Members Can Post Anonymously On This Site
Dusty Planetary Disks Around Two Nearby Stars Resemble Our Kuiper Belt
-
Similar Topics
-
By NASA
Illustration of the main asteroid belt, orbiting the Sun between Mars and JupiterNASA NASA’s powerful James Webb Space Telescope includes asteroids on its list of objects studied and secrets revealed.
A team led by researchers at the Massachusetts Institute of Technology (MIT) in Cambridge repurposed Webb’s observations of a distant star to reveal a population of small asteroids — smaller than astronomers had ever detected orbiting the Sun in the main asteroid belt between Mars and Jupiter.
The 138 new asteroids range from the size of a bus to the size of a stadium — a size range in the main belt that has not been observable with ground-based telescopes. Knowing how many main belt asteroids are in different size ranges can tell us something about how asteroids have been changed over time by collisions. That process is related to how some of them have escaped the main belt over the solar system’s history, and even how meteorites end up on Earth.
“We now understand more about how small objects in the asteroid belt are formed and how many there could be,” said Tom Greene, an astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley and co-author on the paper presenting the results. “Asteroids this size likely formed from collisions between larger ones in the main belt and are likely to drift towards the vicinity of Earth and the Sun.”
Insights from this research could inform the work of the Asteroid Threat Assessment Project at Ames. ATAP works across disciplines to support NASA’s Planetary Defense Coordination Office by studying what would happen in the case of an Earth impact and modeling the associated risks.
“It’s exciting that Webb’s capabilities can be used to glean insights into asteroids,” said Jessie Dotson, an astrophysicist at Ames and member of ATAP. “Understanding the sizes, numbers, and evolutionary history of smaller main belt asteroids provides important background about the near-Earth asteroids we study for planetary defense.”
Illustration of the James Webb Space TelescopeNASA The team that made the asteroid detections, led by research scientist Artem Burdanov and professor of planetary science Julien de Wit, both of MIT, developed a method to analyze existing Webb images for the presence of asteroids that may have been inadvertently “caught on film” as they passed in front of the telescope. Using the new image processing technique, they studied more than 10,000 images of the star TRAPPIST-1, originally taken to search for atmospheres around planets orbiting the star, in the search for life beyond Earth.
Asteroids shine more brightly in infrared light, the wavelength Webb is tuned to detect, than in visible light, helping reveal the population of main belt asteroids that had gone unnoticed until now. NASA will also take advantage of that infrared glow with an upcoming mission, the Near-Earth Object (NEO) Surveyor. NEO Surveyor is the first space telescope specifically designed to hunt for near-Earth asteroids and comets that may be potential hazards to Earth.
The paper presenting this research, “Detections of decameter main-belt asteroids with JWST,” was published Dec. 9 in Nature.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
For news media:
Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
View the full article
-
By NASA
NASA’s Glenn Research Center leaders stand with Evening With the Stars presenters. Left to right: Tim Smith, Nikki Welch, Center Director Dr. Jimmy Kenyon, Acting Deputy Director Dr. Wanda Peters, and Carlos Garcia-Galan. Credit: NASA/Jef Janis NASA Glenn Research Center’s “An Evening With the Stars” showcased research and technology innovations that addressed this year’s theme, NASA Glenn’s Spotlight on the Stars: 10 Years and Counting. The event featured presentations from Glenn subject matter experts and a networking reception.
Held at Windows on the River near Cleveland’s historic waterfront on Nov. 20, the event attracted sponsors and guests from more than 50 companies, universities, and organizations eager to learn more about the center’s recent accomplishments.
Special guests Dennis Andersh, CEO and president of Parallax Advanced Research/Ohio Aerospace Institute; Terrence Slaybaugh, vice president of Sites and Infrastructure for JobsOhio; and Dr. Wanda Peters, NASA Glenn’s acting deputy director, provided remarks.
Center Director Dr. Jimmy Kenyon took the stage to welcome visitors and share some accomplishments from an exciting year at NASA Glenn. Kenyon then introduced the presenters – NASA’s stars of the evening – and their topics.
“I relish this evening each year because it spotlights what is most important to our success at NASA: our people,” Kenyon said.
Nikki Welch is the digital manager in the Office of Communications. In this role, she helps to tell the NASA Glenn story in engaging ways for Glenn’s hundreds of thousands of followers on social media. Welch shared details about her efforts and the importance of “Connecting People to the Mission.”
NASA Glenn Research Center’s Nikki Welch talks about connecting people to the NASA mission through storytelling. Credit: NASA/Jef Janis Tim Smith leads high-temperature alloy development at NASA Glenn and has led research that resulted in over a dozen research licenses and four commercial licenses. As one of the inventors of the metal alloy GRX-810, Smith shared information about Glenn’s “Super Alloy Achievements.”
NASA Glenn Research Center’s Tim Smith talks about NASA’s superalloy achievements. Credit: NASA/Jef Janis Carlos Garcia-Galan is the manager of the Orion program’s European Service Module Integration Office. This module, being provided by ESA (European Space Agency), is Orion’s powerhouse. Garcia-Galan shared information on the topic “Dreaming of Going to the Moon.”
NASA Glenn Research Center’s Carlos Garcia-Galan talks about the spacecraft that will bring humanity back to the Moon. Credit: NASA/Jef Janis Return to Newsletter Explore More
1 min read Program Manager at NASA Glenn Earns AIAA Sustained Service Award
Article 9 mins ago 1 min read NASA Glenn’s Office of Communications Earns Top Honors
Article 9 mins ago 10 min read 55 Years Ago: Apollo 13, Preparations for the Third Moon Landing
Article 2 hours ago View the full article
-
By NASA
The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Maurice Valdez, Niki Parenteau, Dori Myer, and Judy Alfter. Their commitment to the NASA mission represents the entrepreneurial spirit, technical expertise, and collaborative disposition needed to explore this world and beyond.
Space Science and Astrobiology Star: Maurice Valdez
Maurice Valdez is a system administrator, supporting desktop systems and website development for the Space Science and Astrobiology Division. Maurice is recognized for his focus and commitment to supporting the division’s scientific productivity by keeping systems compliant and functioning. His can-do attitude makes him instrumental in the success of the team, whether he is finding new solutions for hybrid meetings, fixing equipment, patching systems, or troubleshooting issues.
Photo credit: Pacific Science Center Space Science and Astrobiology Star: Niki Parenteau
Niki Parenteau, a research scientist for the Exobiology Branch, embodies the true spirit of an interdisciplinary astrobiologist. She has applied her expertise to identify potential biosignatures of life on exoplanets and has taken a leading role in the project office for the development of the Habitable Worlds Observatory (HWO), where she facilitates collaborative efforts of Ames scientists across the division and shepherds the larger scientific community to enable observations of biosignatures with HWO.
Space Biosciences Star: Dori Myer
Archivist Dori Myer has made an outstanding contribution in the Flight Systems Implementation Branch’s multi-year effort to digitize and preserve institutional knowledge. Under her guidance, the records management team digitized tens of thousands of historical records, preserving the branch’s institutional knowledge for years to come. Her exceptional initiative and dedication have transformed our record management processes, ensuring the accessibility of NASA’s rich institutional knowledge while streamlining its access in the modern age.
Earth Science Star: Judy Alfter
Judy Alfter, a Deputy Project Manager in the Earth Science Project Office (ESPO), has excelled in her multi-faceted role during the field campaign for the Plankton, Aerosol, Cloud, ocean Ecosystem Post-launch Airborne eXperiment (PACE-PAX). Judy launched the deployment phase of PACE-PAX, leading the effort to set up Twin Otter flight operations at Marina Municipal Airport in California. Following this phase, she transitioned to Santa Barbara in California to support the mobilization of PACE-PAX ship operations and concluded deployment activities at NASA Armstrong Flight Research Center’s main campus as ESPO site manager for ER-2 flight operations.
View the full article
-
By NASA
Webb Webb News Latest News Latest Images Blog (offsite) Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning 7 Min Read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
This is a James Webb Space Telescope image of NGC 346, a massive star cluster in the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. Credits:
NASA, ESA, CSA, STScI, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA) NASA’s James Webb Space Telescope just solved a conundrum by proving a controversial finding made with the agency’s Hubble Space Telescope more than 20 years ago.
In 2003, Hubble provided evidence of a massive planet around a very old star, almost as old as the universe. Such stars possess only small amounts of heavier elements that are the building blocks of planets. This implied that some planet formation happened when our universe was very young, and those planets had time to form and grow big inside their primordial disks, even bigger than Jupiter. But how? This was puzzling.
To answer this question, researchers used Webb to study stars in a nearby galaxy that, much like the early universe, lacks large amounts of heavy elements. They found that not only do some stars there have planet-forming disks, but that those disks are longer-lived than those seen around young stars in our Milky Way galaxy.
“With Webb, we have a really strong confirmation of what we saw with Hubble, and we must rethink how we model planet formation and early evolution in the young universe,” said study leader Guido De Marchi of the European Space Research and Technology Centre in Noordwijk, Netherlands.
Image A: Protoplanetary Disks in NGC 346 (NIRCam Image)
This is a James Webb Space Telescope image of NGC 346, a massive star cluster in the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. With its relative lack of elements heavier than hydrogen and helium, the NGC 346 cluster serves as a nearby proxy for studying stellar environments with similar conditions in the early, distant universe. Ten, small, yellow circles overlaid on the image indicate the positions of the ten stars surveyed in this study. NASA, ESA, CSA, STScI, Olivia C. Jones (UK ATC), Guido De Marchi (ESTEC), Margaret Meixner (USRA) A Different Environment in Early Times
In the early universe, stars formed from mostly hydrogen and helium, and very few heavier elements such as carbon and iron, which came later through supernova explosions.
“Current models predict that with so few heavier elements, the disks around stars have a short lifetime, so short in fact that planets cannot grow big,” said the Webb study’s co-investigator Elena Sabbi, chief scientist for Gemini Observatory at the National Science Foundation’s NOIRLab in Tucson. “But Hubble did see those planets, so what if the models were not correct and disks could live longer?”
To test this idea, scientists trained Webb on the Small Magellanic Cloud, a dwarf galaxy that is one of the Milky Way’s nearest neighbors. In particular, they examined the massive, star-forming cluster NGC 346, which also has a relative lack of heavier elements. The cluster served as a nearby proxy for studying stellar environments with similar conditions in the early, distant universe.
Hubble observations of NGC 346 from the mid 2000s revealed many stars about 20 to 30 million years old that seemed to still have planet-forming disks around them. This went against the conventional belief that such disks would dissipate after 2 or 3 million years.
“The Hubble findings were controversial, going against not only empirical evidence in our galaxy but also against the current models,” said De Marchi. “This was intriguing, but without a way to obtain spectra of those stars, we could not really establish whether we were witnessing genuine accretion and the presence of disks, or just some artificial effects.”
Now, thanks to Webb’s sensitivity and resolution, scientists have the first-ever spectra of forming, Sun-like stars and their immediate environments in a nearby galaxy.
“We see that these stars are indeed surrounded by disks and are still in the process of gobbling material, even at the relatively old age of 20 or 30 million years,” said De Marchi. “This also implies that planets have more time to form and grow around these stars than in nearby star-forming regions in our own galaxy.”
Image B: Protoplanetary Disks in NGC 346 Spectra (NIRSpec)
This graph shows, on the bottom left in yellow, a spectrum of one of the 10 target stars in this study (as well as accompanying light from the immediate background environment). Spectral fingerprints of hot atomic helium, cold molecular hydrogen, and hot atomic hydrogen are highlighted. On the top left in magenta is a spectrum slightly offset from the star that includes only light from the background environment. This second spectrum lacks a spectral line of cold molecular hydrogen.
On the right is the comparison of the top and bottom lines. This comparison shows a large peak in the cold molecular hydrogen coming from the star but not its nebular environment. Also, atomic hydrogen shows a larger peak from the star. This indicates the presence of a protoplanetary disk immediately surrounding the star. The data was taken with the microshutter array on the James Webb Space Telescope’s NIRSpec (Near-Infrared Spectrometer) instrument. Illustration: NASA, ESA, CSA, Joseph Olmsted (STScI) A New Way of Thinking
This finding refutes previous theoretical predictions that when there are very few heavier elements in the gas around the disk, the star would very quickly blow away the disk. So the disk’s life would be very short, even less than a million years. But if a disk doesn’t stay around the star long enough for the dust grains to stick together and pebbles to form and become the core of a planet, how can planets form?
The researchers explained that there could be two distinct mechanisms, or even a combination, for planet-forming disks to persist in environments scarce in heavier elements.
First, to be able to blow away the disk, the star applies radiation pressure. For this pressure to be effective, elements heavier than hydrogen and helium would have to reside in the gas. But the massive star cluster NGC 346 only has about ten percent of the heavier elements that are present in the chemical composition of our Sun. Perhaps it simply takes longer for a star in this cluster to disperse its disk.
The second possibility is that, for a Sun-like star to form when there are few heavier elements, it would have to start from a larger cloud of gas. A bigger gas cloud will produce a bigger disk. So there is more mass in the disk and therefore it would take longer to blow the disk away, even if the radiation pressure were working in the same way.
“With more matter around the stars, the accretion lasts for a longer time,” said Sabbi. “The disks take ten times longer to disappear. This has implications for how you form a planet, and the type of system architecture that you can have in these different environments. This is so exciting.”
The science team’s paper appears in the Dec. 16 issue of The Astrophysical Journal.
Image C: NGC 346: Hubble and Webb Observations
Image Before/After The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt manages the telescope and mission operations. Lockheed Martin Space, based in Denver also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the science paper from the The Astrophysical Journal.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Ann Jenkins – jenkins@stsci.edu, Christine Pulliam – cpulliam@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Past releases on NGC 346: Webb NIRCam image and MIRI image
Article: Highlighting other Webb Star Formation Discoveries
Simulation Video: Planetary Systems and Origins of Life
Animation Video: Exploring star and planet formation (English), and in Spanish
More Images of NGC 346 on AstroPix
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is a planet?
What is the Webb Telescope?
SpacePlace for Kids
En Español
¿Qué es un planeta?
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars
Galaxies
Universe
Share
Details
Last Updated Dec 15, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Stars The Universe View the full article
-
By USH
The mystery of unidentified drones remains unresolved, with government authorities offering little clarity. Officials have downplayed the incidents, asserting there is no threat to national security and attributing many sightings to aircraft such as planes or helicopters. However, the lack of transparency has only fueled public speculation and heightened concerns.
What people/experts say:
Some speculate that these drones are part of covert operations designed to detect dirty bombs or nuclear devices or theses drones are part of an advanced surveillance systems operated by certain agencies.
The Space Force could be conducting classified exercises, such as testing cutting-edge technology or performing communication lockdown drills to evaluate detection and evasion capabilities.
A former CIA officer has suggested that the drones may be part of government efforts to trial advanced technologies in urban environments.
Reports indicate these drones exhibit unusual traits, such as lacking heat signatures and evading detection. They might employ RF jamming or encrypted communications, potentially causing unintentional disruptions to civilian electronics, including power outages, while avoiding capture.
Intelligence analysts have compared the drones to Russian Orlan-10 or Iranian Shahed-136 models, raising suspicions of international espionage.
But, the most striking statement came from Elon Musk, who warned earlier this year about the arrival of epic drone wars. He said that drone swarm battles are coming that will boggle the mind. What does he know that we don’t?
A large drone flying at a slow speed, shooting out or launching multiple smaller drones at a relatively high speed.
DAHBOO77 video: Musk's statement on X (formerly Twitter) at approximately the 1:23 mark.View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.