Jump to content

Recommended Posts

  • Publishers
Posted
4 Min Read

Spot the King of Planets: Observe Jupiter

several colorful views of Jupiter
NASA’s Juno spacecraft
Credits:
NASA/JPL-Caltech/SwRI/MSSS/Gerald Eichstadt/Sean Doran

Jupiter is our solar system’s undisputed king of the planets! Jupiter is bright and easy to spot from our vantage point on Earth, helped by its massive size and banded, reflective cloud tops. Jupiter even possesses moons the size of planets: Ganymede, its largest, is bigger than the planet Mercury. What’s more, you can easily observe Jupiter and its moons with a modest instrument, just like Galileo did over 400 years ago.

Jupiter’s position as our solar system’s largest planet is truly earned; you could fit 11 Earths along Jupiter’s diameter, and in case you were looking to fill up Jupiter with some Earth-size marbles, you would need over 1300 Earths to fill it up – and that would still not be quite enough! However, despite its awesome size, Jupiter’s true rule over the outer solar system comes from its enormous mass. If you took all the planets in our solar system and put them together, they would still only be half as massive as Jupiter all by itself. Jupiter’s mighty mass has shaped the orbits of countless comets and asteroids. Its gravity can fling these tiny objects towards our inner solar system and also draw them into itself, as famously observed in 1994 when Comet Shoemaker-Levy 9, drawn towards Jupiter in previous orbits, smashed into the gas giant’s atmosphere. Its multiple fragments slammed into Jupiter’s cloud tops with such violence that the fireballs and dark impact spots were not only seen by NASA’s orbiting Galileo probe, but also observers back on Earth! 

Artist's concept showing how Earth easily fits inside Jupiter's Great Red Spot
Jupiter’s Great Red Spot is close to the size of Earth.
Credit: NASA

Jupiter is easy to observe at night with our unaided eyes, as well-documented by the ancient astronomers who carefully recorded its slow movements from night to night. It can be one of the brightest objects in our nighttime skies, bested only by the Moon, Venus, and occasionally Mars, when the red planet is at opposition. That’s impressive for a planet that, at its closest to Earth, is still over 365 million miles (587 million km) away. It’s even more impressive that the giant world remains very bright to Earthbound observers at its furthest distance: 600 million miles (968 million km)! While the King of Planets has a coterie of 95 known moons, only the four large moons that Galileo originally observed in 1610 – Io, Europa, Ganymede, and Calisto – can be easily observed by Earth-based observers with very modest equipment.

These are called, appropriately enough, the Galilean moons. Most telescopes will show the moons as faint star-like objects neatly lined up close to bright Jupiter. Most binoculars will show at least one or two moons orbiting the planet. Small telescopes will show all four of the Galilean moons if they are all visible, but sometimes they can pass behind or in front of Jupiter, or even each other. Telescopes will also show details like Jupiter’s cloud bands and, if powerful enough, large storms like its famous Great Red Spot, and the shadows of the Galilean moons passing between the Sun and Jupiter. Sketching the positions of Jupiter’s moons during the course of an evening – and night to night – can be a rewarding project!  You can download an activity guide from the Astronomical Society of the Pacific at bit.ly/drawjupitermoons

NASA’s Juno mission currently orbits Jupiter, one of just nine spacecraft to have visited this awesome world. Juno entered Jupiter’s orbit in 2016 to begin its initial mission to study this giant world’s mysterious interior. The years have proven Juno’s mission a success, with data from the probe revolutionizing our understanding of this gassy world’s guts. Juno’s mission has since been extended to include the study of its large moons, and since 2021 the plucky probe, increasingly battered by Jupiter’s powerful radiation belts, has made close flybys of the icy moons Ganymede and Europa, along with volcanic Io.

In Fall 2024 NASA will launch the Europa Clipper mission to study this world and its potential to host life inside its deep subsurface oceans in much more detail. Visit https://science.nasa.gov/jupiter/ to learn about the latest discoveries from Juno and NASA’s missions involving Jupiter!

Originally posted by Dave Prosper: February 2023

Last Updated by Kat Troche: February 2024

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      What They Didn't Teach You About Mercury - The Planets of the Solar System
    • By NASA
      Mars: Perseverance (Mars 2020) Perseverance Home Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
      Mars 2020 Perseverance Joins NASA’s Here to Observe Program
      Katie Stack Morgan and Nicole Spanovich with the NASA Here to Observe Program students and faculty from Kutztown University. Kutztown University The Mars 2020 Perseverance mission has recently joined the NASA Here to Observe (H2O) program, where NASA planetary missions are partnered with universities to encourage undergraduate students from historically marginalized groups to pursue a career in STEM. As part of this program, the Perseverance mission has been paired with Kutztown University, located in Kutztown, Pennsylvania. Selected undergraduate students at the university will be able to observe and interact with Perseverance mission team members throughout this academic year to learn about the individuals who are part of the team and what it means to work on the rover mission.
      To help kick off the program and our new partnership, I traveled to Kutztown along with the Perseverance Deputy Project Scientist, Katie Stack Morgan. We met several members of the Kutztown faculty and staff, toured their beautiful campus, and spent time getting to know the students participating in the H2O program this year. Katie and I were impressed by the enthusiasm and engagement exhibited by the students during our visit. We presented an introduction to the Perseverance mission including the recent discoveries, upcoming plans, and who comprises the mission team. There was also ample time to answer the many thoughtful questions about both the mission and the career paths of both me and Katie.
      As part of this program, the students will observe select Perseverance mission meetings and activities. We kicked this off in October when the students observed a Geologic Context Working Group meeting to learn how scientists work together to understand the data gathered by the rover and make decisions about what the rover should do next. The students will also be paired with mentors from the Perseverance mission team throughout this academic year where they’ll have the chance to learn about the various career paths our team members have taken, read scientific papers, and prepare for a trip to the Lunar and Planetary Sciences Conference.
      Overall, we have a great plan for our H2O partnership and are looking forward to welcoming Kutztown University to the Perseverance mission!
      Written by Nicole Spanovich, Mars 2020 Perseverance Science Office Manager at NASA’s Jet Propulsion Laboratory
      Downloads
      Mars 2020 Team Members with the ‘NASA Here to Observe Program’ Students at Kutztown University
      Nov 6, 2024
      JPEG ()


      Share








      Details
      Last Updated Nov 06, 2024 Related Terms
      Blogs Explore More
      3 min read Sols 4355-4356: Weekend Success Brings Monday Best


      Article


      11 hours ago
      3 min read Sols 4352-4354: Halloween Fright Night on Mars


      Article


      2 days ago
      2 min read Sols 4350-4351: A Whole Team Effort


      Article


      6 days ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By European Space Agency
      Image: 3D-printed rovers play spot the ball View the full article
    • By NASA
      X-ray: NASA/CXC/SAO/J. Drake et al, IR: NASA/JPL-Caltech/Spitzer; Image Processing: NASA/CXC/SAO/N. Wolk Most stars form in collections, called clusters or associations, that include very massive stars. These giant stars send out large amounts of high-energy radiation, which can disrupt relatively fragile disks of dust and gas that are in the process of coalescing to form new planets.
      A team of astronomers used NASA’s Chandra X-ray Observatory, in combination with ultraviolet, optical, and infrared data, to show where some of the most treacherous places in a star cluster may be, where planets’ chances to form are diminished.
      The target of the observations was Cygnus OB2, which is the nearest large cluster of stars to our Sun — at a distance of about 4,600 light-years. The cluster contains hundreds of massive stars as well as thousands of lower-mass stars. The team used long Chandra observations pointing at different regions of Cygnus OB2, and the resulting set of images were then stitched together into one large image.
      The deep Chandra observations mapped out the diffuse X-ray glow in between the stars, and they also provided an inventory of the young stars in the cluster. This inventory was combined with others using optical and infrared data to create the best census of young stars in the cluster.
      In this new composite image, the Chandra data (purple) shows the diffuse X-ray emission and young stars in Cygnus OB2, and infrared data from NASA’s now-retired Spitzer Space Telescope (red, green, blue, and cyan) reveals young stars and the cooler dust and gas throughout the region.
      In these crowded stellar environments, copious amounts of high-energy radiation produced by stars and planets are present. Together, X-rays and intense ultraviolet light can have a devastating impact on planetary disks and systems in the process of forming.
      Planet-forming disks around stars naturally fade away over time. Some of the disk falls onto the star and some is heated up by X-ray and ultraviolet radiation from the star and evaporates in a wind. The latter process, known as “photoevaporation,” usually takes between 5 and 10 million years with average-sized stars before the disk disappears. If massive stars, which produce the most X-ray and ultraviolet radiation, are nearby, this process can be accelerated.
      The researchers using this data found clear evidence that planet-forming disks around stars indeed disappear much faster when they are close to massive stars producing a lot of high-energy radiation. The disks also disappear more quickly in regions where the stars are more closely packed together.
      For regions of Cygnus OB2 with less high-energy radiation and lower numbers of stars, the fraction of young stars with disks is about 40%. For regions with more high-energy radiation and higher numbers of stars, the fraction is about 18%. The strongest effect — meaning the worst place to be for a would-be planetary system — is within about 1.6 light-years of the most massive stars in the cluster.
      A separate study by the same team examined the properties of the diffuse X-ray emission in the cluster. They found that the higher-energy diffuse emission comes from areas where winds of gas blowing away from massive stars have collided with each other. This causes the gas to become hotter and produce X-rays. The less energetic emission probably comes from gas in the cluster colliding with gas surrounding the cluster.
      Two separate papers describing the Chandra data of Cygnus OB2 are available. The paper about the planetary danger zones, led by Mario Giuseppe Guarcello (National Institute for Astrophysics in Palermo, Italy), appeared in the November 2023 issue of the Astrophysical Journal Supplement Series, and is available here. The paper about the diffuse emission, led by Juan Facundo Albacete-Colombo (University of Rio Negro in Argentina) was published in the same issue of Astrophysical Journal Supplement, and is available here.
      NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      JPL managed the Spitzer Space Telescope mission for NASA’s Science Mission Directorate in Washington until the mission was retired in January 2020. Science operations were conducted at the Spitzer Science Center at Caltech. Spacecraft operations were based at Lockheed Martin Space in Littleton, Colorado. Data are archived at the Infrared Science Archive operated by IPAC at Caltech. Caltech manages JPL for NASA.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features a composite image of the Cygnus OB2 star cluster, which resembles a night sky blanketed in orange, purple, and grey clouds.
      The center of the square image is dominated by purple haze. This haze represents diffuse X-ray emissions, and young stars, detected by the Chandra X-ray observatory. Surrounding the purple haze is a mottled, streaky, brick orange cloud. Another cloud resembling a tendril of grey smoke stretches from our lower left to the center of the image. These clouds represent relatively cool dust and gas observed by the Spitzer Space Telescope.
      Although the interwoven clouds cover most of the image, the thousands of stars within the cluster shine through. The lower-mass stars present as tiny specks of light. The massive stars gleam, some with long refraction spikes.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      View the full article
    • By NASA
      Learn Home Europa Trek: NASA Offers a New… Europa Clipper Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   3 min read
      Europa Trek: NASA Offers a New Guided Tour of Jupiter’s Ocean Moon
      NASA’s Europa Clipper mission is on its way to explore a moon of Jupiter that researchers believe may be one of the best places in the Solar System to search for life beyond Earth. While the spacecraft makes its more-than-five year journey to Europa, scientists, students, teachers, and the public can tour and explore the landforms of Europa with newly-released enhancements to NASA’s Europa Trek web portal.
      One of the largest of Jupiter’s nearly 100 recognized moons, Europa is covered with a global ice cap. But beneath that crust of ice, researchers have found an ocean of liquid water, estimated to have about twice the volume of all of Earth’s oceans combined. This vast amount of liquid water is of particular interest to astrobiologists, scientists studying the origin, evolution, and distribution of life in the Universe. Though Europa’s ocean remains hidden beneath its global crust of ice, we can get important clues about its nature by studying the remarkable landforms of Europa’s icy surface.
      To accompany the launch of Europa Clipper, NASA’s Solar System Treks Project released exciting new enhancements to its online Europa Trek portal on September 30, 2024. The new additions to Europa Trek allow users to interactively fly over and explore high-resolution imagery of Europa’s surface from the Voyager, Galileo, and Juno missions. Users can also take a new guided tour of Europa’s amazing landforms, with commentary developed by a collaboration between NASA’s Astrobiology Science Communication Guild and NASA’s Solar System Exploration Research Virtual Institute. The tour and its commentary introduce virtual explorers to the geology and possible biological significance of the diverse features of Europa’s surface.
      “This is really fun. It’s cool how you can zoom into the high resolution data. I’ll spread the word about using this!” – Bob Pappalardo, Europa Clipper Project Scientist
      The new tour and capabilities of Europa Trek were featured at the Europa Clipper public launch program at the Kennedy Space Center Visitor Center on October 6,2024, in advance of the October 14 launch of the mission. As part of the public program conducted by NASA’s Planetary Mission Program Office, the Europa Trek exhibit allowed hundreds of visitors to try their hands at flying over Europa and visualizing its exotic terrain.
      NASA’s Solar System Treks is an infrastructure project within NASA’s Science Activation Team. Their online portals are used for mission planning, planetary science research, and Science, Technology, Engineering, & Mathematics (STEM) education. NASA’s Astrobiology Science Communication Guild is an international, community-based network of astrobiologists who engage in science communication with diverse audiences and learners. Watch for future collaborations between Solar System Treks and the Astrobiology Science Communication Guild at more locations across the Solar System!
      Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      A stop along the guided tour of Europa landforms Share








      Details
      Last Updated Oct 23, 2024 Editor NASA Science Editorial Team Related Terms
      Europa Europa Clipper Opportunities For Educators to Get Involved Opportunities For Students to Get Involved Planetary Science Science Activation Explore More
      5 min read Old Data Yields New Secrets as NASA’s DAVINCI Preps for Venus Trip
      How NASA’s DAVINCI mission to Venus uses old data to reveal new secrets.


      Article


      6 days ago
      6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus


      Article


      2 weeks ago
      4 min read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
  • Check out these Videos

×
×
  • Create New...