Jump to content

Skylab 4 Recovery Ends Program


NASA

Recommended Posts

  • Publishers
The crewmen of the third and final manned Skylab mission relax on the USS New Orleans, prime recovery ship for their mission, about an hour after their Command Module splashed down at 10:17 a.m. (CDT), Feb. 8, 1974. The splashdown, which occurred 176 statute miles from San Diego, ended 84 record-setting days of flight activity aboard the Skylab space station cluster in Earth orbit.

The crewmen of the third and final manned Skylab mission relax on the USS New Orleans, prime recovery ship for their mission, about an hour after their Command Module splashed down at 10:17 a.m. (CDT), Feb. 8, 1974. The splashdown, which occurred 176 statute miles from San Diego, ended 84 record-setting days of flight activity aboard the Skylab space station cluster in Earth orbit.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Two robotic arms wrapped in gold material sitting on top of a black and silver box.Naval Research Laboratory NASA and the Defense Advanced Research Projects Agency (DARPA) have signed an interagency agreement to collaborate on a satellite servicing demonstration in geosynchronous Earth orbit, where hundreds of satellites provide communications, meteorological, national security, and other vital functions. 
      Under this agreement, NASA will provide subject matter expertise to DARPA’s Robotic Servicing of Geosynchronous Satellites (RSGS) program to help complete the technology development, integration, testing, and demonstration. The RSGS servicing spacecraft will advance in-orbit satellite inspection, repair, and upgrade capabilities. 
      NASA is excited to support our long-term partner and advance important technologies poised to benefit commercial, civil, and national objectives. Together, we will make meaningful, long-lasting contributions to the nation’s in-space servicing, assembly, and manufacturing (ISAM) capabilities.
      Pam Melroy
      NASA Deputy Administrator
      NASA will use expertise from the agency’s On-orbit Servicing, Assembly, and Manufacturing 1 project and other relevant efforts to provide hands-on support to RSGS in the areas of space robotics, systems engineering, spacecraft subsystems, integration and testing, operator training, and spaceflight operations. NASA’s involvement in RSGS will continue advancing the agency’s understanding of and experience with complex ISAM systems.
      DARPA will continue to lead the RSGS program, which has already achieved several important milestones, including the completion of two dexterous robotic arms designed for inspection and service that have been stress-tested for an on-orbit environment and the integration of those arms with their associated electronics, tools, and ancillary hardware to produce the fully integrated robotic payload. 
      Media Contact: Jasmine Hopkins
      Facebook logo @NASATechnology @NASA_Technology Keep Exploring Discover More Space Tech Topics
      STMD Solicitations and Opportunities
      Robotics
      Technology Transfer & Spinoffs
      Artemis
      Share
      Details
      Last Updated Sep 05, 2024 EditorLoura Hall Related Terms
      Space Technology Mission Directorate Technology View the full article
    • By NASA
      Earlier this month, nine small businesses received 2023 NASA Small Business Innovation Research (SBIR) Ignite Phase II awards to further develop technologies that may be used in the agency’s missions and in the commercial space industry. 

      The SBIR Ignite Phase II awardees, who will receive up to $850,000 to fund their projects, are developing technology capabilities in the detection of wildfires, support for water management in agriculture, in-space debris detection, mineral mining from lunar regolith, in-space production, and more. These capabilities are vital to supporting deep space exploration, low Earth orbit missions, and preserving life on our home planet for the benefit of all. The businesses initially were selected for Phase I awards in 2023 and provided six months and up to $150,000 to prove their concepts before competing for Phase II. 
      “We want to support innovators across the aerospace industry because their technologies have the potential to make a big impact in the commercial market. A rich and diverse marketplace creates more opportunity for us all. These Phase II awards illuminate a clear path for a unique range of technologies that we believe will positively influence the lives of all Americans.”
      Jason L. Kessler
      NASA SBIR/STTR Program Executive

      The SBIR Ignite pilot initiative supports product-driven small businesses, startups, and entrepreneurs that have commercialization at the forefront of their innovation strategies and processes but that are not targeting NASA as a primary customer. The pilot initiative provides funding and other support to mitigate risk in technologies that have strong commercial potential by offering lower barriers to entry, a streamlined review and selection process, and accelerated technology development and awards as compared to the NASA SBIR program’s main solicitation. It also focuses on helping make participating companies more appealing to investors, customers, and partners, while fulfilling SBIR’s mission of increasing commercialization of innovations derived from federal research and development. 

      While the agency’s main Small Business Innovation Research and Small Business Technology Transfer solicitations focus on technologies with potential for infusion in both NASA missions and commercialization in the marketplace, the SBIR Ignite opportunity is less prescriptive and focuses on topics that are relevant to emerging commercial markets in aerospace, such as accelerating in-space production applications in low Earth orbit.  

      The awarded companies are: 
      Astral Forge, LLC, Palo Alto, California  Astrobotic Technology Inc., Pittsburgh  Benchmark Space Systems, Burlington, Vermont  Brayton Energy, LLC, Hampton, New Hampshire  Channel-Logistics LLC dba Space-Eyes, Miami  GeoVisual Analytics, Westminster, Colorado  Space Lab Technologies, LLC, Boulder, Colorado  Space Tango, Lexington, Kentucky  VerdeGo Aero, De Leon Springs, Florida 
      The third year of NASA Small Business Innovation Research (SBIR) Ignite is underway, as the 2024 SBIR Ignite Phase I solicitation closed on July 30, 2024. Those selections are expected to be announced Fall 2024.
      NASA’s Small Business Innovation Research and Small Business Technology Transfer program is part of NASA’s Space Technology Mission Directorate and is managed by NASA’s Ames Research Center in Silicon Valley. 
       

      View the full article
    • By Space Force
      SpaceWERX Director Arthur Grijalva made the announcement at the conclusion of the panel titled SpaceWERX STRATFI Successes and Selections, at Capital Factory, the home of AFWERX’s Austin hub.

      View the full article
    • By NASA
      Learn Home GLOBE Alumna and Youth for… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   4 min read
      GLOBE Alumna and Youth for Habitat Program Lead Named Scientist of the Month in Alaska
      As a 16-year old high school graduate, Maggie House decided to leave the military base in Germany where she lived with her family and go to college close to nature in Fairbanks, Alaska. She had lived in many countries and US states and knew she was ready. At the University of Alaska Fairbanks Troth Yeddha’ campus in Fall 2022, Maggie enrolled in a 300-level Watershed Management course, which required all students to implement a Global Learning and Observations to Benefit the Environment (GLOBE) project and poster. Maggie’s project focused on using the GLOBE Observer App to monitor the erosion of nearby Cripple Creek, which had a history of mining and made Fairbanks famous for its gold. She and a classmate wrote a funded mini-grant proposal to study how ice was related to erosion. While not on the frozen creek, Maggie worked as a student employee with the NASA Science Activation Program’s Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) team at the International Arctic Research Center, during which she trained teachers and mentored students at Alaska’s first-ever Student Research Symposium in 2022. Maggie also wrote an article about the symposium, published on the University of Alaska Fairbanks News page: https://www.uaf.edu/news/alaskan-youth-present-research-earth-day-symposium.php
      When the ice melted and the symposium ended, Maggie wanted to study the freshwater habitats of the Creek using GLOBE hydrosphere protocols, so she wrote another proposal. Maggie got a full scholarship and grant funding through Biomedical Learning and Student Training (BLaST), supported by the National Institutes of Health. Her work earned recognition in the US Fish and Wildlife Service story, “Natural Flows Return to Cripple Creek” and honors as the December 2023/January 2024 BLaST Scientist of the Month. The story does not stop there. In May, 2024, Maggie House graduated with a Bachelor of Science degree and received the first-ever GLOBE internship at the Fairbanks Soil and Water Conservation District, where Maggie House leads the summer Youth for Habitat program for middle school students. Today, you can find Maggie in Cripple Creek near Fairbanks, Alaska, teaching students to learn science by doing science.
      “I have a firm belief that the health of our environment is intertwined with the health of humans. I am interested in making science-related issues more understandable, for everyone to be a part of their local community. In my future, I see myself continuing to work towards strengthening the relationship between humans and nature and promoting the conservation of our dependence on one another.” – Maggie House
      Arctic and Earth SIGNs created the conditions for Maggie as an undergraduate student to collect OpenSource GLOBE data that contributed to local solutions, to be awarded funding to pursue actionable research, and to be a leader for educators and future learners. Maggie’s data on ice conditions informed the engineering redesign of the Cripple Creek stream restoration project. Her success in using GLOBE protocols and culturally responsive research methods modeled by Arctic and Earth SIGNs gave her the confidence to write a research proposal and be awarded a full undergraduate research scholarship. Maggie was the first person in the world to monitor aquatic invertebrates in Cripple Creek just three weeks after flow was restored to the creek after 85 years. In Arctic and Earth SIGNs, environmental stewardship is a culminating part of the Learning Framework. Now, Maggie leads the stewardship of salmon habitat in Cripple Creek and mentors middle school youth to pursue STEM fields as a GLOBE trainer and mentor. Maggie’s story matters because one person, with a Science Activation support network and a focus on real-world environmental issues, can make a difference.
      Arctic & Earth SIGNs is supported by NASA under cooperative agreement award number NNX16AC52A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      NASA Science Activation Program participant alumna Maggie House leads youth in GLOBE macroinvertebrate identification at an intergenerational workshop in June, 2024, using a microscope she purchased with her grant funds. Christi Buffington Share








      Details
      Last Updated Jul 30, 2024 Editor NASA Science Editorial Team Related Terms
      Earth Science Grades 5 – 8 for Educators Grades 9-12 for Educators Grades K – 4 for Educators Opportunities For Students to Get Involved Science Activation Explore More
      2 min read PLACES team publishes blog post on NextGenScience Blog


      Article


      22 hours ago
      5 min read NASA’s ICON Mission Ends with Several Ionospheric Breakthroughs


      Article


      6 days ago
      8 min read The Earth Observer Editor’s Corner: Summer 2024
      NASA’s third EOS mission—AURA—marked 20 years in orbit on July 15, with two of its…


      Article


      2 weeks ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      ICON, shown in this artist’s concept, studied the frontiers of space, the dynamic zone high in our atmosphere where terrestrial weather from below meets space weather above. NASA/Goddard/Conceptual Image Lab NASA’s ICON mission studied the outermost layer of Earth’s atmosphere called the ionosphere. ICON provided critical insights into interplay between space weather and Earth’s weather. The mission gathered unprecedented detail of airglow, showed a relationship between the atmosphere’s ions and Earth’s magnetic field lines, and provided the first concrete observation to confirm Earth’s long-theorized ionospheric dynamo. Nearly a year after ICON accomplished its primary mission, communication was lost in November 2022 for unclear reasons. NASA formally concluded the mission after several months of troubleshooting could not regain contact. After contributing to many important findings on the boundary between Earth’s atmosphere and space, the Ionospheric Connection Explorer (ICON) mission has come to an end. ICON launched in October 2019 and after completing its two-year mission objectives in December 2021, it operated as an extended mission for another year.
      “The ICON mission has truly lived up to its name,” said Joseph Westlake, heliophysics division director at NASA Headquarters in Washington. “ICON not only successfully completed and exceeded its primary mission objectives, it also provided critical insights into the ionosphere and the interplay between space and terrestrial weather.”
      The ICON spacecraft studied a part of our planet’s outermost layer of the atmosphere, called the ionosphere. From there, ICON investigated what events impact the ionosphere, including Earth’s weather from below and space weather from above.
      The ionosphere is the lowest boundary of space, located between 55 miles to 360 miles above Earth’s surface. It is made up of a sea of particles that have been ionized, a mix of positively charged ions and negatively charged electrons called plasma. This frontier of space is a dynamic and busy region, home to many satellites — including the International Space Station — and is a conduit for radio communications and GPS signals.

      Video explaining the features of the ionosphere, Earth’s outmost layer of the atmosphere. It is home to the aurora, the International Space Station, a variety of satellites, and radio communication waves.
      NASA/Goddard/Conceptual Image Lab/Krystofer Kim Both satellites and signals can be disrupted by the complex interactions of terrestrial and space weather. Studying and understanding the ionosphere is crucial to understanding space weather and its effects on our technology.
      The ICON mission captured unprecedented data about the ionosphere with direct measurements of the charged gas in its immediate surroundings alongside images of one of the ionosphere’s most stunning features — airglow.
      ICON tracked the colorful bands as they moved through the ionosphere. Airglow is created by a process similar to what creates the aurora. However, airglow occurs around the world, not just the northern and southern latitudes where auroras are typically found. Although airglow is normally dim, ICON’s instruments were specially designed to capture even the faintest glow to build a picture of the ionosphere’s density, composition, and structure.
      The lowest reaches of space glow with bright bands of color called airglow. NASA Through the principle of Doppler shift, ICON’s sensitive imagers also detected the motion of the atmosphere as it glowed. “It’s like measuring a train’s speed by detecting the change in the pitch of its horn — but with light,” said Thomas J. Immel, ICON mission lead at the University of California, Berkeley. The mission was specifically designed to perform this technically difficult measurement.

      A New Ionospheric Perspective
      The ICON mission’s comprehensive view of the upper atmosphere provided valuable data for scientists to unravel for years to come. For instance, its measurements showed how the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption disrupted electrical currents in the ionosphere.
      “ICON was able to capture the speed of the volcanic eruption, allowing us to directly see how it affected the motion of charged particles in the ionosphere,” Immel said. “This was a clear example of the connection between tropical weather and ionospheric structure. ICON showed us how things that happen in terrestrial weather have a direct correlation with events in space.”
      Another scientific breakthrough was ICON’s measurements of the motion of ions in the atmosphere and their relationship with Earth’s magnetic field lines. “It was truly unique,” Immel remarked. “ICON’s measurements of the motion of ions in the atmosphere was scientifically transformational in our understanding of behavior in the ionosphere.”
      Visualization of ICON orbiting Earth and taking measurements of the wind speed (green arrows) and ion fluctuation and direction (red lines) at the geomagnetic field lines (purple lines). When the wind changes direction, the ion fluctuation changes to flow downward.NASA’s Scientific Visualization Studio/William T. Bridgman With ICON’s help, scientists better understand how these interactions drive a process called the ionospheric dynamo. The dynamo, which lies at the bottom of the ionosphere, remained a mystery for decades because it is difficult to observe.
      ICON provided the first concrete observation of winds fueling the dynamo and how this influences space weather. Unpredictable terrestrial winds move plasma around the ionosphere, sending the charged particles shooting out into space or plummeting toward Earth. This electrically charged tug-of-war between the ionosphere and Earth’s electromagnetic fields acts as a generator, creating complex electric and magnetic fields that can affect both technology and the ionosphere itself.
      “No one had ever seen this before,” Immel said. “ICON finally and conclusively provided experimental confirmation of the wind dynamo theory.”

      An Iconic Legacy
      On Nov. 25, 2022, the ICON team lost contact with the spacecraft. Communication with the spacecraft could not be established, even after performing a power cycle reset using a built-in command loss timer. Though the spacecraft remains intact, other troubleshooting techniques were unable to re-establish contact between the ICON spacecraft and mission operators.
      “ICON’s legacy will live on through the breakthrough knowledge it provided while it was active and the vast dataset from its observations that will continue to yield new science,” Westlake said. “ICON serves as a foundation for new missions to come.”
      By Desiree Apodaca
      NASA’s Goddard Space Flight Center, Greenbelt, Md.

      Media Contact: Sarah Frazier
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Jul 24, 2024 Related Terms
      Earth’s Atmosphere Earth’s Magnetic Field Goddard Space Flight Center Heliophysics Heliophysics Division ICON (Ionospheric Connection Explorer) Ionosphere Missions Science Mission Directorate Space Weather The Sun Keep Exploring Discover More Topics From NASA
      Missions
      Sun
      Helio Big Year
      Earth
      Your home. Our Mission. And the one planet that NASA studies more than any other.
      View the full article
  • Check out these Videos

×
×
  • Create New...