Jump to content

First Look: Spaceplane Stacked and Shaken at NASA Test Facility


Recommended Posts

  • Publishers
Posted
2 Min Read

First Look: Spaceplane Stacked and Shaken at NASA Test Facility

20240131-207a0543.jpg?w=1536

Nose-up and bathed in soft blue lights, Sierra Space’s Dream Chaser spaceplane and its Shooting Star cargo module cast dramatic shadows onto the walls of NASA’s Neil Armstrong Test Facility in Sandusky, Ohio, as members of the media got their first glimpse of the towering 55-foot-tall stack on Feb. 1.

The spaceplane and its cargo module are undergoing testing at the facility to prepare for the extreme environment of space.

Luke Staab, senior project manager at NASA's Neil Armstrong Test Facility in Sandusky, Ohio, shares more about recent testing of Sierra Space's Dream Chaser spaceplane. Credit: NASA/Steven Logan

“The Armstrong Test Facility is one of NASA Glenn Research Center’s most critical assets,” said Dr. Jimmy Kenyon, center director of NASA Glenn in Cleveland, during a media event where Tom Vice, chief executive officer of Sierra Space; Phil Dempsey, transportation integration manager for the International Space Station Program; and Dr. Tom Marshburn, former NASA astronaut and chief medical officer for Sierra Space, were also on hand for interviews.

“Here, we have some of the world’s largest and most capable simulation and test facilities to test the harsh conditions that spacecraft will experience during launch and in flight."

Dr. Jimmy Kenyon

Dr. Jimmy Kenyon

Center Director of NASA’s Glenn Research Center in Cleveland

“Here, we have some of the world’s largest and most capable simulation and test facilities to test the harsh conditions that spacecraft will experience during launch and in flight,” Kenyon said.

Using the world’s most powerful spacecraft shaker system, NASA exposed Dream Chaser and Shooting Star to vibrations like those it will experience during launch and re-entry into the atmosphere.

Next up, Dream Chaser will move to a huge, in-ground vacuum chamber that will continue to simulate the space environment Dream Chaser will encounter on its mission. The spaceplane will be put through its paces, experiencing low ambient pressures, low-background temperatures, and dynamic solar heating.


This testing marks progress toward Dream Chaser’s first uncrewed demonstration flight to the International Space Station later this year as part of NASA’s Commercial Resupply Program. On its first flight, Dream Chaser is scheduled to deliver over 7,800 pounds of cargo.
NASA’s work with commercial industry is leading to more people, science, and commercial opportunities in space for the benefit of humanity.

“We collectively, NASA and Sierra Space, go to space to benefit life on Earth."

Tom vice

Tom vice

Chief Executive Officer of Sierra Space

“We collectively, NASA and Sierra Space, go to space to benefit life on Earth,” Vice said. “The most significant industrial revolution in history is underway in space. You have to kind of step back and inhale everything you’re witnessing, the magnitude of what you’re witnessing; the signs are all around us that we are now living in the orbital age.”

Top Image Credit: Sierra Space/Shay Saldana

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s X-59 lights up the night sky with its unique Mach diamonds, also known as shock diamonds, during maximum afterburner testing at Lockheed Martin Skunk Works in Palmdale, California. The test demonstrates the engine’s ability to generate the thrust required for supersonic flight, advancing NASA’s Quesst mission.Lockheed Martin Corporation/Gary Tice NASA’s X-59 quiet supersonic research aircraft took another successful step toward flight with the conclusion of a series of engine performance tests. During maximum afterburner testing, a test demonstrating the engine’s ability to generate the thrust required for supersonic flight, the aircraft showed off a phenomenon known as Mach diamonds, seen in this image from Jan. 22, 2025. Mach diamonds, or shock diamonds, appear in the exhaust of supersonic aircraft like the X-59.
      The X-59 is the centerpiece of NASA’s Quesst mission, which seeks to solve one of the major barriers to commercial supersonic flight over land by making sonic booms quieter.
      See what’s next for X-59.
      Image credit: Lockheed Martin/Gary Tice
      View the full article
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist’s concept depicts NASA’s Europa Clipper as it flies by Mars, using the planet’s gravitational force to alter the spacecraft’s path on its way to the Jupiter system. NASA/JPL-Caltech The orbiter bound for Jupiter’s moon Europa will investigate whether the moon is habitable, but it first will get the help of Mars’ gravitational force to get to deep space.
      On March 1, NASA’s Europa Clipper will streak just 550 miles (884 kilometers) above the surface of Mars for what’s known as a gravity assist — a maneuver to bend the spacecraft’s trajectory and position it for a critical leg of its long voyage to the Jupiter system. The close flyby offers a bonus opportunity for mission scientists, who will test their radar instrument and thermal imager.
      Europa Clipper will be closest to the Red Planet at 12:57 p.m. EST, approaching it at about 15.2 miles per second (24.5 kilometers per second) relative to the Sun. For about 12 hours prior and 12 hours after that time, the spacecraft will use the gravitational pull of Mars to pump the brakes and reshape its orbit around the Sun. As the orbiter leaves Mars behind, it will be traveling at a speed of about 14 miles per second (22.5 kilometers per second).
      The flyby sets up Europa Clipper for its second gravity assist — a close encounter with Earth in December 2026 that will act as a slingshot and give the spacecraft a velocity boost. After that, it’s a straightforward trek to the outer solar system; the probe is set to arrive at Jupiter’s orbit in April 2030.
      “We come in very fast, and the gravity from Mars acts on the spacecraft to bend its path,” said Brett Smith, a mission systems engineer at NASA’s Jet Propulsion Laboratory in Southern California. “Meanwhile, we’re exchanging a small amount of energy with the planet, so we leave on a path that will bring us back past Earth.”
      This animation depicts NASA’s Europa Clipper as it flies by the Red Planet. The spacecraft will use the planet’s gravity to bend its path slightly, setting up the next leg of its long journey to investigate Jupiter’s icy moon Europa. NASA/JPL-Caltech Harnessing Gravity
      Europa Clipper launched from Kennedy Space Center in Florida on Oct. 14, 2024, via a SpaceX Falcon Heavy, embarking on a 1.8-billion-mile (2.9-billion-kilometer) trip to Jupiter, which is five times farther from the Sun than Earth is. Without the assists from Mars in 2025 and from Earth in 2026, the 12,750-pound (6,000-kilogram) spacecraft would require additional propellant, which adds weight and cost, or it would take much longer to get to Jupiter.
      Gravity assists are baked into NASA’s mission planning, as engineers figure out early on how to make the most of the momentum in our solar system. Famously, the Voyager 1 and Voyager 2 spacecraft, which launched in 1977, took advantage of a once-in-a-lifetime planetary lineup to fly by the gas giants, harnessing their gravity and capturing data about them.
      While navigators at JPL, which manages Europa Clipper and Voyager, have been designing flight paths and using gravity assists for decades, the process of calculating a spacecraft’s trajectory in relation to planets that are constantly on the move is never simple.
      “It’s like a game of billiards around the solar system, flying by a couple of planets at just the right angle and timing to build up the energy we need to get to Jupiter and Europa,” said JPL’s Ben Bradley, Europa Clipper mission planner. “Everything has to line up — the geometry of the solar system has to be just right to pull it off.”
      About 4½ months after its launch, NASA’s Europa Clipper is set to perform a gravity as-sist maneuver as it flies by Mars on March 1. Next year the spacecraft will swing back by Earth for a final gravity assist before NASA/JPL-Caltech Refining the Path
      Navigators sent the spacecraft on an initial trajectory that left some buffer around Mars so that if anything were to go wrong in the weeks after launch, Europa Clipper wouldn’t risk impacting the planet. Then the team used the spacecraft’s engines to veer closer to Mars’ orbit in what are called trajectory correction maneuvers, or TCMs.
      Mission controllers have performed three TCMs to set the stage for the Mars gravity assist — in early November, late January, and on Feb. 14. They will conduct another TCM about 15 days after the Mars flyby to ensure the spacecraft is on track and are likely to conduct additional ones — upwards of 200 — throughout the mission, which is set to last until 2034.
      Opportunity for Science
      While navigators are relying on the gravity assist for fuel efficiency and to keep the spacecraft on their planned path, scientists are looking forward to the event to take advantage of the close proximity to the Red Planet and test two of the mission’s science instruments.
      About a day prior to the closest approach, the mission will calibrate the thermal imager, resulting in a multicolored image of Mars in the months following as the data is returned and scientists process the data. And near closest approach, they’ll have the radar instrument perform a test of its operations — the first time all its components will be tested together. The radar antennas are so massive, and the wavelengths they produce so long that it wasn’t possible for engineers to test them on Earth before launch.   
      More About Europa Clipper
      Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
      Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland, NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission. NASA’s Launch Services Program, based at Kennedy, managed the launch service for the Europa Clipper spacecraft.
      Find more information about Europa Clipper here:
      https://science.nasa.gov/mission/europa-clipper/
      Check out Europa Clipper's Mars flyby in 3D News Media Contacts
      Gretchen McCartney
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-287-4115
      gretchen.p.mccartney@jpl.nasa.gov 
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 
      2025-024
      Share
      Details
      Last Updated Feb 25, 2025 Related Terms
      Europa Clipper Europa Jet Propulsion Laboratory Explore More
      2 min read Is There Potential for Life on Europa? We Asked a NASA Expert: Episode 52
      Article 2 hours ago 6 min read How NASA’s Lunar Trailblazer Will Make a Looping Voyage to the Moon
      Article 2 weeks ago 5 min read NASA’s SPHEREx Space Telescope Will Seek Life’s Ingredients
      Article 2 weeks ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)

      That’s a great question. And it’s a question that NASA will seek to answer with the Europa Clipper spacecraft.

      Europa is a moon of Jupiter. It’s about the same size as Earth’s Moon, but its surface looks very different. The surface of Europa is covered with a layer of ice, and below that ice, we think there’s a layer of liquid water with more water than all of Earth’s oceans combined.

      So because of this giant ocean, we think that Europa is actually one of the best places in the solar system to look for life beyond the Earth.

      Life as we know it has three main requirements: liquid water — all life here on Earth uses liquid water as a basis.

      The second is the right chemical elements. These are elements like carbon, hydrogen, nitrogen, oxygen, phosphorus, sulfur. They’re elements that create the building blocks for life as we know it on Earth. We think that those elements exist on Europa.

      The third component is an energy source. As Europa orbits around Jupiter, Jupiter’s strong gravity tugs and pulls on it. It actually stretches out the surface. And it produces a heat source called tidal heating. So it’s possible that hydrothermal systems could exist at the bottom of Europa’s ocean, and it’s possible that those could be locations for abundant life.

      So could there be life on Europa? It’s possible. And Europa Clipper is going to explore Europa to help try to answer that question.

      [END VIDEO TRANSCRIPT]

      Full Episode List

      Full YouTube Playlist
      Share
      Details
      Last Updated Feb 25, 2025 Related Terms
      Science Mission Directorate Astrobiology Europa Europa Clipper Planetary Science Planetary Science Division The Solar System Explore More
      2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
      Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
      Article 2 hours ago 4 min read NASA: New Study on Why Mars is Red Supports Potentially Habitable Past
      Article 5 hours ago 4 min read Five Facts About NASA’s Moon Bound Technology
      Article 16 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Is There Potential for Life on Europa? We Asked a NASA Expert
    • By NASA
      The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems NASA’s Artemis IV astronauts will be the first to inhabit the Gateway lunar space station, opening the door to greater exploration of the Moon and paving the way to Mars. Gateway’s Power and Propulsion Element, which will make the station the most powerful solar electric spacecraft ever flown, takes shape at Maxar Space Systems. In lunar orbit, Gateway will allow NASA to conduct unique science and exploration while preparing astronauts to go to the Red Planet.
      Technicians install key hardware on the element’s Propulsion Bus Module following installation of both electric propulsion and chemical propulsion control modules. The image highlights a propellant tank exposed on the right, positioned within the central cylinder of the element.  
      The Power and Propulsion Element will launch with Gateway’s HALO (Habitation and Logistics Outpost) ahead of NASA’s Artemis IV mission. During Artemis IV, V, and VI, international crews of astronauts will assemble the lunar space station around the Moon and embark on expeditions to the Moon’s South Pole region.
      The Power and Propulsion Element is managed out of NASA’s Glenn Research Center in Cleveland and built by Maxar Space Systems in Palo Alto, California.
      Gateway is an international collaboration to establish humanity’s first lunar space station as a central component of the Artemis architecture designed to return humans to the Moon for scientific discovery and chart a path for the first human missions to Mars.
      The Propulsion Bus Module of Gateway’s Power and Propulsion Element undergoes assembly and installations at Maxar Space Systems in Palo Alto, California.Maxar Space Systems An artist’s rendering of the Gateway lunar space station, including its Power and Propulsion Element, shown here with its solar arrays deployed. Gateway will launch its initial elements to lunar orbit ahead of the Artemis IV mission. NASA/Alberto Bertolin An artist’s rendering of Gateway with the Power and Propulsion Element’s advanced thrusters propelling the lunar space station to the Moon. NASA/Alberto Bertolin Learn More About Gateway Facebook logo @NASAGateway @NASA_Gateway Instagram logo @nasaartemis Share
      Details
      Last Updated Feb 25, 2025 ContactJacqueline Minerdjacqueline.minerd@nasa.govLocationGlenn Research Center Related Terms
      Artemis Artemis 4 Earth's Moon Exploration Systems Development Mission Directorate Gateway Program Gateway Space Station Glenn Research Center Humans in Space Technology Technology for Space Travel Explore More
      5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station
      NASA and its international partners are making progress on Gateway – the lunar space station…
      Article 4 days ago 2 min read Advanced Modeling Enhances Gateway’s Lunar Dust Defense
      Ahead of more frequent and intense contact with dust during Artemis missions, NASA is developing…
      Article 1 month ago 2 min read Lunar Space Station Module Will Journey to US ahead of NASA’s Artemis IV Moon Mission
      A key element of the Gateway lunar space station has entered the cleanroom for final…
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Humans In Space
      Orion Spacecraft
      Human Landing System
      Extravehicular Activity and Human Surface Mobility
      View the full article
  • Check out these Videos

×
×
  • Create New...