Jump to content

NASA's Hubble Discovers New Rings and Moons Around Uranus


HubbleSite

Recommended Posts

low_STSCI-H-p0533a-k-1340x520.png

Even though the Voyager 2 spacecraft paid a close-up visit to Uranus in 1986, the distant planet continues revealing surprises to the eye of NASA's Hubble Space Telescope. Hubble's high sensitivity and sharp view has uncovered a pair of giant rings girdling the planet. The largest is twice the diameter of the planet's previously known ring system, first discovered in the late 1970s. Hubble also spied two small satellites, named Mab and Cupid. One of the satellites shares an orbit with the outermost of the new rings. The satellite is probably the source of fresh dust that keeps replenishing the ring with new material knocked off the satellite from meteoroid impacts. Without such replenishment, the dust in the ring would slowly spiral in toward Uranus. Collectively, these new discoveries mean that Uranus has a youthful and dynamic system of rings and moons. Because of the extreme tilt of Uranus's axis, the ring system appears nearly perpendicular relative to rings around other gas giant planets like Saturn. Also, unlike Saturn, the rings are very dark and dim because they are mostly dust rather than ice.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      On Sept. 20, 2024, four students experienced the wonder of space exploration at NASA’s Johnson Space Center in Houston, taking part in an international competition that brought their work to life aboard the International Space Station.  

      Now in its fifth year, the Kibo Robot Programming Challenge (Kibo-RPC) continues to push the boundaries of robotics, bringing together the world’s brightest young minds for a real-world test of programming, problem-solving, and innovation.
      The Kibo Robot Programming Challenge (Kibo-RPC) students tour the Gateway Habitation and Logistics Outpost module at NASA’s Johnson Space Center in Houston.NASA/Helen Arase Vargas The stakes reached new heights in this year’s competition, with 661 teams totaling 2,788 students from 35 countries and regions competing to program robots aboard the orbiting laboratory. Organized by the Japan Aerospace Exploration Agency in collaboration with the United Nations Office for Outer Space Affairs, the challenge provided a unique platform for students to test their skills on a global stage. 

      Meet Team Salcedo 

      Representing the U.S., Team Salcedo is composed of four talented students: Aaron Kantsevoy, Gabriel Ashkenazi, Justin Bonner, and Lucas Paschke. Each member brought a unique skill set and perspective, contributing to the team’s well-rounded approach to the challenge. 
      From left to right are Kibo-RPC students Gabriel Ashkenazi, Lucas Paschke, Aaron Kantsevoy, and Justin Bonner. NASA/Helen Arase Vargas The team was named in honor of Dr. Alvaro Salcedo, a robotics teacher and competitive robotics coach who had a significant impact on Kantsevoy and Bonner during high school. Dr. Salcedo played a crucial role in shaping their interests and aspirations in science, technology, engineering, and mathematics (STEM), inspiring them to pursue careers in these fields. 

      Kantsevoy, a computer science major at Georgia Institute of Technology, or Georgia Tech, led the team with three years of Kibo-RPC experience and a deep interest in robotics and space-based agriculture. Bonner, a second-year student at the University of Miami, is pursuing a triple major in computer science, artificial intelligence, and mathematics. Known for his quick problem-solving, he played a key role as a strategist and computer vision expert. Paschke, a first-time participant and computer science student at Georgia Tech, focused on intelligence systems and architecture, and brought fresh insights to the table. Ashkenazi, also studying computer science at Georgia Tech, specialized in computer vision and DevOps, adding depth to the team’s technical capabilities. 

      AstroBee Takes Flight 

      The 2024 competition tasked students with programming AstroBee, a free-flying robot aboard the station, to navigate a complex course while capturing images scattered across the orbital outpost. For Team Salcedo, the challenge reached its peak as their code was tested live on the space station.  
      The Kibo-RPC students watch their code direct Astrobee’s movements at Johnson Space Center with NASA Program Specialist Jamie Semple on Sept. 20, 2024.NASA/Helen Arase Vargas The robot executed its commands in real time, maneuvering through the designated course to demonstrate precision, speed, and adaptability in the microgravity environment. Watching AstroBee in action aboard the space station offered a rare glimpse of the direct impact of their programming skills and added a layer of excitement that pushed them to fine-tune their approach. 

      Overcoming Challenges in Real Time 

      Navigating AstroBee through the orbital outpost presented a set of unique challenges. The team had to ensure the robot could identify and target images scattered throughout the station with precision while minimizing the time spent between locations.  
      The Kibo-RPC students watch in real time as the free-flying robot Astrobee performs maneuvers aboard the International Space Station, executing tasks based on their input to test its capabilities. NASA/Helen Arase Vargas Using quaternions for smooth rotation in 3D space, they fine-tuned AstroBee’s movements to adjust camera angles and capture images from difficult positions without succumbing to the limitations of gimbal lock. Multithreading allowed the robot to simultaneously process images and move to the next target, optimizing the use of time in the fast-paced environment. 

      The Power of Teamwork and Mentorship 

      Working across different locations and time zones, Team Salcedo established a structured communication system to ensure seamless collaboration. Understanding each team member’s workflow and adjusting expectations accordingly helped them maintain efficiency, even when setbacks occurred. 
      Team Salcedo tour the Space Vehicle Mockup Facility with their NASA mentors (from top left to right) Education Coordinator Kaylie Mims, International Space Station Research Portfolio Manager Jorge Sotomayer, and Kibo-RPC Activity Manager Jamie Semple. NASA/Helen Arase Vargas Mentorship was crucial to their success, with the team crediting several advisors and educators for their guidance. Kantsevoy acknowledged his first STEM mentor, Casey Kleiman, who sparked his passion for robotics in middle school.  

      The team expressed gratitude to their Johnson mentors, including NASA Program Specialist Jamie Semple, Education Coordinator Kaylie Mims, and International Space Station Research Portfolio Manager Jorge Sotomayer, for guiding them through the program’s processes and providing support throughout the competition. 

      They also thanked NASA’s Office of STEM Engagement for offering the opportunity to present their project to Johnson employees.  

      “The challenge mirrors how the NASA workforce collaborates to achieve success in a highly technical environment. Team Salcedo has increased their knowledge and learned skills that they most likely would not have acquired individually,” said Semple. “As with all of our student design challenges, we hope this experience encourages the team to continue their work and studies to hopefully return to NASA in the future as full-time employees.” 

      Pushing the Boundaries of Innovation 

      The Kibo-RPC allowed Team Salcedo to experiment with new techniques, such as Slicing Aided Hyperinference—an approach that divides images into smaller tiles for more detailed analysis. Although this method showed promise in detecting smaller objects, it proved too time-consuming under the competition’s time constraints, teaching the students valuable lessons about prioritizing efficiency in engineering. 
      The Kibo-RPC students present their robotic programming challenge to the International Space Station Program. NASA/Bill Stafford For Team Salcedo, the programming challenge taught them the value of communication, the importance of learning from setbacks, and the rewards of perseverance. The thrill of seeing their code in action on the orbital outpost was a reminder of the limitless possibilities in robotics and space exploration. 

      Inspiring the Next Generation 

      With participants from diverse backgrounds coming together to compete on a global platform, the Kibo-RPC continues to be a proving ground for future innovators.  

      The challenge tested the technical abilities of students and fostered personal growth and collaboration, setting the stage for the next generation of robotics engineers and leaders. 
      The Kibo-RPC students and their mentors at the Mission Control Center. NASA/Helen Arase Vargas
      As Team Salcedo looks ahead, they carry with them the skills, experiences, and inspiration needed to push the boundaries of human space exploration.  

      “With programs like Kibo-RPC, we are nurturing the next generation of explorers – the Artemis Generation,” said Sotomayer. “It’s not far-fetched to imagine that one of these students could eventually be walking on the Moon or Mars.” 

      The winners were announced virtually from Japan on Nov. 9, with Team Salcedo achieving sixth place. 

      Watch the international final round event here. 

      For more information on the Kibo Robot Programming Challenge, visit: https://jaxa.krpc.jp/
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Electra. The team’s project focuses on electric propulsion, integrated aircraft technologies, and vehicle design.Electra Picture yourself at an airport a few decades from now. What does your airliner look like? It’s more efficient, with lower emissions than today’s aircraft – what kinds of designs or technology make that possible? NASA is working to answer those questions by commissioning five new design studies looking to push the boundaries of possibility for sustainable aircraft. 
      Through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative, the agency asked industry and academia to come up with studies looking at aircraft concepts, key technologies, and designs that could offer the transformative solutions needed to secure commercial aviation’s sustainable future by 2050. NASA issued five awards, worth a total of $11.5 million, to four companies and one university. These new NASA-funded studies will help the agency identify and select promising aircraft concepts and technologies for further investigations. 
      Artist’s concept of a future airliner based on the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 submission from awardee Georgia Institute of Technology. The team’s project focuses on exploring scenarios and technologies based on an aircraft concept the institute has developed, known as ATH2ENA.Georgia Institute of Technology “Through initiatives like AACES, NASA is positioned to harness a broad set of perspectives about how to further increase aircraft efficiency, reduce aviation’s environmental impact and enhance U.S. technological competitiveness in the 2040s, 2050s, and beyond,” said Bob Pearce, NASA associate administrator for the Aeronautics Research Mission Directorate. “As a leader in U.S. sustainable aviation research and development, these awards are one example of how we bring together the best ideas and most innovative concepts from the private sector, academia, research agencies, and other stakeholders to pioneer the future of aviation.” 
      For decades, NASA has connected government agencies, industry, and academia to develop sustainable aviation technologies. In 2021, NASA launched its Sustainable Flight National Partnership, focused on technologies that could be incorporated into aircraft by the 2030s. The partnership’s research and development led to current NASA work including the experimental X-66 Sustainable Flight Demonstrator aircraft, its Electrified Powertrain Flight Demonstration project, and the development of more efficient engine cores and processes for the rapid manufacturing of lightweight composite materials. 
      Artist’s concept of a Pratt & Whitney advanced propulsion concept for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. The Pratt & Whitney project focuses on commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions.Pratt & Whitney The new AACES awards are initiating a similar process, but on a longer timeline, focusing on technologies to help transform aviation beyond SFNP with aircraft that could enter service by 2050. The kinds of partnerships NASA develops through SFNP and AACES are critical for the agency to support the U.S. goal of net-zero aviation emissions by 2050 and to help put aviation on a path toward energy-resilience. 
      “The AACES 2050 solicitation drew significant interest from the aviation community and as a result the award process was highly competitive,” said Nateri Madavan, director for NASA’s Advanced Air Vehicles Program. “The proposals selected come from a diverse set of organizations that will provide exciting and wide-ranging explorations of the scenarios, technologies, and aircraft concepts that will advance aviation towards its transformative sustainability goals.” 
      An artist’s concept of JetZero’s blended wing body, which the company’s team will use to evaluate technologies for the NASA Advanced Aircraft Concepts for Environmental Sustainability 2050 initiative. JetZero’s project will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions.JetZero The AACES 2050 awards went to organizations that will form networks of university and corporate partners to advance their studies. NASA expects the awardees to complete their studies by mid-2026. The new awardee institutions are: 
      Aurora Flight Sciences, a Boeing Company, whose team will perform a comprehensive, “open-aperture” exploration of technologies and aircraft concepts for the 2050 timeframe. This will include examining new alternative aviation fuels, propulsion systems, aerodynamic technologies, and aircraft configurations along with other technology areas that arise throughout the study.  The Electra-led team will explore extending Electra’s novel distributed electric propulsion and its unique aerodynamic design capabilities to develop innovative wing and fuselage integrations that deliver sustainable aviation focused on enabling community-friendly emission reduction, noise reduction, and improved air travel access. The company’s existing small aircraft prototype has been flying for over a year, demonstrating Electra’s technology that aims to transform air travel with reduced environmental impact and improved operational efficiency.  Georgia Institute of Technology will perform a comprehensive exploration of sustainability technologies, including alternative fuels, propulsion systems, and aircraft configurations. The institute’s team will then explore new aircraft concepts incorporating the selected technologies with their Advanced Technology Hydrogen Electric Novel Aircraft (ATH2ENA) as a starting point.   JetZero will explore technologies that enable cryogenic, liquid hydrogen to be used as a fuel for commercial aviation to reduce greenhouse gas emissions. These technologies will be evaluated on both tube-and wing and JetZero’s blended wing body – an airplane shape that provides more options for larger hydrogen fuel tanks within the aircraft.  Pratt and Whitney a division of RTX Corporation, will explore a broad suite of commercial aviation propulsion technologies targeting thermal and propulsive efficiency improvements to reduce fuel consumption and greenhouse gas emissions. The Pratt & Whitney team will then down-select high-priority and alternative propulsion concepts for potential integration studies with various airframe concepts for aircraft in 2050 and beyond.  Artist’s concept of a 50-60 passenger hydrogen fuel cell electric plane created by Boeing through its future flight concept efforts. Aurora Flight Sciences, a Boeing Company, received an award through NASA’s Advanced Aircraft Concepts for Environmental Sustainability (AACES) 2050 initiative to examine new alternative aviation fuels propulsion systems, aerodynamic technologies, and aircraft configurations, along with other technology areas.Boeing AACES 2050 is part of NASA’s Advanced Air Transport Technology project, which explores and develops technology to further NASA’s vision for the future development of fixed-wing transport aircraft with revolutionary energy efficiency. The project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts. 
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      5 min read Math, Mentorship, Motherhood: Behind the Scenes with NASA Engineers
      Article 4 days ago 4 min read X-59 Fires Up its Engine for First Time on its Way to Takeoff
      Article 6 days ago 5 min read October Transformer of the Month: Nipa Phojanamongkolkij
      Article 3 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans In Space
      Quesst: The Vehicle
      Explore NASA’s History
      Share
      Details
      Last Updated Nov 12, 2024 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related Terms
      Aeronautics Research Mission Directorate Advanced Air Transport Technology Advanced Air Vehicles Program Sustainable Flight Demonstrator Sustainable Flight National Partnership View the full article
    • By European Space Agency
      12 November 2024 marks the start of a new year on Mars. At exactly 10:32 CET/09:32 UTC on Earth, the Red Planet begins a new orbit around our Sun.
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Voyager 2 captured this image of Uranus while flying by the ice giant in 1986. New research using data from the mission shows a solar wind event took place during the flyby, leading to a mystery about the planet’s magnetosphere that now may be solved.NASA/JPL-Caltech NASA’s Voyager 2 flyby of Uranus decades ago shaped scientists’ understanding of the planet but also introduced unexplained oddities. A recent data dive has offered answers.
      When NASA’s Voyager 2 spacecraft flew by Uranus in 1986, it provided scientists’ first — and, so far, only — close glimpse of this strange, sideways-rotating outer planet. Alongside the discovery of new moons and rings, baffling new mysteries confronted scientists. The energized particles around the planet defied their understanding of how magnetic fields work to trap particle radiation, and Uranus earned a reputation as an outlier in our solar system.
      Now, new research analyzing the data collected during that flyby 38 years ago has found that the source of that particular mystery is a cosmic coincidence: It turns out that in the days just before Voyager 2’s flyby, the planet had been affected by an unusual kind of space weather that squashed the planet’s magnetic field, dramatically compressing Uranus’ magnetosphere.
      “If Voyager 2 had arrived just a few days earlier, it would have observed a completely different magnetosphere at Uranus,” said Jamie Jasinski of NASA’s Jet Propulsion Laboratory in Southern California and lead author of the new work published in Nature Astronomy. “The spacecraft saw Uranus in conditions that only occur about 4% of the time.”
      The first panel of this artist’s concept depicts how Uranus’s magnetosphere — its protective bubble — was behaving before the flyby of NASA’s Voyager 2. The second panel shows an unusual kind of solar weather was happening during the 1986 flyby, giving scientists a skewed view of the magnetosphere.NASA/JPL-Caltech Magnetospheres serve as protective bubbles around planets (including Earth) with magnetic cores and magnetic fields, shielding them from jets of ionized gas — or plasma — that stream out from the Sun in the solar wind. Learning more about how magnetospheres work is important for understanding our own planet, as well as those in seldom-visited corners of our solar system and beyond.
      That’s why scientists were eager to study Uranus’ magnetosphere, and what they saw in the Voyager 2 data in 1986 flummoxed them. Inside the planet’s magnetosphere were electron radiation belts with an intensity second only to Jupiter’s notoriously brutal radiation belts. But there was apparently no source of energized particles to feed those active belts; in fact, the rest of Uranus’ magnetosphere was almost devoid of plasma.
      The missing plasma also puzzled scientists because they knew that the five major Uranian moons in the magnetic bubble should have produced water ions, as icy moons around other outer planets do. They concluded that the moons must be inert with no ongoing activity.
      Solving the Mystery
      So why was no plasma observed, and what was happening to beef up the radiation belts? The new data analysis points to the solar wind. When plasma from the Sun pounded and compressed the magnetosphere, it likely drove plasma out of the system. The solar wind event also would have briefly intensified the dynamics of the magnetosphere, which would have fed the belts by injecting electrons into them.
      The findings could be good news for those five major moons of Uranus: Some of them might be geologically active after all. With an explanation for the temporarily missing plasma, researchers say it’s plausible that the moons actually may have been spewing ions into the surrounding bubble all along.
      Planetary scientists are focusing on bolstering their knowledge about the mysterious Uranus system, which the National Academies’ 2023 Planetary Science and Astrobiology Decadal Survey prioritized as a target for a future NASA mission.
      JPL’s Linda Spilker was among the Voyager 2 mission scientists glued to the images and other data that flowed in during the Uranus flyby in 1986. She remembers the anticipation and excitement of the event, which changed how scientists thought about the Uranian system.
      “The flyby was packed with surprises, and we were searching for an explanation of its unusual behavior. The magnetosphere Voyager 2 measured was only a snapshot in time,” said Spilker, who has returned to the iconic mission to lead its science team as project scientist. “This new work explains some of the apparent contradictions, and it will change our view of Uranus once again.”
      Voyager 2, now in interstellar space, is almost 13 billion miles (21 billion kilometers) from Earth.
      News Media Contacts
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov  
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-6215
      gretchen.p.mccartney@jpl.nasa.gov
      2024-156
      Share
      Details
      Last Updated Nov 11, 2024 Related Terms
      Voyager 2 Heliophysics Jet Propulsion Laboratory Magnetosphere Solar Wind Uranus Uranus Moons Explore More
      6 min read Powerful New US-Indian Satellite Will Track Earth’s Changing Surface
      Article 3 days ago 2 min read Hurricane Helene’s Gravity Waves Revealed by NASA’s AWE
      On Sept. 26, 2024, Hurricane Helene slammed into the Gulf Coast of Florida, inducing storm…
      Article 4 days ago 3 min read Bundling the Best of Heliophysics Education: DigiKits for Physics and Astronomy Teachers
      For nearly a decade, the American Association of Physics Teachers (AAPT) has been working to…
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      ESA/Hubble & NASA, O. Fox, L. Jenkins, S. Van Dyk, A. Filippenko, J. Lee and the PHANGS-HST Team, D. de Martin (ESA/Hubble), M. Zamani (ESA/Hubble) This NASA/ESA Hubble Space Telescope image features NGC 1672, a barred spiral galaxy located 49 million light-years from Earth in the constellation Dorado. This galaxy is a multi-talented light show, showing off an impressive array of different celestial lights. Like any spiral galaxy, shining stars fill its disk, giving the galaxy a beautiful glow. Along its two large arms, bubbles of hydrogen gas shine in a striking red light fueled by radiation from infant stars shrouded within. Near the galaxy’s center are some particularly spectacular stars embedded within a ring of hot gas. These newly formed and extremely hot stars emit powerful X-rays. Closer in, at the galaxy’s very center, sits an even brighter source of X-rays, an active galactic nucleus. This X-ray powerhouse makes NGC 1672 a Seyfert galaxy. It forms as a result of heated matter swirling in the accretion disk around NGC 1672’s supermassive black hole.
      See more images of NGC 1672.
      Image credit: ESA/Hubble & NASA, O. Fox, L. Jenkins, S. Van Dyk, A. Filippenko, J. Lee and the PHANGS-HST Team, D. de Martin (ESA/Hubble), M. Zamani (ESA/Hubble)
      View the full article
  • Check out these Videos

×
×
  • Create New...