Jump to content

Sense the Solar Eclipse with NASA’s Eclipse Soundscapes Project


NASA

Recommended Posts

  • Publishers

4 min read

Sense the Solar Eclipse with NASA’s Eclipse Soundscapes Project

When darkness sweeps across the landscape during a total solar eclipse, unusual things start happening. Fooled by the false dusk, birds stop singing, crickets start chirping, and bees return to their hives.

Reports of these atypical animal behaviors date back centuries, but the effects of an eclipse on plant and animal life are not fully understood. So, on April 8, 2024, the NASA-funded Eclipse Soundscapes Project will collect the sights and sounds of a total solar eclipse with help from interested members of the public to better understand how an eclipse affects different ecosystems.

“Eclipses are often thought of as a visual event – something that you see,” said Kelsey Perrett, Communications Coordinator with the Eclipse Soundscapes Project. “We want to show that eclipses can be studied in a multi-sensory manner, through sound and feeling and other forms of observation.”

A total solar eclipse occurs when the Moon passes directly in front of the Sun, blocking its light from reaching parts of the planet. In areas where the Sun’s light is completely blocked – known as the path of totality – it looks as if dusk has fallen, temperatures drop, and some stars become visible. These changes can trick animals into altering their usual daytime behaviors. A total solar eclipse will pass over the heads of over 30 million people in North America on April 8, 2024, providing the perfect opportunity for a large-scale citizen science project.

In April 2024, volunteers can join the Eclipse Soundscapes project to help NASA scientists better understand how wildlife is impacted by solar eclipses. Volunteers will gather sound recordings, make observations using any of their senses, and even help with data analysis from across the path of the eclipse. This video features interviews from Eclipse Soundscapes experts MaryKay Severino, Dr. William “Trae” Winter III, and Dr. William Oestreich, and highlights natural resource manager Dr. Chace Holzhueser at Hot Springs National Park in Arkansas, who will be conducting a similar study for the total solar eclipse on April 8, 2024.
Credits: Lacey Young/NASA

The Eclipse Soundscapes Project aims to replicate a similar study conducted by American scientist William M. Wheeler following a 1932 total solar eclipse that passed over the northeast reaches of Canada and the United States. The near-century-old study captured almost 500 observations from the public.

The Eclipse Soundscapes Project hopes modern tools will replicate and expand upon that study to better understand animal and insect behavior. This will be achieved through multisensory observations, such as audio recordings and written accounts of what is seen, heard, or felt during the eclipse. The project, which is particularly interested in learning about cricket behavior, aims to answer questions like do nocturnal and diurnal animals act differently or become more or less vocal during a solar eclipse?

“The more audio data and observations we have, the better we can answer these questions,” Perrett said. “Contributions from participatory scientists will allow us to drill down into specific ecosystems and determine how the eclipse may have impacted each of them.”

A close-up profile of an orange and black grasshopper on a leaf.
An Eastern Lubber Grasshopper on a leaf.
Federico Acevedo/National Park Service

The Eclipse Soundscape project invites people to become involved with the study at all levels – from learning about eclipses online, to collecting multisensory observations and audio data, to analyzing the data – and in all locations, whether they’re on the path of totality or not. The project is open to people of all backgrounds and abilities. All project roles have been designed with accessibility in mind to invite people who are blind or have low vision to participate alongside their sighted peers. 

People on or near the path of totality can participate as “Data Collectors” by using an AudioMoth device, a low-cost audio recording device called equipped with a micro-SD card, to capture the sounds of an eclipse. People can also participate as “Observers” by writing down their multisensory observations and submitting them to the project website after the eclipse. Anyone with an internet connection, can participate as an “Apprentice” by learning about eclipses or as a “Data Analyst” to help analyze the audio data after the eclipse. After completing an Eclipse Soundscapes role, a downloadable certificate will be available.

A plastic bag with a green device that looks similar to a floppy disk is attached to a tree branch with a zip tie. There is a label on the bag that says Science Experiment in Progress and instructions not to move the device.
An AudioMoth device hangs from a tree branch, ready to capture the sounds of an eclipse.
Eclipse Soundscapes Project

“When it comes down to it, answering our science questions about how eclipses impact life on Earth depends entirely on the data that people volunteer to contribute,” Perrett said. “Our participants, including our project partners and facilitators, allow us to span the entire eclipse path and collect way more data than would be possible for just one small team.”

To learn more about the project and how to become involved, visit: https://eclipsesoundscapes.org/

By Mara Johnson-Groh

NASA’s Goddard Space Flight Center, Greenbelt, Md.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA Energy Program Manager for Facility Projects Wayne Thalasinos, left, stands with NASA Stennis Sustainability Team Lead Alvin Askew at the U.S. Department of Energy in Washington, D.C., on Oct. 30. The previous day, the Department of Energy announced NASA Stennis will receive a $1.95 million grant for an energy conservation project at the south Mississippi center. The Stennis Sustainability Team consists of NASA personnel and contract support. NASA members include Askew, Missy Ferguson and Teenia Perry. Contract members include Jordan McQueen (Synergy-Achieving Consolidated Operations and Maintenance); Michelle Bain (SACOM); Matt Medick (SACOM); Thomas Mitchell (SACOM); Lincoln Gros (SACOM), and Erik Tucker (Leidos). NASA Stennis NASA’s Stennis Space Center has been awarded a highly competitive U.S. Department of Energy grant to transform its main administration building into a facility that produces as much renewable energy as it uses.
      Following an Oct. 29 announcement, NASA Stennis, located near Bay St. Louis, Mississippi, will receive $1.95 million through the Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Program. The grant will fund installation of a four-acre solar panel array onsite that can generate up to 1 megawatt of electricity.
      “This is a flagship project for our NASA center,” said NASA Stennis Director John Bailey. “It will provide renewable energy to help reduce our carbon footprint, contributing to NASA’s agencywide goal of zero greenhouse gas emissions by 2030.”
      The AFFECT Program awards grants to help the federal government achieve its goal of net-zero greenhouse gas emissions by all federal buildings by 2045. More than $1 billion in funding proposals was requested by federal agencies for the second, and final, phase of the initiative. A total of $149.87 million subsequently was awarded for 67 energy conservation and clean energy projects at federal facilities across 28 U.S. states and territories and in six international locations. NASA Stennis is the only agency in Mississippi to receive funding.  
      The site’s solar panel array will build on an $1.65 million energy conservation project already underway at the south Mississippi site to improve energy efficiency. The solar-generated electricity can be used in a number of ways, from powering facility lighting to running computers. The array also will connect to the electrical grid to allow any excess energy to be utilized elsewhere onsite.
      “This solar panel addition will further enhance our energy efficiency,” said NASA Stennis Sustainability Team Lead Alvin Askew. “By locating the solar photovoltaic array by the Emergency Operations Center, it also has potential future benefits in providing backup power to that facility during outages.”
      The NASA Stennis proposal was one of several submitted by NASA centers for agency consideration. Following an agency review process, NASA submitted multiple projects to the Department of Energy for grant consideration.
      “This was a very competitive process, and I am proud of the NASA Stennis Sustainability Team,” NASA Stennis Center Operations Director Michael Tubbs said. “The team’s hard work in recent years and its commitment to continuous improvement in onsite energy conversation laid the groundwork to qualify for this grant. Mr. Askew, in particular, continues to be a leader in creative thinking, helping us meet agency sustainability goals.”
      The NASA Stennis administration building was constructed in 2008 as a Leadership in Energy and Environmental Design-certified, all-electric facility and currently has net-zero emissions.
      For information about NASA’s Stennis Space Center, visit:
      https://www.nasa.gov/stennis
      Explore More
      5 min read NASA Stennis – An Ideal Place for Commercial Companies
      Article 1 day ago 4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 1 day ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 1 day ago Share
      Details
      Last Updated Nov 14, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Keep Exploring Discover More Topics From NASA Stennis
      Multi-User Test Complex
      Propulsion Test Engineering
      NASA Stennis Front Door
      NASA Stennis Media Resources
      View the full article
    • By NASA
      4 min read
      Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass
      On Wednesday, Nov. 6, 2024, NASA’s Parker Solar Probe will complete its final Venus gravity assist maneuver, passing within 233 miles (376 km) of Venus’ surface. The flyby will adjust Parker’s trajectory into its final orbital configuration, bringing the spacecraft to within an unprecedented 3.86 million miles of the solar surface on Dec. 24, 2024. It will be the closest any human made object has been to the Sun.
      Parker’s Venus flybys have become boons for new Venus science thanks to a chance discovery from its Wide-Field Imager for Parker Solar Probe, or WISPR. The instrument peers out from Parker and away from the Sun to see fine details in the solar wind. But on July 11, 2020, during Parker’s third Venus flyby, scientists turned WISPR toward Venus in hopes of tracking changes in the planet’s thick cloud cover. The images revealed a surprise: A portion of WISPR’s data, which captures visible and near infrared light, seemed to see all the way through the clouds to the Venusian surface below. 
      “The WISPR cameras can see through the clouds to the surface of Venus, which glows in the near-infrared because it’s so hot,” said Noam Izenberg, a space scientist at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.
      Venus, sizzling at approximately 869 degrees Fahrenheit (about 465 C), was radiating through the clouds.
      The WISPR images from the 2020 flyby, as well as the next flyby in 2021, revealed Venus’ surface in a new light. But they also raised puzzling questions, and scientists have devised the Nov. 6 flyby to help answer them.
      Left: A series of WISPR images of the nightside of Venus from Parker Solar Probe’s fourth flyby showing near infrared emissions from the surface. In these images, lighter shades represent warmer temperatures and darker shades represent cooler. Right: A combined mosaic of radar images of Venus’ surface from NASA’s Magellan mission, where the brightness indicates radar properties from smooth (dark) to rough (light), and the colors indicate elevation from low (blue) to high (red). The Venus images correspond well with data from the Magellan spacecraft, showing dark and light patterns that line up with surface regions Magellan captured when it mapped Venus’ surface using radar from 1990 to 1994. Yet some parts of the WISPR images appear brighter than expected, hinting at extra information captured by WISPR’s data. Is WISPR picking up on chemical differences on the surface, where the ground is made of different material? Perhaps it’s seeing variations in age, where more recent lava flows added a fresh coat to the Venusian surface.
      “Because it flies over a number of similar and different landforms than the previous Venus flybys, the Nov. 6 flyby will give us more context to evaluate whether WISPR can help us distinguish physical or even chemical properties of Venus’ surface,” Izenberg said.
      After the Nov. 6 flyby, Parker will be on course to swoop within 3.8 million miles of the solar surface, the final objective of the historic mission first conceived over 65 years ago. No human-made object has ever passed this close to a star, so Parker’s data will be charting as-yet uncharted territory. In this hyper-close regime, Parker will cut through plumes of plasma still connected to the Sun. It is close enough to pass inside a solar eruption, like a surfer diving under a crashing ocean wave.
      “This is a major engineering accomplishment,” said Adam Szabo, project scientist for Parker Solar Probe at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The closest approach to the Sun, or perihelion, will occur on Dec. 24, 2024, during which mission control will be out of contact with the spacecraft. Parker will send a beacon tone on Dec. 27, 2024, to confirm its success and the spacecraft’s health. Parker will remain in this orbit for the remainder of its mission, completing two more perihelia at the same distance.
      Parker Solar Probe is part of NASA’s Living with a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living with a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, manages the Parker Solar Probe mission for NASA and designed, built, and operates the spacecraft.
      By Miles Hatfield
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Nov 04, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Solar Wind The Sun Venus Keep Exploring Discover More Topics From NASA
      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Sun



      Parker Solar Probe Stories



      Sun: Exploration


      View the full article
    • By European Space Agency
      ESA’s solar eclipse-making Proba-3 mission is about to leave Europe, to head to its launch site in India. The mission’s two spacecraft – which will manoeuvre precisely in Earth orbit so that one casts a shadow onto the other – have departed the facilities of Redwire Space in Kruibeke, Belgium. The pair will be flown to the Satish Dhawan Space Centre, near Chennai, for the launch campaign to begin. 
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Perseverance rover captured the silhouette of the Martian moon Phobos as it passed in front of the Sun on Sept. 30, 2024. The video shows the transit speeded up by four times, followed by the eclipse in real time. NASA/JPL-Caltech/ASU/MSSS/SSI The tiny, potato-shaped moon Phobos, one of two Martian moons, cast a silhouette as it passed in front of the Sun, creating an eye in Mars’ sky.
      From its perch on the western wall of Mars’ Jezero Crater, NASA’s Perseverance rover recently spied a “googly eye” peering down from space. The pupil in this celestial gaze is the Martian moon Phobos, and the iris is our Sun.
      Captured by the rover’s Mastcam-Z on Sept. 30, the 1,285th Martian day of Perseverance’s mission, the event took place when the potato-shaped moon passed directly between the Sun and a point on the surface of Mars, obscuring a large part of the Sun’s disc. At the same time that Phobos appeared as a large black disc rapidly moving across the face of the Sun, its shadow, or antumbra, moved across the planet’s surface.
      Astronomer Asaph Hall named the potato-shaped moon in 1877, after the god of fear and panic in Greek mythology; the word “phobia” comes from Phobos. (And the word for fear of potatoes, and perhaps potato-shaped moons, is potnonomicaphobia.) He named Mars’ other moon Deimos, after Phobos’ mythological twin brother.
      Roughly 157 times smaller in diameter than Earth’s Moon, Phobos is only about 17 miles (27 kilometers) at its widest point. Deimos is even smaller.
      Rapid Transit
      Because Phobos’ orbit is almost perfectly in line with the Martian equator and relatively close to the planet’s surface, transits of the moon occur on most days of the Martian year. Due to its quick orbit (about 7.6 hours to do a full loop around Mars), a transit of Phobos usually lasts only 30 seconds or so.
      This is not the first time that a NASA rover has witnessed Phobos blocking the Sun’s rays. Perseverance has captured several Phobos transits since landing at Mars’ Jezero Crater in February 2021. Curiosity captured a video in 2019. And Opportunity captured an image in 2004.
      By comparing the various images, scientists can refine their understanding of the moon’s orbit to learn how it’s changing. Phobos is getting closer to Mars and is predicted to collide with it in about 50 million years.
      More About Perseverance
      Arizona State University leads the operations of the Mastcam-Z instrument, working in collaboration with Malin Space Science Systems in San Diego, on the design, fabrication, testing, and operation of the cameras, and in collaboration with the Niels Bohr Institute of the University of Copenhagen on the design, fabrication, and testing of the calibration targets.
      A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).
      Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
      Space Science Institute produced this video.
      For more about Perseverance:
      https://mars.nasa.gov/mars2020
      News Media Contacts
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      2024-150
      Share
      Details
      Last Updated Oct 30, 2024 Related Terms
      Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Explore More
      2 min read NASA Brings Drone and Space Rover to Air Show
      Article 47 mins ago 3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo
      Article 48 mins ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      5 min read
      NASA to Launch Innovative Solar Coronagraph to Space Station
      NASA’s Coronal Diagnostic Experiment (CODEX) is ready to launch to the International Space Station to reveal new details about the solar wind including its origin and its evolution.
      Launching in November 2024 aboard SpaceX’s 31st commercial resupply services mission, CODEX will be robotically installed on the exterior of the space station. As a solar coronagraph, CODEX will block out the bright light from the Sun’s surface to better see details in the Sun’s outer atmosphere, or corona.
      In this animation, the CODEX instrument can be seen mounted on the exterior of the International Space Station. For more CODEX imagery, visit https://svs.gsfc.nasa.gov/14647. CODEX Team/NASA “The CODEX instrument is a new generation solar coronagraph,” said Jeffrey Newmark, principal investigator for the instrument and scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It has a dual use — it’s both a technology demonstration and will conduct science.”
      This coronagraph is different from prior coronagraphs that NASA has used because it has special filters that can provide details of the temperature and speed of the solar wind. Typically, a solar coronagraph captures images of the density of the plasma flowing away from the Sun. By combining the temperature and speed of the solar wind with the traditional density measurement, CODEX can give scientists a fuller picture of the wind itself.
      “This isn’t just a snapshot,” said Nicholeen Viall, co-investigator of CODEX and heliophysicist at NASA Goddard. “You’re going to get to see the evolution of structures in the solar wind, from when they form from the Sun’s corona until they flow outwards and become the solar wind.”
      The CODEX instrument will give scientists more information to understand what heats the solar wind to around 1.8 million degrees Fahrenheit — around 175 times hotter than the Sun’s surface — and sends it streaming out from the Sun at almost a million miles per hour.
      Team members for CODEX pose with the instrument in a clean facility during initial integration of the coronagraph with the pointing system. CODEX Team/NASA This launch is just the latest step in a long history for the instrument. In the early 2000s and in August 2017, NASA scientists ran ground-based experiments similar to CODEX during total solar eclipses. A coronagraph mimics what happens during a total solar eclipse, so this naturally occurring phenomena provided a good opportunity to test instruments that measure the temperature and speed of the solar wind.
      In 2019, NASA scientists launched the Balloon-borne Investigation of Temperature and Speed of Electrons in the corona (BITSE) experiment. A balloon the size of a football field carried the CODEX prototype 22 miles above Earth’s surface, where the atmosphere is much thinner and the sky is dimmer than it is from the ground, enabling better observations. However, this region of Earth’s atmosphere is still brighter than outer space itself.
      “We saw enough from BITSE to see that the technique worked, but not enough to achieve the long-term science objectives,” said Newmark.
      Now, by installing CODEX on the space station, scientists will be able to view the Sun’s corona without fighting the brightness of Earth’s atmosphere. This is also a beneficial time for the instrument to launch because the Sun has reached its solar maximum phase, a period of high activity during its 11-year cycle.
      “The types of solar wind that we get during solar maximum are different than some of the types of wind we get during solar minimum,” said Viall. “There are different coronal structures during this time that lead to different types of solar wind.”
      The CODEX coronagraph is shown during optical alignment and assembly. CODEX Team//NASA This coronagraph will be looking at two types of solar wind. In one, the solar wind travels directly outward from our star, pulling the magnetic field from the Sun into the heliosphere, the bubble that surrounds our solar system. The other type of solar wind forms from magnetic field lines that are initially closed, like a loop, but then open up.
      These closed field lines contain hot, dense plasma. When the loops open, this hot plasma gets propelled into the solar wind. While these “blobs” of plasma are present throughout all of the solar cycle, scientists expect their location to change because of the magnetic complexity of the corona during solar maximum. The CODEX instrument is designed to see how hot these blobs are for the first time.
      The coronagraph will also build upon research from ongoing space missions, such as the joint ESA (European Space Agency) and NASA mission Solar Orbiter, which also carries a coronagraph, and NASA’s Parker Solar Probe. For example, CODEX will look at the solar wind much closer to the solar surface, while Parker Solar Probe samples it a little farther out. Launching in 2025, NASA’s Polarimeter to Unify the Corona and Heliosphere (PUNCH) mission will make 3D observations of the Sun’s corona to learn how the mass and energy there become solar wind.
      By comparing these findings, scientists can better understand how the solar wind is formed and how the solar wind changes as it travels farther from the Sun. This research advances our understanding of space weather, the conditions in space that may interact with Earth and spacecraft.
      “Just like understanding hurricanes, you want to understand the atmosphere the storm is flowing through,” said Newmark. “CODEX’s observations will contribute to our understanding of the region that space weather travels through, helping improve predictions.”
      The CODEX instrument is a collaboration between NASA’s Goddard Space Flight Center and the Korea Astronomy and Space Science Institute with additional contribution from Italy’s National Institute for Astrophysics.
      By Abbey Interrante
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Oct 30, 2024 Related Terms
      Coronal Diagnostic Experiment (CODEX) Goddard Space Flight Center Heliophysics Heliophysics Division International Space Station (ISS) Science Mission Directorate Solar Wind Space Weather The Sun The Sun & Solar Physics Explore More
      4 min read New NASA Instrument for Studying Snowpack Completes Airborne Testing


      Article


      1 day ago
      2 min read New Project Invites You To Do Martian Cloud Science with NASA


      Article


      1 day ago
      2 min read Watch How Students Help NASA Grow Plants in Space: Growing Beyond Earth


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...