Jump to content

Career Journey: Building Strength as an Astronaut Fitness Trainer


Recommended Posts

  • Publishers
Posted

NASA astronauts must prepare their bodies for the physical stresses of living and working in microgravity before they launch on a spaceflight. Fortunately, they get customized training programs and plenty of help from astronaut fitness trainer Corey Twine, who shares decades of strength and conditioning expertise with astronauts every day at NASA’s Johnson Space Center in Houston.

Twine’s official title is “astronaut strength, conditioning, and rehabilitation specialist.” He works with a team dedicated to ensuring NASA’s space explorers are in top shape before launch day and know how to stay physically healthy throughout their mission, whether they’re flying to the International Space Station or journeying around the Moon.

We sat down with Twine to find out how he launched his career – and what it’s like to get a phone call from an astronaut in space.

microsoftteams-image-23.jpg?w=1290

An Aspiring Athlete

“When I was a kid, I never pictured myself working at NASA,” Twine said. “I pictured myself working in the NFL or professional baseball or all of those other dreams that many kids have.”

Twine was an athlete in high school and planned to play at the collegiate level. But things changed after he began classes at Norfolk State University in Virginia.

“One of my professors was the first strength and conditioning specialist I ever knew,” Twine said. “I learned there are people who just train other people to improve their performance. And from that moment on, I knew exactly what I wanted to do.”

Energized by his passion for strength and conditioning, Twine earned a bachelor’s degree in kinesiology and exercise science at Norfolk State and a master’s of kinesiology from Michigan State. He worked with several collegiate and professional teams while taking his career to new heights.

corey6.jpg?w=1290

From Weight Benches to Weightlessness

Twine was a graduate assistant coach for the Michigan State football team when he first learned NASA was looking for a strength and conditioning coach. Until that moment, he’d been entirely focused on sports, but he was excited by the new opportunity, and applied. He went to work with NASA in 2002 and trained space shuttle astronauts for their missions. Then, his path shifted again.

He spent the next 15 years as a conditioning coach in college football, first with West Virginia University and then the University of Michigan. From there, he went to work with the U.S. Army.

“It was an amazing opportunity to work with the soldiers who were doing so much to protect and serve,” Twine said.

Twine returned to Johnson Space Center in 2018. Today, he prepares astronauts for flights to the space station and for the Artemis missions to come, which will carry crews – including the first woman and first person of color – to the Moon.

Astronauts know Twine is always willing to provide guidance. He took that assistance to a new level one day when he received a mysterious call from “U.S. Government” on his cell phone. To his surprise, it turned out to be an astronaut about 250 miles above Earth aboard the space station.

“They had a question about their training,” said Twine, who chatted with the astronaut. Together, they worked out a solution in real time. “It was a great asset because we were able to adjust and do some things to help their training instead of just going through email.”

corey1.png?w=643

Advice to Students: Success Takes Effort – But You Can Do It

Twine recalls struggling academically during middle and high school and feeling intimidated about college. Fortunately, a friend who was a few years ahead of him shared some simple but meaningful advice: “No test is hard if you study for it.” If you put in the effort until you know the material, you’ll succeed.

“I remember to this day, the first test in my freshman year in college, I studied for a test for the first time,” Twine said. “I read every single thing in the chapter. I read everything in the back of the book. I read all of the information the professor gave.”

His hard work paid off with that test and he vowed to keep up that level of effort.

“I continued that behavior all through undergrad and also through grad school, and it worked every single time,” he said.

Twine cautions against believing you’re not smart enough and says you just need to put in the hard work.

“Study, find resources, find help, continue, and don’t give up.”

Learn more about Corey Twine and how he helps NASA astronauts stay in spaceflight-ready shape in this episode of Surprisingly STEM.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems NASA’s Artemis IV astronauts will be the first to inhabit the Gateway lunar space station, opening the door to greater exploration of the Moon and paving the way to Mars. Gateway’s Power and Propulsion Element, which will make the station the most powerful solar electric spacecraft ever flown, takes shape at Maxar Space Systems. In lunar orbit, Gateway will allow NASA to conduct unique science and exploration while preparing astronauts to go to the Red Planet.
      Technicians install key hardware on the element’s Propulsion Bus Module following installation of both electric propulsion and chemical propulsion control modules. The image highlights a propellant tank exposed on the right, positioned within the central cylinder of the element.  
      The Power and Propulsion Element will launch with Gateway’s HALO (Habitation and Logistics Outpost) ahead of NASA’s Artemis IV mission. During Artemis IV, V, and VI, international crews of astronauts will assemble the lunar space station around the Moon and embark on expeditions to the Moon’s South Pole region.
      The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland and built by Maxar Space Systems in Palo Alto, California.
      Gateway is an international collaboration to establish humanity’s first lunar space station as a central component of the Artemis architecture designed to return humans to the Moon for scientific discovery and chart a path for the first human missions to Mars.
      The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems An artist’s rendering of the Gateway lunar space station, including its Power and Propulsion Element, shown here with its solar arrays deployed. Gateway will launch its initial elements to lunar orbit ahead of the Artemis IV mission. NASA/Alberto Bertolin An artist’s rendering of Gateway with the Power and Propulsion Element’s advanced thrusters propelling the lunar space station to the Moon. NASA/Alberto Bertolin Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Feb 25, 2025 ContactJacqueline Minerdjacqueline.minerd@nasa.govLocationGlenn Research Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Glenn Research Center Humans in Space Technology Technology for Space Travel Explore More
      5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
      NASA and its international partners are making progress on Gateway – the lunar space station…
      Article 4 days ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 1 month ago 2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
      A key element of the Gateway lunar space station has entered the cleanroom for final…
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Human Landing System
      Extravehicular Activity and Human Surface Mobility
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Technicians at Thales Alenia Space in Turin, Italy, lower Gateway’s HALO (Habitation and Logistics Outpost) onto a stand in the cleanroom.Thales Alenia Space When NASA’s Artemis IV astronauts journey to the Moon, they will make the inaugural visit to Gateway, humanity’s first space station in lunar orbit. Shown here, technicians carefully guide HALO (Habitation and Logistics Outpost)—a foundational element of Gateway—onto a stand in the cleanroom at Thales Alenia Space in Turin, Italy. The element’s intricate structure, designed to support astronauts and science in lunar orbit, has entered the cleanroom after successfully completing a series of rigorous environmental stress tests.
      In the cleanroom, technicians will make final installations before preparing the module for transport to the United States, a key milestone on its path to launch. This process includes installing and testing valves and hatches, performing leak checks, and integrating external secondary structures. Once these steps are finished, the module will be packaged for shipment to Gilbert, Arizona, where Northrop Grumman will complete its outfitting.
      Technicians at Thales Alenia Space in Turin, Italy, oversee the HALO module’s transfer to the cleanroom.Thales Alenia Space As one of Gateway’s four pressurized modules, HALO will provide Artemis astronauts with space to live, work, conduct scientific research, and prepare for missions to the lunar surface. The module will also support internal and external science payloads, including a space weather instrument suite attached via a Canadian Space Agency Small Orbital Replacement Unit Robotic Interface, host the Lunar Link communications system developed by European Space Agency, and offer docking ports for visiting vehicles, including lunar landers and NASA’s Orion spacecraft.
      Developed in collaboration with industry and international partners, Gateway is a cornerstone of NASA’s Artemis campaign to advance science and exploration on and around the Moon in preparation for the next giant leap: the first human missions to Mars.
      Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Feb 13, 2025 ContactLaura RochonLocationJohnson Space Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Humans in Space Johnson Space Center Explore More
      2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 3 weeks ago 2 min read Gateway Tops Off
      Gateway’s Power and Propulsion Element is now equipped with its xenon and liquid fuel tanks.
      Article 3 months ago 2 min read Gateway: Life in a Lunar Module
      Article 4 months ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Human Landing System
      Extravehicular Activity and Human Surface Mobility
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A team at JPL packed up three small Moon rovers, delivering them in February to the facility where they’ll be attached to a commercial lunar lander in preparation for launch. The rovers are part of a project called CADRE that could pave the way for potential future multirobot missions.. NASA/JPL-Caltech A trio of suitcase-size rovers and their base station have been carefully wrapped up and shipped off to join the lander that will deliver them to the Moon’s surface.
      Three small NASA rovers that will explore the lunar surface as a team have been packed up and shipped from the agency’s Jet Propulsion Laboratory in Southern California, marking completion of the first leg of the robots’ journey to the Moon.
      The rovers are part of a technology demonstration called CADRE (Cooperative Autonomous Distributed Robotic Exploration), which aims to show that a group of robots can collaborate to gather data without receiving direct commands from mission controllers on Earth. They’ll use their cameras and ground-penetrating radars to send back imagery of the lunar surface and subsurface while testing out the novel software that enables them to work together autonomously.
      The CADRE rovers will launch to the Moon aboard IM-3, Intuitive Machines’ third lunar delivery, which has a mission window that extends into early 2026, as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative. Once installed on Intuitive Machines’ Nova-C lander, they’ll head to the Reiner Gamma region on the western edge of the Moon’s near side, where the solar-powered, suitcase-size rovers will spend the daylight hours of a lunar day (the equivalent of about 14 days on Earth) carrying out experiments. The success of CADRE could pave the way for potential future missions with teams of autonomous robots supporting astronauts and spreading out to take simultaneous, distributed scientific measurements.
      Members of a JPL team working on NASA’s CADRE technology demonstration use temporary red handles to move one of the project’s small Moon rovers to prepare it for transport to Intuitive Machines’ Houston facility, where it will be attached to the company’s third lunar lander. Construction of the CADRE hardware — along with a battery of rigorous tests to prove readiness for the journey through space — was completed in February 2024.
      To get prepared for shipment to Intuitive Machines’ Houston facility, each rover was attached to its deployer system, which will lower it via tether from the lander onto the dusty lunar surface. Engineers flipped each rover-deployer pair over and attached it to an aluminum plate for safe transit. The rovers were then sealed in protective metal-frame enclosures that were fitted snuggly into metal shipping containers and loaded onto a truck. The hardware arrived safely on Sunday, Feb. 9.
      “Our small team worked incredibly hard constructing these robots and putting them to the test, and we have been eagerly waiting for the moment where we finally see them on their way,” said Coleman Richdale, the team’s assembly, test, and launch operations lead at JPL. “We are all genuinely thrilled to be taking this next step in our journey to the Moon, and we can’t wait to see the lunar surface through CADRE’s eyes.”
      The rovers, the base station, and a camera system that will monitor CADRE experiments on the Moon will be integrated with the lander — as will several other NASA payloads — in preparation for the launch of the IM-3 mission.
      More About CADRE
      A division of Caltech in Pasadena, California, JPL manages CADRE for the Game Changing Development program within NASA’s Space Technology Mission Directorate. The technology demonstration was selected under the agency’s Lunar Surface Innovation Initiative, which was established to expedite the development of technologies for sustained presence on the lunar surface. NASA’s Science Mission Directorate manages the CLPS initiative. The agency’s Glenn Research Center in Cleveland and its Ames Research Center in Silicon Valley, California, both supported the project. Motiv Space Systems designed and built key hardware elements at the company’s Pasadena facility. Clemson University in South Carolina contributed research in support of the project.
      For more about CADRE, go to:
      https://go.nasa.gov/cadre
      News Media Contact
      Melissa Pamer
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-314-4928
      melissa.pamer@jpl.nasa.gov
      2025-018
      Share
      Details
      Last Updated Feb 11, 2025 Related Terms
      CADRE (Cooperative Autonomous Distributed Robotic Exploration) Commercial Lunar Payload Services (CLPS) Earth's Moon Game Changing Development Program Jet Propulsion Laboratory Space Technology Mission Directorate Technology Technology Demonstration Explore More
      5 min read NASA’s Curiosity Rover Captures Colorful Clouds Drifting Over Mars
      Article 2 hours ago 5 min read NASA-Led Study Pinpoints Areas Sinking, Rising Along California Coast
      Article 1 day ago 5 min read Euclid Discovers Einstein Ring in Our Cosmic Backyard
      Article 1 day ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      BBEME Course Description:
      An interactive learning series designed to highlight critical interactions and various engagements across all GSFC locations, Facilities, and Institutes that lead to mission success. Themes include: strategic goals, current developments, mission success critical topics

      Instructional Strategy:
      •Facilitated panel discussions
      •Leadership engagements
      •One-on-one interactions
      •Facilitated case studies

      BBEME Workshops have been previously offered at GISS, Katherine Johnson IV&V, and Goddard’s Earth Science Division. The workshop targets groups of around 30 participants for a 1-2 day session.

      If your group is interested in hosting a workshop, contact alysha.bayens@nasa.gov
      View the full article
    • By European Space Agency
      Space is not the safest place to be. During spaceflight, both devices and humans risk exposure to high levels of radiation. Without sufficient protection, instruments would malfunction, and astronauts might face serious health risks. A team of researchers from Ghent University in Belgium are testing the potential of 3D-printed hydrogels – materials that can soak up large amounts of water – to serve as highly-effective radiation shields.
      View the full article
  • Check out these Videos

×
×
  • Create New...