una misión típica a la Estación Espacial Internacional dura unos seis meses, pero puede variar en función del calendario de visitas de naves espaciales, las prioridades de la misión y otros factores. Los astronautas de la NASA también han permanecido a bordo de la estación espacial durante períodos de tiempo más largos. Estas se conocen como misiones de larga duración, y misiones anteriores de este tipo han proporcionado a la NASA cuantiosos datos sobre los vuelos espaciales a largo plazo y sus efectos en el cuerpo humano, los cuales la agencia aplica a cualquier misión tripulada.
      Durante las misiones de larga duración, el equipo de profesionales médicos de la NASA se centra en optimizar la salud física y conductual de los astronautas y su desempeño, para ayudar a garantizar el éxito de la misión. Estos esfuerzos también ayudan a la NASA a prepararse para futuras misiones humanas a la Luna, Marte y más allá.
      ¿Cómo mantiene la NASA saludables a los astronautas mientras están en el espacio?
      La NASA tiene un equipo de médicos, psicólogos y otros especialistas en tierra que se dedican a dar apoyo a la salud y el bienestar de los astronautas antes, durante y después de cada misión espacial. La NASA asigna a cada tripulación médicos con formación especializada en medicina espacial, denominados médicos de la tripulación de vuelo, una vez que la tripulación ha sido seleccionada para una misión. Los médicos de la tripulación de vuelo supervisan la atención de salud y la capacitación médica mientras los miembros de la tripulación se preparan para su misión, y monitorean la salud de la tripulación antes, durante y después de su misión a la estación espacial.
      ¿Cómo apoya la NASA el bienestar mental y emocional de sus astronautas mientras están en el espacio?
      El equipo de salud conductual de la NASA proporciona servicios de apoyo psicológico determinados de manera individual para los miembros de la tripulación y sus familias durante cada misión. Garantizar que los astronautas puedan mantener su vitalidad en entornos extremos comienza tan pronto se inicia el proceso de selección de astronautas, en el que los candidatos son evaluados en capacidades como su adaptabilidad y resiliencia. Los astronautas reciben una formación exhaustiva que les ayuda a utilizar herramientas y tratamientos de autoevaluación para gestionar su salud conductual. La NASA también ofrece capacitación en destrezas expedicionarias a fin de preparar a cada astronauta para las misiones en capacidades importantes, como los cuidados personales y el cuidado del equipo, las comunicaciones y las destrezas de liderazgo y colaboración.
      Para ayudar a mantener la motivación y la moral a bordo de la estación espacial, los astronautas pueden enviar correos electrónicos, hacer llamadas y videoconferencias con sus familiares y amigos, recibir paquetes personales enviados a bordo de las misiones de reabastecimiento de carga de la NASA y sostener teleconferencias con un psicólogo, si es necesario.
      ¿Cómo afecta la microgravedad a la salud física de los astronautas?
      En microgravedad, sin la carga continua de la gravedad de la Tierra, se producen muchos cambios en el cuerpo humano. La NASA entiende muchas de las respuestas del sistema humano al entorno espacial, entre las que se cuentan las adaptaciones a la densidad ósea, la salud muscular, sensitivomotora y cardiovascular, pero todavía queda mucho por aprender. Estos efectos de los vuelos espaciales varían de uno a otro astronauta, por lo que los médicos de la tripulación de vuelo de la NASA monitorean regularmente la salud de cada miembro de la tripulación durante una misión e individualizan las rutinas de dieta y acondicionamiento físico para dar prioridad a la salud y el estado físico durante su permanencia en el espacio.
      ¿Por qué los astronautas hacen ejercicio en el espacio?
      Todos los astronautas a bordo del laboratorio en órbita participan en planes de ejercicio específicamente diseñados y similares a los de la Tierra. Para mantener su fuerza y resistencia, los miembros de la tripulación tienen programadas dos horas y media de ejercicio diario para sustentar su salud muscular, ósea, aeróbica y sensitivomotora. El equipo actual a bordo de la estación espacial incluye el Dispositivo Avanzado de Ejercicio Resistivo (ARED, por sus siglas en inglés), que imita el levantamiento de pesas; una cinta de correr, llamada T2; y el Cicloergómetro con Sistema de Aislamiento y Estabilización de Vibraciones (CEVIS, por sus siglas en inglés) para el ejercicio cardiovascular.
      ¿Qué función cumplen la alimentación y la nutrición en el apoyo a la salud de los astronautas?
      La nutrición desempeña un papel fundamental en el mantenimiento de la salud y el rendimiento óptimo de un astronauta antes, durante y después de su misión. La alimentación también cumple un rol psicosocial durante la prolongada estancia de un astronauta a bordo de la estación espacial. Los expertos que trabajan en el Laboratorio de Sistemas de Alimentación Espacial de la NASA en el Centro Johnson en Houston desarrollan alimentos nutritivos y apetitosos. Los miembros de la tripulación tienen pueden complementar las opciones del menú estándar con sus platos favoritos personales, que pueden brindar un sabor hogareño.
      NASA ¿Cómo sabe la NASA si los astronautas están recibiendo los nutrientes adecuados?
      Los nutricionistas y científicos de bioquímica nutricional de la NASA determinan los nutrientes (vitaminas, minerales, calorías) que los astronautas necesitan mientras están en el espacio. Este equipo lleva el registro de lo que come cada miembro de la tripulación mediante un programa de seguimiento basado en computadoras de tableta, que cada astronauta completa a diario. Los datos de la aplicación se envían semanalmente a los nutricionistas para controlar la ingesta dietética. El análisis de las muestras de sangre y orina de los astronautas que son tomadas antes, durante y después de las misiones espaciales es una parte crucial del estudio de cómo responden sus cuerpos a las condiciones únicas de los vuelos espaciales. Estas muestras proporcionan información valiosa sobre cómo cada astronauta se adapta a la microgravedad, la radiación y otros factores que afectan la fisiología humana en el espacio.
      ¿Cómo se entrenan los astronautas para trabajar juntos mientras están en el espacio?
      Además de su capacitación técnica, los astronautas participan en la formación de destrezas de trabajo en equipo. Aprenden destrezas eficaces para la vida en grupo y cómo cuidarse y apoyarse unos a otros. Debido a su naturaleza remota y aislada, los vuelos espaciales de larga duración pueden dificultar el trabajo en equipo. Los astronautas deben mantener la conciencia situacional e implementar el programa de vuelo en un entorno en constante cambio. Por lo tanto, la comunicación efectiva es fundamental cuando se trabaja en equipo a bordo de la estación y con diferentes equipos de soporte en tierra. Los astronautas también deben ser capaces de comunicar información compleja a personas con diferente formación profesional. En última instancia, los astronautas son personas que viven y trabajan juntas a bordo de la estación y deben ser capaces de llevar a cabo un trabajo altamente técnico y resolver cualquier problema interpersonal que pueda surgir.
      ¿Qué sucede si hay una emergencia médica a bordo de la estación espacial?
      Todos los astronautas reciben capacitación médica y tienen contacto regular con un equipo de médicos que vigilan de cerca su salud desde tierra. La NASA también mantiene una farmacia bien surtida y un conjunto de equipamientos médicos a bordo de la estación espacial para atender diversas afecciones y lesiones. Si una emergencia médica requiere volver a la Tierra, la tripulación regresará en la nave espacial que fue llevada a bordo para recibir atención médica urgente en tierra.
      NASA/Bill Ingalls Puedes obtener más información sobre la Dirección de Salud y Desempeño Humano de la NASA (en inglés) en:
      www.nasa.gov/hhp
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for life before DNA emerged — can favor making the building blocks of proteins in either the left-hand or the right-hand orientation. Resolving this mystery could provide clues to the origin of life. The findings appear in research recently published in Nature Communications.
      Proteins are the workhorse molecules of life, used in everything from structures like hair to enzymes (catalysts that speed up or regulate chemical reactions). Just as the 26 letters of the alphabet are arranged in limitless combinations to make words, life uses 20 different amino acid building blocks in a huge variety of arrangements to make millions of different proteins. Some amino acid molecules can be built in two ways, such that mirror-image versions exist, like your hands, and life uses the left-handed variety of these amino acids. Although life based on right-handed amino acids would presumably work fine, the two mirror images are rarely mixed in biology, a characteristic of life called homochirality. It is a mystery to scientists why life chose the left-handed variety over the right-handed one.
      A diagram of left-handed and right-handed versions of the amino acid isovaline, found in the Murchison meteorite.NASA DNA (deoxyribonucleic acid) is the molecule that holds the instructions for building and running a living organism. However, DNA is complex and specialized; it “subcontracts” the work of reading the instructions to RNA (ribonucleic acid) molecules and building proteins to ribosome molecules. DNA’s specialization and complexity lead scientists to think that something simpler should have preceded it billions of years ago during the early evolution of life. A leading candidate for this is RNA, which can both store genetic information and build proteins. The hypothesis that RNA may have preceded DNA is called the “RNA world” hypothesis.
      If the RNA world proposition is correct, then perhaps something about RNA caused it to favor building left-handed proteins over right-handed ones. However, the new work did not support this idea, deepening the mystery of why life went with left-handed proteins.
      The experiment tested RNA molecules that act like enzymes to build proteins, called ribozymes. “The experiment demonstrated that ribozymes can favor either left- or right-handed amino acids, indicating that RNA worlds, in general, would not necessarily have a strong bias for the form of amino acids we observe in biology now,” said Irene Chen, of the University of California, Los Angeles (UCLA) Samueli School of Engineering, corresponding author of the Nature Communications paper.
      In the experiment, the researchers simulated what could have been early-Earth conditions of the RNA world. They incubated a solution containing ribozymes and amino acid precursors to see the relative percentages of the right-handed and left-handed amino acid, phenylalanine, that it would help produce. They tested 15 different ribozyme combinations and found that ribozymes can favor either left-handed or right-handed amino acids. This suggested that RNA did not initially have a predisposed chemical bias for one form of amino acids. This lack of preference challenges the notion that early life was predisposed to select left-handed-amino acids, which dominate in modern proteins.
      “The findings suggest that life’s eventual homochirality might not be a result of chemical determinism but could have emerged through later evolutionary pressures,” said co-author Alberto Vázquez-Salazar, a UCLA postdoctoral scholar and member of Chen’s research group.
      Earth’s prebiotic history lies beyond the oldest part of the fossil record, which has been erased by plate tectonics, the slow churning of Earth’s crust. During that time, the planet was likely bombarded by asteroids, which may have delivered some of life’s building blocks, such as amino acids. In parallel to chemical experiments, other origin-of-life researchers have been looking at molecular evidence from meteorites and asteroids.
      “Understanding the chemical properties of life helps us know what to look for in our search for life across the solar system,” said co-author Jason Dworkin, senior scientist for astrobiology at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and director of Goddard’s Astrobiology Analytical Laboratory.
      Dworkin is the project scientist on NASA’s OSIRIS-REx mission, which extracted samples from the asteroid Bennu and delivered them to Earth last year for further study.
      “We are analyzing OSIRIS-REx samples for the chirality (handedness) of individual amino acids, and in the future, samples from Mars will also be tested in laboratories for evidence of life including ribozymes and proteins,” said Dworkin.
      The research was supported by grants from NASA, the Simons Foundation Collaboration on the Origin of Life, and the National Science Foundation. Vázquez-Salazar acknowledges support through the NASA Postdoctoral Program, which is administered by Oak Ridge Associated Universities under contract with NASA.
      Share
      Details
      Last Updated Nov 21, 2024 EditorWilliam SteigerwaldContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related Terms
      Astrobiology Explore More
      2 min read NASA-Funded Study Examines Tidal Effects on Planet and Moon Interiors
      NASA-supported scientists have developed a method to compute how tides affect the interiors of planets…
      Article 2 weeks ago 2 min read NASA’s New Edition of Graphic Novel Features Europa Clipper
      NASA has released a new edition of Issue 4 of the Astrobiology Graphic History series.…
      Article 3 weeks ago 4 min read NASA’s Perseverance Captures ‘Googly Eye’ During Solar Eclipse
      Article 3 weeks ago View the full article
  • Check out these Videos

×
×
  • Create New...