Jump to content

Recommended Posts

Posted
Sun_s_surprising_activity_surge_in_Solar Image:

See how the Sun changed between February 2021 and October 2023. As the Sun approaches the maximum in its magnetic activity cycle, we see more brilliant explosions, dark sunspots, loops of plasma, and swirls of super-hot gas.

The Sun goes through a cycle of activity that lasts around 11 years. It is caused by the ‘solar dynamo’, the process that generates the Sun’s magnetic field. At the beginning of this cycle (the solar minimum) there is relatively little activity and few sunspots. Activity steadily increases until it peaks (the solar maximum) and then decreases again to a minimum.

The most recent solar minimum was in December 2019, just two months before Solar Orbiter launched. The spacecraft’s early views (left) showed that in February 2021 the Sun was still relatively calm.

We are now approaching solar maximum, which is expected to occur in 2025. Solar Orbiter’s more recent views, taken during a close approach to the Sun in October 2023 (right), show a striking increase in solar activity. This adds weight to recent theories [paper 1, paper 2] that the maximum could arrive up to a year earlier than expected.

Solar Orbiter will help us predict the timing and strength of solar cycles. Although notoriously tricky, this is vital because solar activity can seriously affect life on Earth; extreme eruptions can damage ground-based electricity grids and disable orbiting satellites.

The images were taken by Solar Orbiter’s Extreme Ultraviolet Imager (EUI) instrument. They reveal the Sun’s upper atmosphere, which has a temperature of around a million degrees Celsius. EUI helps scientists investigate the mysterious heating processes that occur in the Sun’s outer regions. Since EUI views the Sun in ultraviolet light, which is invisible to human eyes, the yellow colour is added to help us visualise our changing Sun.

 

Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA. The Extreme Ultraviolet Imager (EUI) instrument is led by the Royal Observatory of Belgium.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Caption: Illustration of the four PUNCH spacecraft in low Earth orbit. Credit: NASA’s Goddard Space Flight Center Conceptual Image Lab
      NASA will hold a media teleconference at 2 p.m. EST on Tuesday, Feb. 4, to share information about the agency’s upcoming PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission, which is targeted to launch no earlier than Thursday, Feb. 27.

      The agency’s PUNCH mission is a constellation of four small satellites. When they arrive in low Earth orbit, the satellites will make global, 3D observations of the Sun’s outer atmosphere, the corona, and help NASA learn how the mass and energy there become solar wind. By imaging the Sun’s corona and the solar wind together, scientists hope to better understand the entire inner heliosphere – Sun, solar wind, and Earth – as a single connected system.
      Audio of the teleconference will stream live on the agency’s website at:
      https://www.nasa.gov/live
      Participants include:
      Madhulika Guhathakurta, NASA program scientist, NASA Headquarters Nicholeen Viall, PUNCH mission scientist, NASA’s Goddard Space Flight Center Craig DeForest, PUNCH principal investigator, Southwest Research Institute To participate in the media teleconference, media must RSVP no later than 12 p.m. on Feb. 4 to: Abbey Interrante at: abbey.a.interrante@nasa.gov. NASA’s media accreditation policy is available online. 
      The PUNCH mission will share a ride to space with NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) space telescope on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. 
      The Southwest Research Institute in Boulder, Colorado, leads the PUNCH mission. The mission is managed by the Explorers Program Office at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. 
      To learn more about PUNCH, please visit:  
      https://nasa.gov/punch
      -end-
      Karen Fox
      Headquarters, Washington
      202-358-1600
      karen.fox@nasa.gov
      Sarah Frazier
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      A massive hotspot — larger the Earth’s Lake Superior — can be seen just to the right of Io’s south pole in this annotated image taken by the JIRAM infrared imager aboard NASA’s Juno on Dec. 27, 2024, during the spacecraft’s flyby of the Jovian moon. NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM Even by the standards of Io, the most volcanic celestial body in the solar system, recent events observed on the Jovian moon are extreme.
      Scientists with NASA’s Juno mission have discovered a volcanic hot spot in the southern hemisphere of Jupiter’s moon Io. The hot spot is not only larger than Earth’s Lake Superior, but it also belches out eruptions six times the total energy of all the world’s power plants. The discovery of this massive feature comes courtesy of Juno’s Jovian Infrared Auroral Mapper (JIRAM) instrument, contributed by the Italian Space Agency.
      “Juno had two really close flybys of Io during Juno’s extended mission,” said the mission’s principal investigator, Scott Bolton of the Southwest Research Institute in San Antonio. “And while each flyby provided data on the tormented moon that exceeded our expectations, the data from this latest — and more distant — flyby really blew our minds. This is the most powerful volcanic event ever recorded on the most volcanic world in our solar system — so that’s really saying something.”
      The source of Io’s torment: Jupiter. About the size of Earth’s Moon, Io is extremely close to the mammoth gas giant, and its elliptical orbit whips it around Jupiter once every 42.5 hours. As the distance varies, so does the planet’s gravitational pull, which leads to the moon being relentlessly squeezed. The result: immense energy from frictional heating that melts portions of Io’s interior, resulting in a seemingly endless series of lava plumes and ash venting into its atmosphere from the estimated 400 volcanoes that riddle its surface.
      Close Flybys
      Designed to capture the infrared light (which isn’t visible to the human eye) emerging from deep inside Jupiter, JIRAM probes the gas giant’s weather layer, peering 30 to 45 miles (50 to 70 kilometers) below its cloud tops. But since NASA extended Juno’s mission, the team has also used the instrument to study the moons Io, Europa, Ganymede, and Callisto.
      Images of Io captured in 2024 by the JunoCam imager aboard NASA’s Juno show signif-icant and visible surface changes (indicated by the arrows) near the Jovian moon’s south pole. These changes occurred between the 66th and 68th perijove, or the point during Juno’s orbit when it is closest to Jupiter.Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Jason Perry During its extended mission, Juno’s trajectory passes by Io every other orbit, flying over the same part of the moon each time. Previously, the spacecraft made close flybys of Io in December 2023 and February 2024, getting within about 930 miles (1,500 kilometers) of its surface. The latest flyby took place on Dec. 27, 2024, bringing the spacecraft within about 46,200 miles (74,400 kilometers) of the moon, with the infrared instrument trained on Io’s southern hemisphere.
      Io Brings the Heat
      “JIRAM detected an event of extreme infrared radiance — a massive hot spot — in Io’s southern hemisphere so strong that it saturated our detector,” said Alessandro Mura, a Juno co-investigator from the National Institute for Astrophysics in Rome. “However, we have evidence what we detected is actually a few closely spaced hot spots that emitted at the same time, suggestive of a subsurface vast magma chamber system. The data supports that this is the most intense volcanic eruption ever recorded on Io.”
      The JIRAM science team estimates the as-yet-unnamed feature spans 40,000 square miles (100,000 square kilometers). The previous record holder was Io’s Loki Patera, a lava lake of about 7,700 square miles (20,000 square kilometers). The total power value of the new hot spot’s radiance measured well above 80 trillion watts.
      Picture This
      The feature was also captured by the mission’s JunoCam visible light camera. The team compared JunoCam images from the two previous Io flybys with those the instrument collected on Dec. 27. And while these most recent images are of lower resolution since Juno was farther away, the relative changes in surface coloring around the newly discovered hot spot were clear. Such changes in Io’s surface are known in the planetary science community to be associated with hot spots and volcanic activity.
      An eruption of this magnitude is likely to leave long-lived signatures. Other large eruptions on Io have created varied features, such as pyroclastic deposits (composed rock fragments spewed out by a volcano), small lava flows that may be fed by fissures, and volcanic-plume deposits rich in sulfur and sulfur dioxide.
      Juno will use an upcoming, more distant flyby of Io on March 3 to look at the hot spot again and search for changes in the landscape. Earth-based observations of this region of the moon may also be possible.  
      “While it is always great to witness events that rewrite the record books, this new hot spot can potentially do much more,” said Bolton. “The intriguing feature could improve our understanding of volcanism not only on Io but on other worlds as well.”
      More About Juno
      NASA’s Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA’s New Frontiers Program, which is managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. The Italian Space Agency (ASI) funded the Jovian InfraRed Auroral Mapper. Lockheed Martin Space in Denver built and operates the spacecraft. Various other institutions around the U.S. provided several of the other scientific instruments on Juno.
      More information about Juno is available at:
      https://www.nasa.gov/juno
      News Media Contacts
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      Karen Fox / Alana Johnson
      NASA Headquarters, Washington
      202-358-1600 / 202-358-1501
      karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov
      Deb Schmid
      Southwest Research Institute, San Antonio
      210-522-2254
      dschmid@swri.org
      2025-010      
      Share
      Details
      Last Updated Jan 28, 2025 Related Terms
      Juno Jet Propulsion Laboratory Jupiter Jupiter Moons The Solar System Explore More
      4 min read NASA Space Tech’s Favorite Place to Travel in 2025: The Moon!
      Article 4 days ago 5 min read NASA JPL Prepping for Full Year of Launches, Mission Milestones
      Article 5 days ago 5 min read Study Finds Earth’s Small Asteroid Visitor Likely Chunk of Moon Rock
      Article 6 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Crews conduct a solar array deployment test on the spacecraft of NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located inside Vandenberg Space Force Base in California on Tuesday, Jan. 21, 2025.USSF 30th Space Wing/Antonio Ramos Technicians supporting NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission deployed and tested the spacecraft’s solar arrays at the Astrotech Space Operations processing facility at Vandenberg Space Force Base in California ahead of its launch next month.
      The arrays, essential for powering instruments and systems, mark another milestone in preparing PUNCH for its mission to study the Sun’s outer atmosphere as it transitions into the solar wind. Technicians performed the tests in a specialized cleanroom environment to prevent contamination and protect the sensitive equipment.
      Comprised of four suitcase-sized satellites working together as a constellation, PUNCH will capture continuous 3D images of the Sun’s corona and the solar wind’s journey into the solar system. Led by the Southwest Research Institute (SwRI) for NASA, the mission aims to deepen our understanding of the Sun and solar wind and how they affect humanity’s technology on Earth and our continued exploration of the solar system.
      Successful solar array testing brings the spacecraft another step toward readiness for launch. The agency’s PUNCH mission is targeting liftoff as a rideshare with NASA’s SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) on a SpaceX Falcon 9 rocket from Vandenberg’s Space Launch Complex 4E no earlier than Thursday, Feb. 27.
      Image credit: USSF 30th Space Wing/Antonio Ramos
      View the full article
    • By NASA
      3 min read
      NASA Solar Observatory Sees Coronal Loops Flicker Before Big Flares
      For decades, scientists have tried in vain to accurately predict solar flares — intense bursts of light on the Sun that can send a flurry of charged particles into the solar system. Now, using NASA’s Solar Dynamics Observatory, one team has identified flickering loops in the solar atmosphere, or corona, that seem to signal when the Sun is about to unleash a large flare.
      These warning signs could help NASA and other stakeholders protect astronauts as well as technology both in space and on the ground from hazardous space weather.
      NASA’s Solar Dynamics Observatory captured this image of coronal loops above an active region on the Sun in mid-January 2012. The image was taken in the 171 angstrom wavelength of extreme ultraviolet light. NASA/Solar Dynamics Observatory Led by heliophysicist Emily Mason of Predictive Sciences Inc. in San Diego, California, the team studied arch-like structures called coronal loops along the edge of the Sun. Coronal loops rise from magnetically driven active regions on the Sun, where solar flares also originate.
      The team looked at coronal loops near 50 strong solar flares, analyzing how their brightness in extreme ultraviolet light varied in the hours before a flare compared to loops above non-flaring regions. Like flashing warning lights, the loops above flaring regions varied much more than those above non-flaring regions.
      “We found that some of the extreme ultraviolet light above active regions flickers erratically for a few hours before a solar flare,” Mason explained. “The results are really important for understanding flares and may improve our ability to predict dangerous space weather.”
      Published in the Astrophysical Journal Letters in December 2024 and presented on Jan. 15, 2025, at a press conference during the 245th meeting of the American Astronomical Society, the results also hint that the flickering reaches a peak earlier for stronger flares. However, the team says more observations are needed to confirm this link.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      The four panels in this movie show brightness changes in coronal loops in four different wavelengths of extreme ultraviolet light (131, 171, 193, and 304 angstroms) before a solar flare in December 2011. The images were taken by the Atmospheric Imaging Assembly (AIA) on NASA’s Solar Dynamics Observatory and processed to reveal flickering in the coronal loops. NASA/Solar Dynamics Observatory/JHelioviewer/E. Mason Other researchers have tried to predict solar flares by examining magnetic fields on the Sun, or by looking for consistent trends in other coronal loop features. However, Mason and her colleagues believe that measuring the brightness variations in coronal loops could provide more precise warnings than those methods — signaling oncoming flares 2 to 6 hours ahead of time with 60 to 80 percent accuracy.
      “A lot of the predictive schemes that have been developed are still predicting the likelihood of flares in a given time period and not necessarily exact timing,” said team member Seth Garland of the Air Force Institute of Technology at Wright-Patterson Air Force Base in Ohio.
      Each solar flare is like a snowflake — every single flare is unique.
      Kara kniezewski
      Air Force Institute of Technology
      “The Sun’s corona is a dynamic environment, and each solar flare is like a snowflake — every single flare is unique,” said team member Kara Kniezewski, a graduate student at the Air Force Institute of Technology and lead author of the paper. “We find that searching for periods of ‘chaotic’ behavior in the coronal loop emission, rather than specific trends, provide a much more consistent metric and may also correlate with how strong a flare will be.”
      The scientists hope their findings about coronal loops can eventually be used to help keep astronauts, spacecraft, electrical grids, and other assets safe from the harmful radiation that accompanies solar flares. For example, an automated system could look for brightness changes in coronal loops in real-time images from the Solar Dynamics Observatory and issue alerts.
      “Previous work by other researchers reports some interesting prediction metrics,” said co-author Vadim Uritsky of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Catholic University of Washington in D.C. “We could build on this and come up with a well-tested and, ideally, simpler indicator ready for the leap from research to operations.”
      By Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Jan 15, 2025 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Space Weather The Sun Explore More
      7 min read NASA Celebrates Edwin Hubble’s Discovery of a New Universe


      Article


      5 hours ago
      6 min read NASA’s Webb Reveals Intricate Layers of Interstellar Dust, Gas


      Article


      1 day ago
      6 min read Newfound Galaxy Class May Indicate Early Black Hole Growth, Webb Finds


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      NASA/Joel Kowsky An adult Alamosaurus sports eclipse glasses outside of The Children’s Museum of Indianapolis, on April 6, 2024. Two days later, the total solar eclipse swept across a narrow portion of the North American continent from Mexico’s Pacific coast to the Atlantic coast of Newfoundland, Canada. A partial solar eclipse was visible across the entire North American continent along with parts of Central America and Europe.
      The NASA Headquarters photo team chose this image as one of the best from 2024. See more of the top 100 from last year on Flickr.
      Image credit: NASA/Joel Kowsky
      View the full article
  • Check out these Videos

×
×
  • Create New...