Jump to content

The Marshall Star for February 14, 2024


NASA

Recommended Posts

  • Publishers
21 Min Read

The Marshall Star for February 14, 2024

This artist's illustration shows a cross-section of the supermassive black hole and surrounding material in the center of our galaxy.

Marshall Chief Scientist Provides Valuable Insight into NASA Moonquake Study

By Jonathan Deal

The Moon holds clues to the evolution of Earth, the planets, and the Sun, and a new NASA-funded study is helping scientists better understand some of the mysteries beneath the surface of our nearest cosmic neighbor. The co-author of that study is chief scientist of NASA’s Marshall Space Flight Center, Renee Weber, who is also a member of NASA’s Artemis Science Team – a broad group of scientists from around the agency working to commence a new era of deep space science and exploration.

As a lunar seismologist and lunar geophysicist, Weber provides expertise to the Artemis Science Team, including knowledge of the types of seismic events that can occur on the Moon, to better understand its internal geology and surface environment.

Map of possible moonquakes at lunar south pole.
The epicenter of one of the strongest moonquakes recorded by the Apollo Passive Seismic Experiment was in the lunar south polar region. However, the exact location of the epicenter could not be accurately determined. A cloud of possible locations (magenta dots and light blue polygon) of the strong shallow moonquake using a relocation algorithm specifically adapted for very sparse seismic networks are distributed near the pole. Blue boxes show locations of proposed Artemis III landing regions. Lobate thrust fault scarps are shown by small red lines. The cloud of epicenter locations encompasses a number of lobate scarps and many of the Artemis III landing regions.
NASA/LROC/ASU/Smithsonian Institution

The latest study revealed that the Moon is still geologically active and presents evidence that tectonic faults, generated as the Moon’s interior gradually cools and shrinks, are found near some of the areas NASA identified as candidate landing regions for Artemis III – the first Artemis mission planned to have a crewed lunar landing.

“This study looked at tectonic faults and steep slopes in the lunar South polar region and found that some areas are susceptible to seismic shaking and regolith landslides,” Weber said. “Once the faults were mapped, we calculated the sizes of potential moonquakes that could be generated to create a map of seismic hazard in the vicinity of tectonic faults and steep slopes.”

The study discovered that relatively small, young thrust faults, called lobate scarps, are widely distributed in the lunar crust. The scarps form where contractional forces break the crust and push, or thrust, rock on one side of the fault up and over rock on the other side. The contraction is caused by cooling of the Moon’s still-hot interior and tidal forces exerted by Earth, resulting in global shrinking. The scarps were identified in images taken by the Lunar Reconnaissance Orbiter Camera onboard NASA’s LRO (Lunar Reconnaissance Orbiter).

The formation of the faults is accompanied by seismic activity in the form of shallow-depth moonquakes. Such shallow moonquakes were recorded by the Apollo Passive Seismic Network, a series of seismometers deployed by the Apollo astronauts, and could potentially also be recorded by a new seismic instrument scheduled to launch next year aboard an upcoming CLPS (Commercial Lunar Payload Services) flight. That instrument – the Farside Seismic Suite – will return the agency’s first seismic data from the far side of the Moon, helping scientists to understand the region’s tectonic activity. The data may also reveal how often the lunar far side is impacted by small meteorites and determine if the seismicity is different on the far side of the Moon from what was measured during Apollo on the lunar near side.

“To better understand the seismic hazard posed to future human activities on the Moon, we need new seismic data, not just at the South Pole, but globally,” Weber said. “Missions like the upcoming Farside Seismic Suite, as well as future potential missions like the Lunar Geophysical Network concept, will expand upon measurements made during Apollo and add to our knowledge of global seismicity.”

Official Portrait: Renee Weber
Renee Weber is chief scientist at NASA’s Marshall Space Flight Center.
NASA

As NASA develops long-term infrastructure on the lunar surface, Weber’s research will provide invaluable insight for the Artemis Science Team that will be refining mission architectures that preserve flexibility for science and operations at a variety of landing sites and will apply new scientific knowledge, such as continued research on seismic measurements, gathered along the way.

“Being able to go back to the Moon, gather more data, and pick up more samples will help us improve our understanding of the Moon and answer our fundamental questions – how did it form? How did it evolve? Where are the resources? More seismic measurements like the ones conducted during Apollo could help us better characterize seismicity in the lunar South Pole region,” Weber said.

The study does not impact the Artemis III landing region selection process, according to Weber, because estimating how often a specific region experiences a moonquake is difficult to do accurately, and like earthquakes, scientists can’t predict moonquakes. Additionally, for a shorter duration mission like Artemis III, the likelihood of experiencing hazards due to seismic shaking is much lower.

As NASA develops long-term infrastructure, the agency will identify potential regions for where different elements can be established closer to the dates of future Artemis missions. In this site selection process, some of the factors for consideration could be geographic characteristics such as proximity to tectonic features and terrain, making Weber’s research all the more valuable.

Deal is a public affairs officer with Marshall’s Office of Communications.

› Back to Top

Solar Sail Technology Passes Crucial Deployment Test

By Wayne Smith

In his youth, NASA technologist Les Johnson was riveted by the 1974 novel “The Mote in God’s Eye,” by Jerry Pournelle and Larry Niven, in which an alien spacecraft propelled by solar sails visits humanity. Today, Johnson and a NASA team are preparing to test a similar technology.

NASA continues to unfurl plans for solar sail technology as a promising method of deep space transportation. The agency cleared a key technology milestone in January with the successful deployment of one of four identical solar sail quadrants. The deployment was showcased Jan. 30 at Redwire Corp.’s new facility in Longmont, Colorado. NASA’s Marshall Space Flight Center leads the solar sail team, comprised of prime contractor Redwire, which developed the deployment mechanisms and the nearly 100-foot-long booms, and subcontractor NeXolve, of Huntsville, which provided the sail membrane. In addition to leading the project, Marshall developed the algorithms needed to control and navigate with the sail when it flies in space.

solarsail.jpg?w=1240
NASA and industry partners used two 100-foot lightweight composite booms to unfurl the 4,300-square-foot sail quadrant for the first time Oct. 13, 2022, at Marshall Space Flight Center, making it the largest solar sail quadrant ever deployed at the time. On Jan. 30, 2024, NASA cleared a key technology milestone at Redwire’s new facility in Longmont, Colorado, with the successful deployment of one of four identical solar sail quadrants.
NASA

The sail is a propulsion system powered by sunlight reflecting from the sail, much like a sailboat reflects the wind. While just one quarter of the sail was unfurled in the deployment at Redwire, the complete sail will measure 17,780 square feet when fully deployed, with the thickness less than a human hair at 2 and a half microns. The sail is made of a polymer material coated with aluminum.

NASA’s Science Mission Directorate recently funded the solar sail technology to reach a new technology readiness level, or TRL 6, which means it’s ready for proposals to be flown on science missions.

“This was a major last step on the ground before it’s ready to be proposed for space missions,” Johnson, who has been involved with sail technology at Marshall for about 25 years, said. “What’s next is for scientists to propose the use of solar sails in their missions. We’ve met our goal and demonstrated that we’re ready to be flown.”

A solar sail traveling through deep space provides many potential benefits to missions using the technology because it doesn’t require any fuel, allowing very high propulsive performance with very little mass. This in-space propulsion system is well suited for low-mass missions in novel orbits.

“Once you get away from Earth’s gravity and into space, what is important is efficiency and enough thrust to travel from one position to another,” Johnson said.

Some of the missions of interest using solar sail technology include studying space weather and its effects on the Earth, or for advanced studies of the north and south poles of the Sun. The latter has been limited because the propulsion needed to get a spacecraft into a polar orbit around the Sun is very high and simply not feasible using most of the propulsion systems available today. Solar sail propulsion is also possible for enhancing future missions to Venus or Mercury, given their closeness to the Sun and the enhanced thrust a solar sail would achieve in the more intense sunlight there.

Moreover, it’s the ultimate green propulsion system, Johnson said – as long as the Sun is shining, the sail will have propulsion. Where the sunlight is less, he envisions a future where lasers could be used to accelerate the solar sails to high speeds, pushing them outside the solar system and beyond, perhaps even to another star. “In the future, we might place big lasers in space that shine their beams on the sails as they depart the solar system, accelerating them to higher and higher speeds, until eventually they are going fast enough to reach another star in a reasonable amount of time.”

Learn more about solar sails and other NASA advanced space technology.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

NASA Sets Coverage for SpaceX, Intuitive Machines First Moon Mission

As part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign, SpaceX is targeting no earlier than 12:05 a.m. CST on Feb. 15 for a Falcon 9 launch of Intuitive Machines’ first lunar lander to the Moon’s surface. Liftoff will be from Launch Complex 39A at the agency’s Kennedy Space Center.

The launch of the mission was postponed Feb. 13 due to off-nominal methane temperatures prior to stepping into methane load.

im-1-encapsulation-013124-dsc-3126-copy.
The Nova-C lunar lander is encapsulated within the fairing of a SpaceX Falcon 9 rocket in preparation for launch as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative and Artemis campaign.
SpaceX

Live launch coverage will air on NASA+, NASA Television, the NASA app, and the agency’s website. NASA TV launch coverage begins at 11:20 p.m. Coverage is subject to change based on real-time operational activities. Follow the Artemis blog for updates.

Intuitive Machines’ Nova-C lander is expected to land on the Moon on Feb. 22. Among the items on its lander, the IM-1 mission will carry NASA science and technology instruments focusing on plume-surface interactions, space weather/lunar surface interactions, radio astronomy, precision landing technologies, and a communication and navigation node for future autonomous navigation technologies. 

Demonstrating autonomous navigation, the Lunar Node-1 experiment, or LN-1, is a radio beacon designed to support precise geolocation and navigation observations for landers, surface infrastructure, and astronauts, digitally confirming their positions on the Moon relative to other craft, ground stations, or rovers on the move. LN-1 was developed, built, and tested at NASA’s Marshall Space Flight Center.

› Back to Top

Telescopes Show the Milky Way’s Black Hole is Ready for a Kick

An artist’s illustration depicts the findings of a new study about the supermassive black hole at the center of our galaxy called Sagittarius A* (abbreviated as Sgr A*). As reported in a press release, this result found that Sgr A* is spinning so quickly that it is warping spacetime – that is, time and the three dimensions of space – so that it can look more like a football.

These results were made with NASA’s Chandra X-ray Observatory and the National Science Foundation’s Karl G. Jansky Very Large Array, or VLA. A team of researchers applied a new method that uses X-ray and radio data to determine how quickly Sgr A* is spinning based on how material is flowing towards and away from the black hole. They found Sgr A* is spinning with an angular velocity that is about 60% of the maximum possible value, and with an angular momentum of about 90% of the maximum possible value.

This artist's illustration shows a cross-section of the supermassive black hole and surrounding material in the center of our galaxy.
This artist’s illustration depicts the findings of a new study about the supermassive black hole at the center of our galaxy called Sagittarius A* (abbreviated as Sgr A*). This result found that Sgr A* is spinning so quickly that it is warping spacetime – that is, time and the three dimensions of space – so that it can look more like a football.
NASA/CXC/M.Weiss

Black holes have two fundamental properties: their mass (how much they weigh) and their spin (how quickly they rotate). Determining either of these two values tells scientists a great deal about any black hole and how it behaves. In the past, astronomers made several other estimates of Sgr A*’s rotation speed using different techniques, with results ranging from Sgr A* not spinning at all to it spinning at almost the maximum rate.

The new study suggests that Sgr A* is, in fact, spinning very rapidly, which causes the spacetime around it to be squashed down. The illustration shows a cross-section of Sgr A* and material swirling around it in a disk. The black sphere in the center represents the so-called event horizon of the black hole, the point of no return from which nothing, not even light, can escape.

Looking at the spinning black hole from the side, as depicted in this illustration, the surrounding spacetime is shaped like a football. The faster the spin the flatter the football.

The yellow-orange material to either side represents gas swirling around Sgr A*. This material inevitably plunges towards the black hole and crosses the event horizon once it falls inside the football shape. The area inside the football shape but outside the event horizon is therefore depicted as a cavity. The blue blobs show jets firing away from the poles of the spinning black hole. Looking down on the black hole from the top, along the barrel of the jet, spacetime is a circular shape.

The supermassive black hole at the center of the Milky Way may be producing tiny particles, called neutrinos, that have virtually no mass and carry no electric charge. This Chandra image shows the region around the black hole, known as Sagittarius A*, in low, medium, and high-energy X-rays (red, green, and blue respectively.) Scientists have found a connection to outbursts generated by the black hole and seen by Chandra and other X-ray telescopes with the detection of high-energy neutrinos in an observatory under the South Pole.
Chandra X-ray image of Sagittarius A* and the surrounding region.
NASA/CXC/Univ. of Wisconsin/Y.Bai, et al.

A black hole’s spin can act as an important source of energy. Spinning supermassive black holes produce collimated outflows such as jets when their spin energy is extracted, which requires that there is at least some matter in the vicinity of the black hole. Because of limited fuel around Sgr A*, this black hole has been relatively quiet in recent millennia with relatively weak jets. This work, however, shows that this could change if the amount of material in the vicinity of Sgr A* increases.

To determine the spin of Sgr A*, the authors used an empirically based technique referred to as the “outflow method” that details the relationship between the spin of the black hole and its mass, the properties of the matter near the black hole, and the outflow properties. The collimated outflow produces the radio waves, while the disk of gas surrounding the black hole is responsible for the X-ray emission. Using this method, the researchers combined data from Chandra and the VLA with an independent estimate of the black hole’s mass from other telescopes to constrain the black hole’s spin.

The paper describing these results led by Ruth Daly (Penn State University) is published in the January 2024 issue of the Monthly Notices of the Royal Astronomical Society and appears online. The other authors are Biny Sebastian (University of Manitoba, Canada), Megan Donahue (Michigan State University), Christopher O’Dea (University of Manitoba), Daryl Haggard (McGill University) and Anan Lu (McGill University).

NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.

› Back to Top

NASA Expedition 71 Astronauts to Conduct Research Aboard Space Station

Studies of neurological organoids, plant growth, and shifts in body fluids are among the scientific investigations that NASA astronauts Matthew Dominick, Michael Barratt, Jeanette Epps, and Tracy C. Dyson will help support aboard the International Space Station as part of Expedition 71. NASA’s SpaceX Crew-8 mission is targeting launch to the space station later this month.

A flag for Crew-8 will be raised Feb. 26 outside the HOSC (Huntsville Operation Support Center) at NASA’s Marshall Space Flight Center. The HOSC is a multi-mission facility that provides engineering and mission operations support for NASA’s Commercial Crew Program, Space Launch System rocket, Artemis lunar science missions, and science conducted on the space station.

The image is covered by flower-like clusters of pale white and blue cells connected by reddish nerves.
Brain organoid cells from the previous investigation Cosmic Brain Organoids are made of cells from people with Parkinson’s Disease and primary progressive multiple sclerosis. The sixth space station organoid investigation funded by the National Stem Cell Foundation, HBOND, includes for the first time Alzheimer’s iPSCs and testing of the effects of drugs in development to treat neuroinflammation.
New York Stem Cell Research Institute

The Payload Operations Integration Center within HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.

Here are details on some of the work scheduled during this upcoming expedition aboard the microgravity laboratory:

Modeling Neuroinflammation

HBOND (Human Brain Organoid Models for Neurodegenerative Disease & Drug Discovery) studies the mechanisms behind neuroinflammation, a common feature of neurodegenerative disorders. Researchers create organoids using patient-derived iPSCs (induced pluripotent stem cells) from patients who have Parkinson’s disease and primary progressive multiple sclerosis. The sixth space station organoid investigation funded by the National Stem Cell Foundation, HBOND includes for the first time Alzheimer’s iPSCs and testing of the effects of drugs in development to treat neuroinflammation. Results could help improve diagnostics, provide insights into the effects of aging, accelerate drug discovery, and identify therapeutic targets for patients suffering from neurodegenerative diseases. The organoid models also could provide a way to anticipate how extended spaceflight affects the brain and support development of countermeasures.

Protecting Plants from Spaceflight Stressors

Plants can serve as a source of food and provide other life-support services on long-term missions to the Moon and Mars. The Study on Plant Responses Against the Stresses of Microgravity and High Ultraviolet Radiation in Space (Plant UV-B) examines how stress from microgravity, UV radiation, and the combination of the two affect plants at the molecular, cellular, and whole organism levels. Results could increase understanding of plant growth in space and support improvements in plant cultivation technologies for future missions.

iss042e239623.jpg?w=2048
This image shows the Plant Experiment Unit (PEU) hardware for the Plant UV-B investigation.
NASA

Reversing Fluid Shifts

Weightlessness causes fluids in the body to move toward the head, which can cause changes in eye structure and vision known as Spaceflight Associated Neuro-ocular Syndrome (SANS) along with other health problems. Mitigating Headward Fluid Shifts with Veno-constrictive Thigh Cuffs During Spaceflight (Thigh Cuff) examines whether thigh pressure cuffs could provide a simple way to counter this shift in body fluids and help protect astronauts from SANS and other issues on future missions to the Moon and Mars. Thigh cuffs also could help treat or prevent problems for patients on Earth who have conditions that cause fluid accumulation in the head, such as long-term bedrest and diseases.

Incredible Edible Algae

Arthrospira-C (Art-C), an investigation from ESA (European Space Agency) analyzes how the cyanobacterium Limnospira responds to spaceflight conditions and whether it produces the same quantity and quality of oxygen and biomass in space as on Earth. These microalgae, also known as Spirulina, could be used to remove carbon dioxide exhaled by astronauts, which can become toxic in an enclosed spacecraft, and to produce oxygen and fresh food as part of life support systems on future missions. Correct predictions of oxygen and biomass yields are crucial for design of life support systems using bioprocesses. Spirulina also has been shown to have radioprotective properties and eating it could help protect space travelers from cosmic radiation, as well as conserve healthy tissue in patients undergoing radiation treatment on Earth.

Search this database of scientific experiments to learn more about those mentioned above.

› Back to Top

NASA Awards Inaugural Grants to Support Emerging Research Institutions

NASA has awarded $3.7 million to 11 teams to support new collaborations between the agency and United States institutions not historically part of the agency’s research enterprise. These are the first awards given through a new program from the agency’s SMD (Science Mission Directorate) to improve diversity, equity, inclusion, and accessibility in the science and engineering communities, as well as NASA’s workforce.

“As the agency continues to build relationships with under-resourced institutions through initiatives like the bridge program, we are intentionally increasing equitable access to NASA for the best and brightest talents in our nation,” said Shahra Lambert, NASA senior advisor for engagement. “These partnerships will help NASA develop a diverse and capable workforce to further our understanding of the cosmos.”

NASA meatball logo

NASA’s SMD Bridge Program provides seed funding for research projects that will build strong foundations for long-lasting relationships with the agency. The projects offer hands-on training and mentorship for students, as well as new research opportunities for faculty, to help science and engineering students transition into graduate schools, employment by NASA, or science, technology, engineering, and math careers generally.

The teams are led by faculty at institutions that represent new collaborations for NASA. These include Hispanic-serving institutions, Historically Black Colleges and Universities, Asian American and Native American Pacific Islander-serving institutions, and primarily undergraduate institutions. The research projects connect these institutions to seven NASA centers, including the agency’s Marshall Space Flight Center, and could benefit more than 100 students.

“We applaud this inaugural cohort of grant recipients for their innovative research projects, which will make important connections between students, faculty, and NASA,” said Michael New, Science Mission Directorate deputy associate administrator for research at NASA Headquarters. “These awards are a first and important step for the SMD Bridge Program in supporting long-term relationships toward creating a more diverse and robust STEM workforce.”

There is an additional opportunity to apply for seed funding through the SMD Bridge Program. Applications are open until March 29.

The following projects were selected as the first cohort to receive seed funding:

Additive Manufacturing of Electronics for NASA Applications

This project, a collaboration between Florida A&M University and Marshall and NASA’s Goddard Space Flight Center, will explore technology solutions through additive manufacturing approaches to manufacture strain and gas sensors.

Diversifying Student Pipelines in STEM: Environmental Pollution Reduction Inspired by Planetary Science

This project, a collaboration that brings California State University, Los Angeles, together with NASA’s Jet Propulsion Laboratory, and California State Polytechnic University, Pomona, draws from the field of planetary science to address environmental pollution.

FireSage: SJSU-NASA ARC Bridge Seed Program

FireSage is a collaboration between San Jose State University’s Wildfire Interdisciplinary Research Center and the Earth Science Division at NASA’s Ames Research Center. It engages students in a computing, artificial intelligence, and machine learning research project and training activities in wildfire science.

Hampton University STEM Experience with NASA Langley Research Center Doppler Aerosol Wind Lidar

This collaboration between Hampton University and NASA’s Langley Research Center offers a foundation in the advancement of planetary boundary layer studies with Lidar remote sensing.

Development of Antireflection Coatings for Future NASA Missions

This project is a collaboration between Delaware State University and Goddard, working with transparent, electrically conductive films to design and produce an environmentally durable anti-reflection coating for guidance, navigation, and control Lidar.

CUBES: Capacity Building Using CubeSats for Earth Science

This collaboration between Tuskegee University, the Laboratory for Atmospheric Science and Physics at University of Colorado, and Ames uses CubeSats to provide faculty and students with experience designing and executing science mission flight projects.

Space Materials and Microbiome Research: A Bridge to Future JSC Workforce

In this project, the University of Houston-Clear Lake collaborates with NASA’s Johnson Space Center. The project’s Composite Materials track will develop a protective nanocomposite shield for spacecraft materials, while the Microbiome track will create a comprehensive library of draft bacterial genomes.

The HALOQUEST: Halobacterium Astrobiological Laboratory for Observing and Questioning Extraterrestrial Signatures and Traits Project

This collaboration between California State University, Northridge, and JPL will study Halobacterium salinarum NRC-1 grown under simulated stressful environmental conditions, which could help understand possibilities for life on other planets.

Observations of Ice-Water and Isotopes Using Mid-Infrared Laser Heterodyne Radiometer LIDAR

In collaboration with Goddard, Delaware State University will develop Earth science, planetary exploration, and sensing technologies, including a lunar rover payload with instruments to simultaneously detect and correlate water isotopes with other trace gas species.

Application of Remote Sensing for Predicting Mosquito-Borne Disease Outbreaks

This project is a collaboration between Southern Nazarene University and JPL to identify areas at risk for mosquito-borne disease outbreaks using remote sensing data.

Building a Diverse, Sustainable, and Robust Undergraduate-to-Graduate STEM Network through Inter-Institutional, Interdisciplinary Research Collaborations in Complex Fluids/Soft Matter

This project is a collaboration between Colorado Mesa University and NASA’s Glenn Research Center to strengthen and grow a research, education, and training network centered around problems in complex fluids and soft matter, with initial emphasis on heat transfer and multiphase flows.

› Back to Top

Juno, Lucy Missions Highlighted on ‘This Week at NASA’

Two missions that are part of programs managed by NASA’s Marshall Space Flight Center for the agency’s Science Mission Directorate are featured in “This Week @ NASA,” a weekly video program broadcast on NASA-TV and posted online.

NASA’s Lucy spacecraft recently completed the second and largest planned main engine burn of its 12-year mission. These burns, combined with the mission’s second Earth gravity assist maneuver targeted for December 2024, will help Lucy transition from its current orbit around the Sun to a new orbit that will carry it beyond the orbit of Jupiter and into the realm of the never-before-explored Jupiter Trojan asteroids.

NASA’s Goddard Space Flight Center provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. Marshall manages the Discovery Program for the Science Mission Directorate at NASA Headquarters.

On Feb. 3, NASA’s Juno spacecraft made a second close flyby of Jupiter’s moon Io. Like Juno’s previous flyby of Io in late December 2023, this second pass took Juno about 930 miles above Io’s surface. The twin flybys were designed to gain new insight into how the moon’s volcanic engine works and investigate whether a global magma ocean exists under the moon’s rocky, mountainous surface.

NASA’s Jet Propulsion Laboratory, a division of Caltech, manages the Juno mission for the principal investigator, Scott J. Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at Marshall for the Science Mission Directorate. Lockheed Martin Space in Denver built and operates the spacecraft.

View this and previous episodes at “This Week @NASA” on NASA’s YouTube page.

› Back to Top

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      On 18–19 September, Europe’s space industry from start-up companies to large system integrators gathered at ESA–ESTEC in the Netherlands for Industry Space Days 2024.
      View the full article
    • By NASA
      Artists Concept of the WASP-77 A b system. A planet swings in front of its star, dimming the starlight we see. Events like these, called transits, provide us with bounties of information about exoplanets–planets around stars other than the Sun. But predicting when these special events occur can be challenging…unless you have help from volunteers.
      Luckily, a collaboration of multiple teams of amateur planet-chasers, led by researcher Federico R. Noguer from Arizona State University and researchers from NASA’s Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC), has taken up the challenge. This collaboration has published the most precise physical and orbital parameters to date for an important exoplanet called WASP-77 A b.  These precise parameters help us predict future transit events and are crucial for planning spacecraft observations and accurate atmospheric modeling. 
      “As a retired dentist and now citizen scientist for Exoplanet Watch, research opportunities like this give me a way to learn and contribute to this amazingly exciting field of astrophysics,” said Anthony Norris, a citizen scientist working on the NASA-funded Exoplanet Watch project.
      The study combined amateur astronomy/citizen science data from the Exoplanet Watch and ExoClock projects, as well as the Exoplanet Transit Database. It also incorporated data from NASA’s Spitzer Space Telescope, the Hubble Space Telescope (HST), the James Webb Space Telescope (JWST), and La Silla Observatory. Exoplanet Watch invites volunteers to participate in groundbreaking exoplanet research, using their own telescopes to observe exoplanets or by analyzing data others have gathered. You may have read another recent article about how the Exoplanet Watch team helped validate a new exoplanet candidate.
      WASP-77 A b is a gas giant exoplanet that orbits a Sun-like star. It’s only about 20% larger than Jupiter. But that’s where the similarities to our solar system end. This blazing hot gas ball orbits right next to its star–more than 200 times closer to its star than our Jupiter!
      Want a piece of the action? Join the Exoplanet Watch project and help contribute to cutting-edge exoplanet science! Anyone can participate–participation does not require citizenship in any particular country.
      Facebook logo @DoNASAScience @DoNASAScience Share








      Details
      Last Updated Sep 19, 2024 Related Terms
      Astrophysics Citizen Science Exoplanet Science Explore More
      4 min read NASA’s Webb Provides Another Look Into Galactic Collisions


      Article


      1 day ago
      4 min read NASA’s Hubble Finds More Black Holes than Expected in the Early Universe


      Article


      2 days ago
      2 min read Hubble Examines a Spiral Star Factory


      Article


      6 days ago
      View the full article
    • By NASA
      18 Min Read The Marshall Star for September 18, 2024
      Marshall Welcomes NASA Chief Scientist for Climate, Science Town Hall
      NASA Chief Scientist and Senior Climate Advisor Kate Calvin, center left, joins team members at the agency’s Marshall Space Flight Center for a Climate and Science Town Hall on Sept. 17 in Activities Building 4316. Calvin took part in a question-and-answer session during her visit that was live streamed agencywide. Joining her in the session were, from left, Rahul Ramachandran, research scientist and senior data science strategist for the Science Research and Project Division at Marshall; Marshall Earth Science Branch Chief Andrew Molthan; Marshall Chief Scientist Renee Weber; Marshall Center Director Joseph Pelfrey; and Marshall Science and Technology Office Manager Julie Bassler, who moderated the panel. (NASA/Krisdon Manecke)
      Molthan answers a question during the Climate Town Hall. Topics discussed during the town hall included the response by NASA and Marshall to climate change, the effects of climate change on NASA and Marshall objectives, and how NASA and Marshall are helping organizations around the world respond to climate change. (NASA/Krisdon Manecke)
      › Back to Top
      Space Station Payload Operations Director at Marshall Carries on Family Legacy
      By Celine Smith
      Jacob Onken remembers his father, Jay Onken, waking him up one morning at 3 a.m. when he was 9 years old to watch the International Space Station fly overhead. At the time, his dad was a POD – a payload operations director – at NASA’s Marshall Space Flight Center leading flight controllers who support science experiments aboard the orbiting laboratory 24 hours a day, 365 days a year.
      Jacob Onken is a second-generation payload operations director at NASA’s Marshall Space Flight Center. His father, Jay Onken, also served in the role in 1999. The father and son are the first family members at Marshall to both hold that position. NASA/Danielle Burleson Now, the younger Onken has started a new chapter in his career as a POD at Marshall, following in his father’s footsteps. The father and son are the first family members to serve in this role at Marshall. Onken said that happened by chance, despite growing up NASA-adjacent.
      Jacob Onken began his aerospace career with an internship at Teledyne Brown Engineering while earning a bachelor’s degree in computer science at Auburn University in Alabama. The internship took him to Marshall’s Payload Operations Integration Center – a place his father had worked and often taken him when he was younger. Colleagues warmly remembered the veteran POD and welcomed to the role.
      After graduating with a bachelor’s degree in computer science in 2018, Onken worked as a contractor with Teledyne for NASA. As a data management coordinator (DMC) he sat console and learned to operate data and video systems aboard the space station.
      “I really found myself out here, and I loved it,” he said. “Working in space flight operations is insanely cool and beneficial to humanity.”
      A young Jacob Onken smiles for a family photo while visiting Marshall with his father, Jay Onken, and sister, Elizabeth Onken, in 1998. Photo courtesy of Jacob Onken After training for over a year, he earned his DMC certification and later was assigned as the lead DMC for space station Expeditions 62 and 63. He later served as the DMC training lead, preparing new flight controllers for certification. In this role, he trained 13 DMCs for certification, using a people-based leadership approach he learned from his father.
      Well before the space station flew, Jay Onken was an aerospace engineer whose early career assignments included orbit analysis for the space shuttle and attitude selection for several Spacelab missions. He later was one of the first flight directors for NASA’s Chandra X-Ray Observatory, and following its launch, joined the first group of space station PODs. 
      He went on to become the director of Marshall’s Mission Operations Laboratory in 2005, deputy chief engineer for the Space Launch System in 2014, and director of Marshall’s Space Systems Department in 2016. He retired in 2018 and died in 2021 after battling cancer.
      Jacob Onken continues Jay Onken’s legacy. Colleagues say he embodies similar traits. He often reflects on his father’s advice.
      From left, Jacob Onken during his payload operations director (POD) certification ceremony with former PODs Carrie Olsen, Sam Digesu, Pat Patterson, and Tina Melton in the Payload Operations Center at Marshall. NASA/Craig Cruzen “I was lucky to have my dad, who understood the environment that I was working in,” he said. “I knew his work meant a lot to him. We were always close, but we got even closer. Bonding over the same things was special.”
      In 2022, Onken became the DMC flight operations lead, supporting real-time console and planning operations for that team. In 2023, he joined the Operations Directors Office. After another rigorous training curriculum, he completed his POD certification in January 2024.
      “It’s rewarding and heartwarming to know that the future of space flight operations is in good hands with the new generation,” said Craig Cruzen, the POD training lead who oversaw Onken’s instruction and certification.
      Onken leads a team that communicates with astronauts about the scientific experiments they’re performing on the space station and ensures their safety from the ground.
      As a payload operations director at NASA’s Marshall Space Flight Center, Jacob Onken leads flight controllers in the International Space Station Payload Operations and Integration Team, following in his father’s footsteps. Onken and his father, Jay Onken, are the first family members to both serve in the role at Marshall. (NASA) “My role requires teamwork, trust, and communication,” he said. “I ask myself, ‘How can we work together effectively to get the job done?’”
      While he holds the same position his father held, the space station has evolved, becoming a convergence of science, technology, and innovation. “Jay Onken was a POD when the International Space Station was just beginning,” said former POD Carrie Olsen, now manager of NASA’s Next Gen STEM K-12 education project and a family friend to the Onkens. “The challenge the space station faced back then was its newness,” Olsen explained. “We were still figuring out how to best work with Johnson Space Center, scientists around the world, international partners, and the space station program.”
      Though Marshall had a rich operations history working programs like Apollo, Space Shuttle, Skylab, and Chandra, the space station was truly unlike anything that had come before.
      “Jay’s leadership qualities and integrity helped to build trust across the organization and the agency. This allowed Marshall’s operations team to excel and be recognized as the premier space station science operations center across the globe,” said his former colleague Sam Digesu, currently technical manager of the Payload and Mission Operations Division. “Jacob is on the that same path.”
      Jacob Onken says one of his career goals is to support payload operations on the lunar surface for the Artemis missions. “My dad was around when it started, and hopefully, I’m around to see it through.”
      › Back to Top
      NASA Hosts Observe the Moon Night at U.S. Space & Rocket Center
      The Science Wizard, David Hagerman, right center, entertains the crowd with one of his shows Sept. 14 during Observe the Moon Night at the U.S. Space & Rocket Center in Huntsville. The free public event was part of International Observe the Moon Night, a worldwide celebration encouraging observation, appreciation, and understanding of the Moon and its connection to NASA exploration and discovery. NASA’s Planetary Missions Program Office hosted the event at the rocket center. The Planetary Missions Program Office is located at NASA’s Marshall Space Flight Center. (NASA/Lane Figueroa)
      Audience members react during one of Hagerman’s demonstrations at Observe the Moon Night. (NASA/Lane Figueroa)
      Attendees visit a NASA display during the Observe the Moon Night event. (NASA/Daniel Horton)
      › Back to Top
      ‘Legacy of the Invisible’ Event to Celebrate Marshall’s Contributions to Astrophysics
      The public is invited to join NASA’s Marshall Space Flight Center for a special celebration of art and astronomy in downtown Huntsville on Sept. 20 from 6 to 8 p.m. The event will include a dedication of Huntsville’s newest art installation, “No Straight Lines,” by local artist Float. 
      The celebratory event, “Legacy of the Invisible,” will take place at the corner of Clinton Avenue and Washington Street, coinciding with the 25th anniversary of NASA’s Chandra X-ray Observatory. Attendees will have a chance to meet and hear from NASA experts, as well as meet Float, the artist behind “No Straight Lines,” which aims to honor Huntsville’s rich scientific legacy in astrophysics and highlight the groundbreaking discoveries made possible by Huntsville scientists and engineers.
      Enjoy live music, art vendors, food, and more.
      Learn more about Chandra’s 25th Anniversary.
      › Back to Top
      SLS Program Manager John Honeycutt Delivers Keynote at National Space Club Breakfast
      John Honeycutt, front center, manager of NASA’s SLS (Space Launch System) Program at the agency’s Marshall Space Flight Center, delivers the keynote address at the National Space Club Breakfast on Sept. 17 in Huntsville. Honeycutt provided a detailed presentation to the audience with insight into the operations, accomplishments, and future goals for the SLS Program. The SLS rocket is a powerful, advanced launch vehicle for a new era of human exploration beyond Earth’s orbit. “All elements of the SLS Block I for the first crewed lunar mission of the 21st century are either complete and ready for stacking or are nearing completion,” Honeycutt said. “For more than 60 years, this town – this community – has led the effort to explore space. We aren’t done. SLS and Artemis are the next chapter in that legacy. Led and enabled by folks in this room, at Marshall, and here in North Alabama, we will launch missions to the Moon that will re-write history books, lead to scientific discoveries, and pave the way to Mars.” (NASA/Serena Whitfield)
      › Back to Top
      NASA’s Lunar Challenge Participants to Showcase Innovations During Awards
      NASA‘s Watts on the Moon Challenge, designed to advance the nation’s lunar exploration goals under the Artemis campaign by challenging United States innovators to develop breakthrough power transmission and energy storage technologies that could enable long-duration Moon missions, concludes Sept. 20 at the Great Lakes Science Center in Cleveland, Ohio.
      The Sun rises above the Flight Research Building at NASA’s Glenn Research Center in Cleveland.Credit: NASA “For astronauts to maintain a sustained presence on the Moon during Artemis missions, they will need continuous, reliable power,” said Kim Krome-Sieja, acting program manager, Centennial Challenges at NASA’s Marshall Space Flight Center. “NASA has done extensive work on power generation technologies. Now, we’re looking to advance these technologies for long-distance power transmission and energy storage solutions that can withstand the extreme cold of the lunar environment.”
      The technologies developed through the Watts on the Moon Challenge were the first power transmission and energy storage prototypes to be tested by NASA in an environment that simulates the extreme cold and weak atmospheric pressure of the lunar surface, representing a first step to readying the technologies for future deployment on the Moon. Successful technologies from this challenge aim to inspire, for example, new approaches for helping batteries withstand cold temperatures and improving grid resiliency in remote locations on Earth that face harsh weather conditions.
      During the final round of competition, finalist teams refined their hardware and delivered a full system prototype for testing in simulated lunar conditions at NASA’s Glenn Research Center. The test simulated a challenging power system scenario where there are six hours of solar daylight, 18 hours of darkness, and the user is three kilometers from the power source.
      “Watts on the Moon was a fantastic competition to judge because of its unique mission scenario,” said Amy Kaminski, program executive, Prizes, Challenges, and Crowdsourcing, Space Technology Mission Directorate at NASA Headquarters. “Each team’s hardware was put to the test against difficult criteria and had to perform well within a lunar environment in our state-of-the-art thermal vacuum chambers at NASA Glenn.”
      Each finalist team was scored based on Total Effective System Mass (TESM), which determines how the system works in relation to its mass. At the awards ceremony, NASA will award $1 million to the top team who achieves the lowest TESM score, meaning that during testing, that team’s system produced the most efficient output-to-mass ratio. The team with the second lowest mass will receive $500,000. The awards ceremony stream live on NASA Glenn’s YouTube channel and NASA Prize’s Facebook page.
      The Watts on the Moon Challenge is a NASA Centennial Challenge led by NASA Glenn. NASA Marshall manages Centennial Challenges, which are part of the agency’s Prizes, Challenges, and Crowdsourcing program in the Space Technology Mission Directorate. NASA has contracted HeroX to support the administration of this challenge.
      › Back to Top
      Technicians Work to Prepare Europa Clipper for Propellant Loading
      NASA’s Europa Clipper mission moves closer to launch as technicians worked Sept. 11 inside the Payload Hazardous Servicing Facility to prepare the spacecraft for upcoming propellant loading at the agency’s Kennedy Space Center. 
      Technicians work to complete operations before propellant load occurs ahead of launch for NASA’s Europa Clipper spacecraft inside the Payload Hazardous Servicing Facility at the agency’s Kennedy Space Center on Sept. 11.NASA/Kim Shiflett The spacecraft will explore Jupiter’s icy moon Europa, which is considered one of the most promising habitable environments in the solar system. The mission will research whether Europa’s subsurface ocean could hold the conditions necessary for life. Europa could have all the “ingredients” for life as we know it: water, organics, and chemical energy.
      Europa Clipper’s launch period opens Oct. 10. It will lift off on a SpaceX Falcon Heavy rocket from Kennedy’s Launch Complex 39A. The spacecraft then will embark on a journey of nearly six years and 1.8 billion miles before reaching Jupiter’s orbit in 2030.
      The spacecraft is designed to study Europa’s icy shell, underlying ocean, and potential plumes of water vapor using a gravity science experiment alongside a suite of nine instruments including cameras, spectrometers, a magnetometer, and ice-penetrating radar. The data Europa Clipper collects could improve our understanding of the potential for life elsewhere in the solar system.
      Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with APL for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission.
      Learn more about the mission here.
      › Back to Top
      Marshall to Present 2024 Small Business Awards Sept. 19
      NASA’s Marshall Space Flight Center will host its annual Small Business Industry and Advocate Awards ceremony Sept. 19. The awards recognize small businesses and small business champions from government and industry for their outstanding achievements in fiscal year 2024.
      The ceremony will take place during the 38th meeting of Marshall’s Small Business Alliance, from 8 a.m. to 12:30 p.m. CDT at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration in Huntsville. The event will also highlight new opportunities for small businesses to take part in NASA’s procurement processes. Afterward, attendees will have the open opportunity to network with NASA officials, prime contractors, and other members of Marshall’s small business community. Exhibitors will provide valuable information to support their business.
      NASA speakers include:
      Dwight Deneal, assistant administrator, Office of Small Business Programs, NASA Headquarters Joseph Pelfrey, center director, NASA Marshall John Cannaday, director, Office of Procurement, NASA Marshall Davey Jones, strategy lead, NASA Marshall David Brock, small business specialist, Office of Small Business Programs, NASA Marshall For 17 years, the Marshall Small Business Alliance has aided small businesses in pursuit of NASA procurement and subcontracting opportunities. Its primary focus is to inform, educate, and advocate on behalf of the small business community. At each half day meeting, businesses will gain valuable insight to guide them in their marketing endeavors.
      Learn more about Marshall’s small business initiatives.
      › Back to Top
      Printed Engines Propel Next Industrial Revolution
      In the fall of 2023, NASA hot fire tested an aluminum 3D printed rocket engine nozzle. Aluminum is not typically used for 3D printing because the process causes it to crack, and its low melting point makes it a challenging material for rocket engines. Yet the test was a success.
      Printing aluminum engine parts could save significant time, money, and weight for future spacecraft. Elementum 3D Inc., a partner on the project, is now making those benefits available to the commercial space industry and beyond.
      A rocket engine nozzle 3D printed from Elementum 3D’s A6061 RAM2 aluminum alloy undergoes hot fire testing at NASA’s Marshall Space Flight Center.Credit: NASA The hot fire test was the culmination of a relationship between NASA and Elementum that began shortly after the company was founded in 2014 to make more materials available for 3D printing. Based in Erie, Colorado, the company infuses metal alloys with particles of other materials to alter their properties and make them amenable to additive manufacturing. This became the basis of Elementum’s Reactive Additive Manufacturing (RAM) process.
      NASA adopted the technology, qualifying the RAM version of a common aluminum alloy for 3D printing. The agency then awarded funding to Elementum 3D and another company to print the experimental Broadsword rocket engine, demonstrating the concept’s viability.
      Meanwhile, a team at NASA’s Marshall Space Flight Center was working to adapt an emerging technology to print larger engines. In 2021, Marshall awarded an Announcement of Collaborative Opportunity to Elementum 3D to modify an aluminum alloy for printing in what became the Reactive Additive Manufacturing for the Fourth Industrial Revolution project.
      The project also made a commonly used aluminum alloy available for large-scale 3D printing. It is already used in large satellite components and could be implemented into microchip manufacturing equipment, Formula 1 race car parts, and more. The alloy modified for the Broadsword engine is already turning up in brake rotors and lighting fixtures. These various applications exemplify the possibilities that come from NASA’s collaboration and investment in industry. 

      Read more here.
      › Back to Top
      Hubble Finds More Black Holes than Expected in Early Universe
      With the help of NASA’s Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      This is a new image of the Hubble Ultra Deep Field. The first deep imaging of the field was done with Hubble in 2004. The same survey field was observed again by Hubble several years later, and was then reimaged in 2023. By comparing Hubble Wide Field Camera 3 near-infrared exposures taken in 2009, 2012, and 2023, astronomers found evidence for flickering supermassive black holes in the hearts of early galaxies. The survey found more black holes than predicted. NASA, ESA, Matthew Hayes (Stockholm University); Acknowledgment: Steven V.W. Beckwith (UC Berkeley), Garth Illingworth (UC Santa Cruz), Richard Ellis (UCL); Image Processing: Joseph DePasquale (STScI) Currently, scientists do not have a complete picture of how the first black holes formed not long after the big bang. It is known that supermassive black holes, that can weigh more than a billion suns, exist at the center of several galaxies less than a billion years after the big bang.
      “Many of these objects seem to be more massive than we originally thought they could be at such early times – either they formed very massive or they grew extremely quickly,” said Alice Young, a PhD student from Stockholm University and co-author of the study  published in The Astrophysical Journal Letters.
      Black holes play an important role in the lifecycle of all galaxies, but there are major uncertainties in our understanding of how galaxies evolve. In order to gain a complete picture of the link between galaxy and black hole evolution, the researchers used Hubble to survey how many black holes exist among a population of faint galaxies when the universe was just a few percent of its current age.
      Initial observations of the survey region were re-photographed by Hubble after several years. This allowed the team to measure variations in the brightness of galaxies. These variations are a telltale sign of black holes. The team identified more black holes than previously found by other methods.
      The new observational results suggest that some black holes likely formed by the collapse of massive, pristine stars during the first billion years of cosmic time. These types of stars can only exist at very early times in the universe, because later-generation stars are polluted by the remnants of stars that have already lived and died. Other alternatives for black hole formation include collapsing gas clouds, mergers of stars in massive clusters, and “primordial” black holes that formed (by physically speculative mechanisms) in the first few seconds after the big bang. With this new information about black hole formation, more accurate models of galaxy formation can be constructed.
      “The formation mechanism of early black holes is an important part of the puzzle of galaxy evolution,” said Matthew Hayes from the Department of Astronomy at Stockholm University and lead author of the study. “Together with models for how black holes grow, galaxy evolution calculations can now be placed on a more physically motivated footing, with an accurate scheme for how black holes came into existence from collapsing massive stars.”
      Astronomers are also making observations with NASA’s James Webb Space Telescope to search for galactic black holes that formed soon after the big bang, to understand how massive they were and where they were located.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      NASA’s Marshall Space Flight Center was the lead field center for the design, development, and construction of the space telescope.
      › Back to Top
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Credit: NASA NASA’s Marshall Space Flight Center in Huntsville, Alabama, invites media to its annual Small Business Industry and Advocate Awards ceremony on Thursday, Sept. 19. The awards recognize small businesses and small business champions from government and industry for their outstanding achievements in fiscal year 2024.
      The ceremony will take place during the 38th meeting of Marshall’s Small Business Alliance, from 8 a.m. to 12:30 p.m. CDT at the U.S. Space & Rocket Center’s Davidson Center for Space Exploration. The event will also highlight new opportunities for small businesses to take part in NASA’s procurement processes. Afterward, attendees will have the open opportunity to network with NASA officials, prime contractors, and other members of Marshall’s small business community. Exhibitors will provide valuable information to support their business.
      NASA speakers include:
      Dwight Deneal, assistant administrator, Office of Small Business Programs, NASA Headquarters Joseph Pelfrey, center director, NASA Marshall John Cannaday, director, Office of Procurement, NASA Marshall Davey Jones, strategy lead, NASA Marshall David Brock, small business specialist, Office of Small Business Programs, NASA Marshall Media interested in covering the event should contact Molly Porter at molly.a.porter@nasa.gov or 256-424-5158 by 4:30 p.m. on Wednesday, Sept. 18.
      About the Marshall Small Business Alliance
      For 17 years, the Marshall Small Business Alliance has aided small businesses in pursuit of NASA procurement and subcontracting opportunities. Its primary focus is to inform, educate, and advocate on behalf of the small business community. At each half day meeting, businesses will gain valuable insight to guide them in their marketing endeavors.
      To learn more about Marshall’s small business initiatives, visit:
      https://doingbusiness.msfc.nasa.gov
      Molly Porter
      Marshall Space Flight Center, Huntsville, Ala.
      256-424-5158
      molly.a.porter@nasa.gov
      Share
      Details
      Last Updated Sep 17, 2024 LocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Explore More
      2 min read Printed Engines Propel the Next Industrial Revolution
      Efforts to 3D print engines produce significant savings in rocketry and beyond
      Article 5 days ago 22 min read The Marshall Star for September 11, 2024
      Article 6 days ago 1 min read Gateway Space Station in 3D
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By Space Force
      As Delivered by Chief of Space Operations U.S. Space Force Gen. Chance Saltzman on September 17, 2024
      View the full article
  • Check out these Videos

×
×
  • Create New...