Jump to content

Sujung Go: Helping Humanity and the Environment


Recommended Posts

  • Publishers
Posted

Research scientist Sujung Go analyzes atmospheric data to help humanity and the environment.

Name: Sujung Go

Title: Research scientist

Organization: Climate and Radiation Laboratory, Earth Sciences Division, Science Directorate (Code 613)

Sujung Go stands smiling in front of a research poster titled "MAIAC Aerosol Retrieval and Hyperspectral Atmospheric Correction of TROPOMI Data
Sujung Go is a research scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
Courtesy of Sujung Go

What do you do and what is most interesting about your role here at Goddard?

I work in the team of Dr. Alexei Lyapustin and support data analysis and processing algorithms for different missions including DSCOVR EPIC, TROPOMI and PACE. I focus on aerosol retrievals and further analysis of absorbing aerosol composition in mineral dust. I also work on hyperspectral atmospheric correction of TROPOMI and PACE OCI data. These subjects are quite novel for the remote sensing community at large – that’s what makes it so interesting.

What is your educational background?

I got a bachelor’s, master’s, and, in 2020, a Ph.D. in atmospheric science from Yonsei University in South Korea.

Sujung Go stands in front of a courtyard and building at Yonsei University in South Korea wearing a graduation cap and gown, holding flowers and a stuffed bear
Sujung Go recieved her Ph.D. in atmospheric science from Yonsei University in South Korea in 2020.
Courtesy of Sujung Go

What brought you to Goddard?

When I was getting my Ph.D., I was working on the Geostationary Environment Monitoring Spectrometer (GEMS) satellite for the Ministry of Environment of South Korea. During my final year, my professor, who was the principal investigator of the GEMS project, invited my current supervisor at Goddard, Alexei Lyapustin, to visit our laboratory to foster collaborations on satellite aerosol retrievals. Several months later, Alexei offered me a research scientist position in his group. I came to Goddard in March 2020.  

Did you continue working on GEMS after you arrived at Goddard?

GEMS is a South Korean instrument which is identical to NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO) mission. GEMS was launched in February 2020. Since I had worked on GEMS while getting my Ph.D., the GEMS project asked me to help with the initial in-orbit test period for about a month. TEMPO was launched in 2023, and I hope to also be involved with their data analysis both on aerosol and surface reflectance retrievals.

What was most fascinating about your first project at Goddard, determining the mineral composition of atmospheric dust?

Hematite (Fe2O3) and goethite (FeOOH) are the two major absorbers of visible solar radiation in atmospheric dust. Variations in their concentration control dust radiative (climate) effect defining how much  of sunlight dust scatters back to space versus how much it absorbs. Most climate models assume the same distribution of iron oxides in airborne dust globally, and thus knowledge of the real distributions, which we can get from satellites, would be very valuable.

Alexei developed the algorithm to retrieve aerosol loading, spectral absorption and even average height of aerosols from the DSCOVR EPIC instrument, which observes the entire illuminated part of the Earth multiple times a day from its orbit at Lagrange point 1, a spot between Earth and the Sun about 900,000 miles away from our planet. He suggested that I look into how we can use this information to derive hematite and goethite concentrations based on ideas from the earlier works of Dr. Greg Schuster from NASA’s Langley Research Center in Virginia. Greg pioneered such aerosol composition analysis based on AERONET data. It was a pleasure to work with Greg who helped me to fully understand the problem.

It took a while, and I was so happy when in the end it worked. It was fascinating! So exciting!

What is special about your work on hyperspectral atmospheric correction for the PACE mission?

Technically, it’s a very challenging problem and it was never done before in operational settings. We are dealing with very large volume of data, and need to have an accurate radiative transfer across the full UV-visible-shortwave IR spectral range and a very efficient algorithm. From well-calibrated PACE OCI (Ocean Color Imager), we expect to produce high quality land surface reflectance spectra while the PACE ocean team will deliver spectra of the ocean water-leaving reflectance.  These data will provide a wealth of information for the ocean biology community, like composition and life cycles of ocean microorganisms, and for the land vegetation community to help better characterize the state and function of vegetation and improve the knowledge of the global carbon cycle as a result.

A group of people holding awards stand side by side in front of a screen that says "2023 Climate and Radiation Laboratory Awards"
Sujung Go (second from left) is driven by her passion for her work. “I want to be a scientist who can provide or suggest what we really need to help human beings and the environment,” she says.
Courtesy of Sujung Go

What makes your research interdisciplinary?

What we measure from space is a contribution from both atmosphere and the surface. We need to know surface properties to get information about aerosols, and we need aerosol information to retrieve spectral surface reflectance. The problems are inter-related and rooted in how we separate atmospheric and surface signals in satellite measurements. To do both aerosol and surface retrievals accurately, and especially working with applications like composition of absorbers in aerosols, or assessing vegetation greenness and other properties, I need to be truly interdisciplinary.  

What has your mentor, Alexei Lyapustin, taught you?

I am always motivated by his scientific insights. I am really happy that I can learn such high-level science from him and help contribute to scientific findings that help humanity.

I started working at Goddard only two weeks before the lockdown, so I hardly knew any of my colleagues. During that time, Alexei kept our team together, helped us form connections with each other, and made sure that everyone was safe. All of my family is in South Korea, and Alexei made me feel like part of his lab’s family.

I sincerely thank Alexei for all he has done for me and for our lab.

Who inspires you?

I have had several different mentors in my life. First of all, my mother was always dedicated to my education. Second, when I was in middle school, one of my teachers, who taught me science for three years, made it possible for me to attend a science high school in South Korea, which changed my perspective toward life totally. She felt that I had a talent for science, and I was very interested in science. Lastly, my Ph.D. advisor inspired me to have job responsibility as a scientist as well as getting my Ph.D. I am grateful for everyone’s help.

What do you do for fun?

I enjoy hiking. I am also trying to improve my cooking skills by watching online cooking channels. I am working on American and Korean recipes. I make something new every weekend. Some of my friends who are good cooks are coaching me. We get together over holidays to enjoy delicious food together.

What is your “six-word memoir”? A six-word memoir describes something in just six words.

Optimistic. Life-long learner. Thoughtful. Visionary. Prudent. Persistent.

Do you have a favorite saying?

Life is about doing whatever you want to do. Alexei often says learn something! Our team is always optimistic and enthusiastic.

What is your goal as a scientist?

I want to be a scientist who can provide or suggest what we really need to help human beings and the environment. Working at Goddard is a great opportunity to become a scientist who can provide essential research to help humanity. Goddard has an unparalleled expertise in satellite data processing, in particular in atmospheric and biospheric sciences, and this helps and motivates me.

By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.

A banner graphic with a group of people smiling and the text "Conversations with Goddard" on the right. The people represent many genders, ethnicities, and ages, and all pose in front of a soft blue background image of space and stars.

Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.

Share

Details

Last Updated
Feb 13, 2024
Editor
Madison Olson
Contact
Location
Goddard Space Flight Center

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      u0022From a natural resources perspective, I often say that Wallops has all the aspects of NASA’s Kennedy Space Center (which shares its home with the Merritt Island National Wildlife Refuge) in Florida but in a compressed area,u0022 said Shari Miller, NEPA manager and natural resources manager at Wallops Flight Facility. u0022We protect all these species while launching rockets and unmanned aerial systems (UASs) or drones above them.u0022NASA’s Wallops Flight Facility / Jamie Adkins Name: Shari Miller
      Title: Wallops Flight Facility National Environmental Policy Act (NEPA) Manager and Wallops Natural Resources Manager
      Formal Job Classification: Environmental Engineer
      Organization: Medical and Environmental Management Division, Goddard Space Flight Center (Code 250)
      What do you do at Goddard?
      For half my job, I do environmental planning and review all projects and missions looking to come to Wallops or that Wallops project managers are looking to perform anywhere in the world. For the other half of my job, I manage the natural resources permitting and review at Wallops.
      Why did you become an environmental engineer?
      I have always been an outdoors person and was raised to love nature and the environment. I have a Bachelor of Science in chemistry and biology from Salisbury University and a master’s in environmental science from the University of Maryland. I have worked at Wallops for over 23 years.
      What are some of Wallops’ unique environmental attributes?
      From a natural resources perspective, I often say that Wallops has all the aspects of NASA’s Kennedy Space Center (which shares its home with the Merritt Island National Wildlife Refuge) in Florida but in a compressed area. We have endangered species including nesting shorebirds called the piping plover and red knots, and protected species, including bald eagles and peregrine falcons. Loggerhead sea turtles sometimes nest on our shores. Seals may stop to rest. We protect all these species while launching rockets and unmanned aerial systems (UASs) or drones above them.
      For the other half of my job, I can be analyzing the environmental impacts of a rocket launched from a balloon over Hawaii ranging to that of replacing a bridge or building a new rocket launch pad at Wallops, all in the same day. Environmental impacts may include noise levels; socioeconomic effects in the community; and changes, positive or negative, to air, water, or other natural resources. Environmental planning allows the public to comment on proposed federal projects including infrastructure and mission.
      Shari Miller, National Environmental Policy Act (NEPA) manager and natural resources manager at Wallops Flight Facility, helps balance mission needs while also protecting Wallops’ diverse local ecosystem. u0022We have endangered species including nesting shorebirds called the piping plover and red knots, and protected species, including bald eagles and peregrine falcons. Loggerhead sea turtles sometimes nest on our shores. Seals may stop to rest.u0022NASA’s Wallops Flight Facility / Shari Miller What is the coolest thing you have done at work?
      In 2015, I worked on a NASA mission called the Low Density Supersonic Decelerator (LDSD) project in Hawaii. A sounding rocket launched from a balloon was used to test a decelerator and parachute for landing rovers on Mars. NASA’s Jet Propulsion Lab in Southern California designed the decelerator and parachute. Wallops designed the balloon and sounding rocket system and performed the launch. The Navy’s Pacific Missile Range Facility provided the launch range in Hawaii. Both the balloon and the decelerator systems had the potential to land in a National Marine Monument, a highly protected area. I worked with the Hawaiian governor’s office, the Office of Hawaiian Affairs, the U.S. Fish and Wildlife Service and the National Marine Fisheries Service on obtaining the necessary permits.
      I loved the challenge of working with so many entities. I planned all the permits and analyses to ensure that the mission could proceed.
      Do you like to plan in advance?
      The point of early planning is to “know before you go” to allow time to make any necessary changes. I am a planner, at work and in life. I start planning early. How are you going to know where you are going and get plane tickets unless someone does some advance planning?
      Who inspires you?
      My parents inspire me. My father passed away, but he taught me to appreciate a thunderstorm. My mom is in her mid-seventies and retired, but she never sits still. She is one of the most on-the-go people I know. If she is not walking her dogs in the woods, she is either at a card game, a college class, or on a lunch date with friends. Her energy and love of learning and reading and her excitement to share what she has learned, inspires me. I am a data-driven, scientific person. She gave me my love of nature, science, data, and learning.
      u0022I can be analyzing the environmental impacts of a rocket launched from a balloon over Hawaii ranging to that of replacing a bridge or building a new rocket launch pad at Wallops, all in the same day,u0022 Wallops Flight Facility resources manager Shari Miller describes her job. u0022Environmental impacts may include noise levels; socioeconomic effects in the community; and changes, positive or negative, to air, water, or other natural resources.u0022NASA’s Wallops Flight Facility / Shari Miller As a nature lover and environmentalist, what is your favorite place in the world and why?
      I love hiking with my two dogs in the woods and to our local creeks and lakes.
      I love to travel. I’ve been fortunate to have traveled a lot, including to Japan and Thailand. The top of my traveling wish list is New Zealand.
      How does being in nature ground you?
      I am a high-energy person. Being in nature allows me to slow down and breathe; to listen to the stillness, the wind and birdsong. Just to listen to the quiet. All this grounds and calms me, it is almost meditative. It is also energizing and recharges my battery.
      What is your “six-word memoir”? A six-word memoir describes something in just six words.
      Nature-lover balancing the environment and missions.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      Share
      Details
      Last Updated Feb 10, 2025 Related Terms
      Goddard Space Flight Center People of Goddard People of NASA Wallops Flight Facility Women's History Month Keep Exploring Discover More Topics From NASA
      Goddard Space Flight Center
      Wallops Flight Facility
      Environmental Management Division
      Explore Earth Science
      From its origins, NASA has studied our planet in novel ways, using a fleet of satellites and ambitious airborne and ground-based…
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In-person participants L-R standing: Dave Francisco, Joanne Kaouk, Dr. Richard Moon, Dr. Tony Alleman, Dr. Sean Hardy, Sarah Childress, Kristin Coffey, Dr. Ed Powers, Dr. Doug Ebersole, Dr. Steven Laurie, Dr. Doug Ebert; L-R seated: Dr. Alejandro Garbino, Dr. Robert Sanders, Dr. Kristi Ray, Dr. Mike Gernhardt, Dr. Joseph Dervay, Dr. Matt Makowski). Not pictured: Dr. Caroline Fife In June 2024, the NASA Office of the Chief Health and Medical Officer (OCHMO) Standards Team hosted an independent assessment working group to review the status and progress of research and clinical activities intended to mitigate the risk of decompression sickness (DCS) related to patent foramen ovale (PFO) during spaceflight and associated ground testing and human subject studies.
      Decompression sickness (DCS) is a condition which results from dissolved gases (primarily nitrogen) forming bubbles in the bloodstream and tissues. It is usually experienced in conditions where there are rapid decreases in ambient pressure, such as in scuba divers, high-altitude aviation, or other pressurized environments. The evolved gas bubbles have various physiological effects and can obstruct the blood vessels, trigger inflammation, and damage tissue, resulting in symptoms of DCS. NASA presently classifies DCS into two categories: Type I DCS, which is less severe, typically leads to musculoskeletal symptoms including pain in the joints or muscles, or skin rash. Type II DCS is more severe and commonly results in neurological, inner ear, and cardiopulmonary symptoms. The risk of DCS in spaceflight presents during extravehicular activities (EVAs) in which astronauts perform mission tasks outside the spaceflight vehicle while wearing a pressurized suit at a lower pressure than the cabin pressure. DCS mitigation protocols based on strategies to reduce systemic nitrogen load are implemented through the combination of habitat environmental parameters, EVA suit pressure, and breathing gas procedures (prebreathe protocols) to achieve safe and effective mission operations. The pathophysiology of DCS has still not been fully elucidated since cases occur despite the absence of detected gas bubbles but includes right to left shunting of venous gas emboli (VGE) via several potential mechanisms, one of which is a Patent Foramen Ovale (PFO).
      From: Dr. Schochet & Dr. Lie, Pediatric Pulmonologists
      Reference OCHMO-TB-037 Decompression Sickness (DCS) Risk Mitigation technical brief for additional information.
      A PFO is a shunt between the right atrium and the left atrium of the heart, which is a persisting remnant of a physiological communication present in the fetal heart. Post-natal increases in left atrial pressure usually force the inter-septal valve against the septum secundum and within the first 2 years of life, the septae permanently fuse due to the development of fibrous adhesions. Thus, all humans are born with a PFO and approximately 75% of PFOs fuse following childbirth. For the 25% of the population’s whose PFOs do not fuse, ~6% have what is considered by some to be a large PFO (> 2 mm). PFO diameter can increase with age. The concern with PFOs is that with a right to left shunt between the atria, venous emboli gas may pass from the right atrium (venous) to the left atrium (arterial) (“shunt”), thus by-passing the normal lung filtration of venous emboli which prevent passage to the arterial system. Without filtration, bubbles in the arterial system may lead to a neurological event such as a stroke. Any activity that increases the right atrium/venous pressure over the left atrium/arterial pressure (such as a Valsalva maneuver, abdominal compression) may further enable blood and/or emboli across a PFO/shunt.
      From: Nuffield Department of Clinical Neurosciences
      The purpose of this working group was to review and provide analysis on the status and progress of research and clinical activities intended to mitigate the risk of PFO and DCS issues during spaceflight. Identified cases of DCS during NASA exploration atmosphere ground testing conducted in pressurized chambers led to the prioritization of the given topic for external review. The main goals of the working group included:
      Quantification of any increased risk associated with the presence of a PFO during decompression protocols utilized in ground testing and spaceflight EVAs, as well as unplanned decompressions (e.g., cabin depressurization, EVA suit leak). Describe risks and benefits of PFO screening in astronaut candidates, current crewmembers, and chamber test subjects. What are potential risk reduction measures that could be considered if a person was believed to be at increased risk of DCS due to a PFO? What research and/or technology development is recommended that could help inform and/or mitigate PFO-related DCS risk? The working group took place over two days at NASA’s Johnson Space Center and included NASA subject matter experts and stakeholders, as well as invited external reviewers from areas including cardiology, hypobaric medicine, spaceflight medicine, and military occupational health. During the working group, participants were asked to review past reports and evidence related to PFOs and risk of DCS, materials and information regarding NASA’s current experience and practices, and case studies and subsequent decision-making processes. The working group culminated in an open-forum discussion where recommendations for current and future practices were conferred and subsequently summarized in a final summary report, available on the public NASA OCHMO Standards Team website.
      The following key findings are the main take-aways from the OCHMO independent assessment:
      In an extreme exposure/high-risk scenario, excluding individuals with a PFO and treating PFOs does not necessarily decrease the risk of DCS or create a ‘safe’ environment. It may create incremental differences and slightly reduce overall risk but does not make the risk zero. There are other physiological factors that also contribute to the risk of DCS that may have a larger impact (see 7.0 Other Physiological Factors in the findings section).  Based on the available evidence and the risk of current decompression exposures (based on current NASA protocols and NASA-STD-3001 requirements to limit the risk of DCS), it is not recommended to screen for PFOs in any spaceflight or ground testing participants. The best strategy to reduce the risk of DCS is to create as safe an environment as possible in every scenario, through effective prebreathe protocols, safety, and the capability to rapidly treat DCS should symptoms occur.  Based on opinion, no specific research is required at this time to further characterize PFOs with DCS and altitude exposure, due to the low risk and preference to institute adequate safe protocols and ensuring treatment availability both on the ground and in spaceflight. For engineering protocols conducted on the ground, it should be ensured that the same level of treatment capability (treatment chamber in the immediate vicinity of the testing) is provided as during research protocols. The ability to immediately treat a DCS case is critical in ensuring the safety of the test subjects. The full summary report includes detailed background information, discussion points from the working group, and conclusions and recommendations. The findings from the working group and resulting summary report will help to inform key stakeholders in decision-making processes for future ground testing and spaceflight operations with the main goal of protecting crew health and safety to ensure overall mission success.
      Summary Report About the Author
      Sarah D. Childress

      Share
      Details
      Last Updated Dec 31, 2024 Related Terms
      Office of the Chief Health and Medical Officer (OCHMO) Human Health and Performance Humans in Space International Space Station (ISS) Explore More
      2 min read Station Science Top News: Dec. 20, 2024
      Article 2 weeks ago 4 min read Artemis II Core Stage Vertical Integration Begins at NASA Kennedy
      Article 2 weeks ago 3 min read NASA, Axiom Space Change Assembly Order of Commercial Space Station
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      International Space Station: Humanity’s Lab in Space (Narrated by Adam Savage)
    • By Space Force
      DAF senior leaders focused on how the Air Force and Space Force must capitalize and leverage acceptable risk in future planning, adapt to the resourcing and risks present in today’s dynamic environment.

      View the full article
  • Check out these Videos

×
×
  • Create New...