Jump to content

The Marshall Star for February 7, 2024


NASA

Recommended Posts

  • Publishers
17 Min Read

The Marshall Star for February 7, 2024

Joseph Pelfrey talks during a 2023 all-hands meeting at Marshall.

NASA Administrator Announces New Marshall Space Flight Center Director

NASA Administrator Bill Nelson on Feb. 5 named Joseph Pelfrey director of the agency’s Marshall Space Flight Center, effective immediately. Pelfrey has served as acting center director since July 2023.

“Joseph is a respected leader who shares the passion for innovation and exploration at NASA Marshall. As center director, he will lead the entire Marshall workforce, which includes a world-renowned team of scientists, engineers, and technologists who have a hand in nearly every NASA mission,” said Nelson. “I am confident that under Joseph’s leadership, Marshall will continue to make critical advancements supporting Artemis and Moon to Mars that will benefit all humanity.” 

Marshall Space Flight Center Director Joseph Pelfrey.
Marshall Space Flight Center Director Joseph Pelfrey.
NASA

NASA Marshall is one of the agency’s largest field centers, and manages NASA’s Michoud Assembly Facility, where some of the largest elements of the SLS (Space Launch System) rocket and Orion spacecraft for the Artemis campaign are manufactured. The center also is responsible for the oversight and execution of an approximately $5 billion portfolio comprised of human spaceflight, science, and technology development efforts. Its workforce consists of nearly 7,000 employees, both civil servants and contractors. 

“Marshall is renowned for its expertise in exploration and scientific discovery, and I am honored and humbled to be chosen to lead the center into the future,” said Pelfrey. “We will continue to shape the future of human space exploration by leading SLS and human landing system development for Artemis and leveraging our capabilities to make critical advancements in human landing and cargo systems, habitation and transportation systems, advanced manufacturing, mission operations, and cutting-edge science and technology missions.”

Pelfrey talks during a 2023 all-hands meeting at Marshall.
Pelfrey talks during a 2023 all-hands meeting at Marshall.
NASA/Charles Beason

Prior to joining NASA, Pelfrey worked in industry, supporting development of space station payload hardware. He began his NASA career as an aerospace engineer in the Science and Mission Systems Office, going on to serve in various leadership roles within the International Space Station Program, the Marshall Engineering Directorate and the SLS Spacecraft/Payload Integration and Evolution Office. He also served as manager for the Commercial Orbital Transportation Services Project at Marshall and the Exploration and Space Transportation Development Office in the Flight Programs and Partnerships Office.

Appointed to the Senior Executive Service in 2016, Pelfrey served as the associate director for operations in Engineering, later becoming deputy manager and subsequently manager for Marshall’s Human Exploration Development and Operations Office. He was appointed as Marshall’s deputy center director in April 2022.

Pelfrey received a bachelor’s degree in Aerospace Engineering from Auburn University in 2000.

Learn more about Pelfrey.

› Back to Top

NASA to Demonstrate Autonomous Navigation System on Moon

By Rick Smith

When the second CLPS (Commercial Lunar Payload Services) delivery is launched to the Moon in mid-February, its NASA payloads will include an experiment that could change how human explorers, rovers, and spacecraft independently track their precise location on the Moon and in cis-lunar space.

Demonstrating autonomous navigation, the Lunar Node-1 experiment, or LN-1, is a radio beacon designed to support precise geolocation and navigation observations for landers, surface infrastructure, and astronauts, digitally confirming their positions on the Moon relative to other craft, ground stations, or rovers on the move. These radio beacons also can be used in space to help with orbital maneuvers and with guiding landers to a successful touchdown on the lunar surface.

An close up image of the Lunar Node-1 payload covered in a silver wrapping to protect it in space.
Lunar Node-1, or LN-1, an autonomous navigation payload that will change how human explorers safely traverse the Moon’s surface and live and work in lunar orbit, awaits liftoff as part of Intuitive Machines’ IM-1 mission, its first under NASA’s Commercial Lunar Payload Services initiative. LN-1 was developed, built, and tested at NASA’s Marshall Space Flight Center.
NASA/Intuitive Machines

“Imagine getting verification from a lighthouse on the shore you’re approaching, rather than waiting on word from the home port you left days earlier,” said Evan Anzalone, principal investigator of LN-1 and a navigation systems engineer at NASA’s Marshall Space Flight Center. “What we seek to deliver is a lunar network of lighthouses, offering sustainable, localized navigation assets that enable lunar craft and ground crews to quickly and accurately confirm their position instead of relying on Earth.”

The system is designed to operate as part of a broader navigation infrastructure, anchored by a series of satellites in lunar orbit as being procured under NASA’s Lunar Communications Relay and Navigation Systems project. Together, future versions of LN-1 would utilize LunaNet-defined standards to provide interoperable navigation reference signals from surface beacons as well as orbital assets.

Currently, navigation beyond Earth is heavily reliant on point-to-point services provided by NASA’s Deep Space Network, an international array of giant radio antennas which transmit positioning data to interplanetary spacecraft to keep them on course. These measurements typically are relayed back to Earth and processed on the ground to deliver information back to the traveling vehicle.

But when seconds count during orbital maneuvers, or among explorers traversing uncharted areas of the lunar surface, LN-1 offers a timely improvement, Anzalone said.

The Nova-C lunar lander sits in front of an American flag with dramatic lighting against it.
IM-1, the first NASA Commercial Launch Program Services launch for Intuitive Machines’ Nova-C lunar lander, will carry multiple payloads to the Moon, including Lunar Node-1, demonstrating autonomous navigation via radio beacon to support precise geolocation and navigation among lunar orbiters, landers, and surface personnel. NASA’s CLPS initiative oversees industry development of small robotic landers and rovers to support NASA’s Artemis campaign.
NASA/Intuitive Machines

The CubeSat-sized experiment is one of six payloads included in the NASA delivery manifest for Intuitive Machines of Houston, which will be launched via a SpaceX Falcon 9 from Cape Canaveral, Florida. Designated IM-1, the launch is the company’s first for NASA’s CLPS initiative, which oversees industry development, testing, and launch of small robotic landers and rovers supporting NASA’s Artemis campaign.

The Nova-C lander is scheduled to touch down near Malapert A, a lunar impact crater in the Moon’s South Pole region.

LN-1 relies on networked computer navigation software known as MAPS (Multi-spacecraft Autonomous Positioning System). Developed by Anzalone and researchers at Marshall, MAPS was successfully tested on the International Space Station in 2018 using NASA’s Space Communications and Navigation testbed.

Engineers at Marshall conducted all structural design, thermal and electronic systems development, and integration and environmental testing of LN-1 as part of the NASA-Provided Lunar Payloads project funded by the agency’s Science Mission Directorate. Anzalone and his team delivered the payload in 2021, having performed the payload build during the COVID pandemic. Since then, they refined the operating procedures, conducted thorough testing of the integrated flight system, and in October 2023, oversaw installation of LN-1 on Intuitive Machines’ lander.

Demonstrating autonomous navigation, the Lunar Node-1 experiment, or LN-1, is a radio beacon designed to support precise geolocation and navigation observations to orbiters, landers, and surface personnel, digitally confirming their positions on the Moon relative to other craft, ground stations, or rovers on the move. The system is designed to operate as part of a broader navigation infrastructure, anchored by a series of satellites in lunar orbit as being procured under NASA’s Lunar Communications Relay and Navigation Systems project. (NASA)

The payload will transmit information briefly each day during the journey to the Moon. Upon lunar touchdown, the LN-1 team will conduct a full systems checkout and begin continuous operations within 24 hours of landing. NASA’s Deep Space Network will receive its transmissions, capturing telemetry, Doppler tracking, and other data and relaying it back to Earth. Researchers at NASA’s Jet Propulsion Laboratory and at Morehead State University in Kentucky also will monitor LN-1’s transmissions throughout the mission, which is scheduled to last approximately 10 days.

Eventually, as the technology is proven and its infrastructure expanded, Anzalone expects LN-1 to evolve from a single lighthouse on the lunar shore into a key piece of a much broader infrastructure, helping NASA evolve its navigation system into something more akin to a bustling metropolitan subway network, wherein every train is tracked in real time as it travels its complex route.

“Spacecraft, surface vehicles, base camps and exploratory digs, even individual astronauts on the lunar surface,” Anzalone said. “LN-1 could connect them all and help them navigate more accurately, creating a reliable, more autonomous lunar network.”

Marshall’s LN-1 team is already discussing future Moon to Mars applications for LN-1 with NASA’s SCaN (Space Communications and Navigation) program – which oversees more than 100 NASA and partner missions. They’re also consulting with the European Space Agency and Japan Aerospace Exploration Agency, aiding the push to unite spacefaring nations via an interconnected, interoperable global architecture.

“Eventually, these same technologies and applications we’re proving at the Moon will be vital on Mars, making those next generations of human explorers safer and more self-sufficient as they lead us out into the solar system,” Anzalone said.

NASA’s CLPS initiative enables NASA to buy a complete commercial robotic lunar delivery service from leading aerospace contractors. The provider is responsible for launch services, owns its lander design, and leads landing operations. Learn more here.

Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications.

› Back to Top

Marshall Wraps Up Mentoring Month with Mega Meal, Mentoring Panel

By Jessica Barnett

There was no shortage of opportunities in January to learn about the benefits of mentoring from those who have experienced them firsthand. In fact, there was so much to share, team members at NASA’s Marshall Space Flight Center kept the celebration going through the first week of February.

“It was so great to see so many from our workforce out and excited about mentorship,” said Selina Salgado, who serves as the Mentoring Program coordinator at Marshall. “At every event throughout the month and when reading through the highlights, I was encouraged by the engagement and commitment that the Marshall team showed for development.”

Marshall Space Flight Center Chief Financial Officer Rhega Gordon, center, who participates in the center’s Mentorship Program, discusses the benefits of mentoring and her advice for getting the most out of a mentoring relationship during a panel event held Feb. 6 in Activities Building 4316 as part of Marshall’s celebration of National Mentoring Month. Joining her on stage are two of her mentees, program specialist Kim Henry and Marshall Sustainability Coordinator Malene McElroy.
Marshall Space Flight Center Chief Financial Officer Rhega Gordon, center, who participates in the center’s Mentorship Program, discusses the benefits of mentoring and her advice for getting the most out of a mentoring relationship during a panel event held Feb. 6 in Activities Building 4316 as part of Marshall’s celebration of National Mentoring Month. Joining her on stage are two of her mentees, program specialist Kim Henry and Marshall Sustainability Coordinator Malene McElroy.
NASA/Danielle Burleson

This year’s events included Meals with Mentors, in which team members could have lunch and chat with mentors from a variety of backgrounds and departments, and an in-person mentoring panel Feb. 6 featuring Marshall Chief Financial Officer Rhega Gordon and two of her mentees, Marshall Sustainability Coordinator Malene McElroy and program specialist Kim Henry.

Marshall also participated in the launch for AMPED (Agencywide Mentoring Pilot for Engagement & Development), which pairs mentors and mentees together using the MentorcliQ platform. Civil servants can sign up for AMPED now through Feb. 19.

Marshall team members can also participate in MERGE, a NASA-built mentoring application that allows users to create and view profiles to identify potential mentors or mentees. MERGE is recommended for casual, informal, or short-term mentoring relationships, as well as shadowing opportunities. Civil servants and contractors can sign up at any time.

Marshall Associate Center Director, Technical, Larry Leopard engages with center team members during a Meals with Mentors event Feb. 6 in Activities Building 4316. Team members were encouraged to chat with center leaders and potential mentors at the event as part of Marshall’s celebration of National Mentoring Month.
Marshall Associate Center Director, Technical, Larry Leopard engages with center team members during a Meals with Mentors event Feb. 6 in Activities Building 4316. Team members were encouraged to chat with center leaders and potential mentors at the event as part of Marshall’s celebration of National Mentoring Month.
NASA/Danielle Burleson

In addition to in-person events and showcasing new options for finding a mentor or mentee, there were weekly tips to help team members get the most out of their mentorship journey and interviews with mentors and mentees, who shared their experiences, advice, and more.

“Our hope was that employees would reengage with mentorship, find value in their current relationships, or provide resources and guidance to help those who were new to the world of mentoring,” Salgado said.

Marshall team members can start or continue their mentorship journey by visiting the Marshall Mentorship Program page on Inside Marshall.

Barnett, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

Mission Success is in Our Hands: Ashley Marlar

By Wayne Smith

Mission Success is in Our Hands is a safety initiative collaboration between NASA’s Marshall Space Flight Center and Jacobs. As part of the initiative, eight Marshall team members are featured in new testimonial banners placed around the center. This is the fourth in a Marshall Star series profiling team members featured in the testimonial banners. The next Mission Success is in Our Hands Shared Experience Forum will be Feb. 22 and will feature Robert Conway, deputy director of NASA’s Safety Center. The 11:30 a.m. event will be in Activities Building 4316 for Marshall team members.

Ashley Marlar is the Jacobs Space Exploration Group team lead of Operations Engineering Support at Marshall, responsible for managing a team of four Jacobs Transportation engineers supporting the center’s Transportation and Logistics Engineering Office. Marlar and her team develop and execute detailed plans, procedures, and engineered lift analyses to transport NASA’s SLS (Space Launch System) flight hardware and test articles, as well as hardware for various other programs and projects at Marshall.

Ashley Marlar is the Jacobs Space Exploration Group Team Lead of Operations Engineering Support at NASA’s Marshall Space Flight Center, supporting the Transportation and Logistics Engineering Office.
Ashley Marlar is the Jacobs Space Exploration Group Team Lead of Operations Engineering Support at NASA’s Marshall Space Flight Center, supporting the Transportation and Logistics Engineering Office.
NASA/Charles Beason

She has worked at Marshall for eight years, including six years with Jacobs, starting her career as a transportation and logistics engineer. A native of Hazel Green, Alabama, Marlar is a graduate of the University of Alabama in Huntsville where she earned a bachelor’s degree in aerospace engineering.

Question: How does your work support the safety and success of NASA and Marshall missions?

Marlar: The thorough coordination and detailed planning of each hardware movement is absolutely critical to the safety of the hardware and the personnel handling it, and the success of the mission. We must anticipate risks and consider contingency plans. Whether it’s offloading a welded component from the delivery truck, installing a test article into a structural test stand, or shipping the SLS core stage on the barge Pegasus from NASA’s Michoud Assembly Facility to the agency’s Kennedy Space Center, we meticulously plan every step of the operation to ensure the hardware is delivered without mishaps or delays.

Question: What does the Mission Success is in Our Hands initiative mean to you?

Marlar: To me it means every individual plays a vital role in making our missions safe and successful. We all contribute to NASA’s success by bringing our unique skills and perspectives to the table. And we are all responsible for the safety of ourselves and each other by having the courage to speak up and ask questions.

Question: Do you have a story or personal experience you can share that might help others understand the significance of mission assurance or flight safety?

Marlar: One of the things we do to help ensure mission safety is perform dry runs, like dress rehearsals, for many of our major moves. For example, we utilized the core stage Pathfinder vehicle to practice our transportation methods and iron out all the little details of our procedures without risking the actual core stage flight unit. We repeatedly practiced installing the Pathfinder onto ground support equipment, lifting and rotating it from horizontal to vertical orientation, and installing it into the B2 test stand at Stennis Space Center. Then we did everything in reverse. We did this multiple times to identify any challenges, safety issues, or workflow inefficiencies we might face when it came time to perform these tasks with the real thing, and then made many procedural changes and some hardware changes to mitigate those risks and resolve numerous issues. All of this paid off in a big way when we transported, lifted, and tested the flight core stage flawlessly.

Question: How can we work together better to achieve mission success?

Marlar: Mission success is a team effort and a shared responsibility. I think it’s vital to encourage and empower everyone to speak up and share their ideas and concerns as well as hold each other accountable. We should continue to reinforce the importance of communication and engagement, particularly as we emerge from a pandemic. 

Question: Do you have anything else you’d like to share?

Marlar: My primary goal is to make sure my team gets home safe and sound at the end of the day. As important and grand as our mission is, our biggest asset is our people. We are a collective of many pieces in a large puzzle, but every piece is equally important to the whole.

Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications.

› Back to Top

NASA Taps Alabama A&M University to Host Break the Ice Lunar Challenge

By Savannah Bullard

NASA has selected Alabama A&M University’s Agribition Center in Huntsville to host the final level of the agency’s Break the Ice Lunar Challenge, using indoor and outdoor space to ground test the finalists’ solutions.

The challenge opened in 2020 to find novel solutions for excavating icy lunar regolith and delivering acquired resources in extreme environmental conditions. In alignment with NASA’s Moon to Mars objectives, the challenge aims to develop technologies that could support a sustained human presence on the Moon.

An external image of the Alabama A&M University Agribition Center from the front facade. The Center is a cream-colored stone building with a curved roof, floor-to-ceiling windows, and concrete steps that lead to a covered awning, framed by deep-red structural beams above. Shrubs and crepe myrtle trees frame the foreground and steps leading up to the building. Photo courtesy of AAMU Extension
Alabama A&M University’s Agribition Center will host the final Break the Ice Lunar Challenge featuring a large dirt-based indoor arena on 40 acres of land, offering plenty of green space to build Break the Ice’s complex testing infrastructure.
Photo Courtesy: Alabama A&M University Extension

Throughout the challenge, competitors have designed, built, and independently tested robots that could theoretically withstand the harsh environments inside permanently shadowed regions of the lunar South Pole. The six finalists who succeeded in Phase 2: Level 2 of the challenge were announced in December 2023.

“We were looking for a unique set of criteria to house the Break the Ice Lunar competition, so we partnered with Jacobs Space Exploration Group in finding a facility,” said Denise Morris, NASA Centennial Challenges program manager at NASA’s Marshall Space Flight Center. “Alabama A&M is a good fit for this challenge because of the on-site capabilities they have and being close to NASA facilities makes logistics much easier.”

Located a few miles east of the Alabama A&M University campus, the Agribition (agriculture + exhibition) Center is managed by the Alabama Cooperative Extension System with support from the university and its College of Agricultural, Life, and Natural Sciences. Its indoor arena features a large dirt space, typically equipped to support rodeos and other agricultural expos. Outside, the center sits on roughly 40 acres of land, offering plenty of green space to build the competition’s complex infrastructure.

The final Phase 2: Level 3 testing will occur June 10-12, 2024. There are two components that each team will focus on mastering: excavation and transportation.

Six identically sized concrete slabs will be set up inside the arena for the finalists’ robots to dig. The slabs, measuring 300 cubic feet, will have qualities similar to a permanently shadowed crater located at the Moon’s South Pole. A gravity-offloading crane and pulley system will lift the excavators while working, simulating the one-sixth gravity experienced on the Moon.

Each team will have one hour to dig as much material as possible or until they reach the payload capacity of their excavation robot. Up to three top-performing teams will earn an opportunity to test their solution inside one of the thermal vacuum chambers located at Marshall, which can simulate the temperature and vacuum conditions at the lunar South Pole.

Outside the Agribition Center, challenge teams will take turns on a custom-built track outfitted with slopes, boulders, pebbles, rocks, and gravel to simulate the lunar surface. This volatile surface will stretch approximately 300 meters and include several twists and turns for more intermediate handling.

Each team will get one hour on the track to deliver a payload and return to the starting point. Times, distances, and pitfalls will be recorded independently.

“These two testing methods address the excavation and transportation of large quantities of icy regolith, which are some of NASA’s current top technology gaps,” said Naveen Vetcha, NASA challenge manager at Jacobs Space Exploration Group. “This competition has enabled teams to develop lightweight, energy efficient, reliable and durable hardware, all while performing well in Moon-like conditions like reduced gravity and complex terrain.”

The total prize purse is $1.5 million, with the first-place winner taking home $1 million and the second-place winner receiving $500,000.

The Break the Ice Lunar Challenge is a NASA Centennial Challenge led by Marshall, with support from NASA’s Kennedy Space Center. Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program under NASA’s Space Technology Mission Directorate. Ensemble Consultancy supports challenge competitors.

Bullard, a Manufacturing Technical Solutions Inc. employee, supports the Marshall Office of Communications.

› Back to Top

Mars, Venus Appear Very Close to Each Other this Month

By Lauren Perkins

February is a great month for the early rising skygazers. Venus has been bright in the morning sky all year, rising just before the Moon.

This graphic shows Venus, Earth and its Moon, and Mars.
This graphic shows Venus, Earth and its Moon, and Mars.
NASA/JPL-Caltech/ESA

In the minutes before dawn this week, Venus will rise to the upper left of the waning crescent Moon and will be joined by Mars. Over the coming weeks, Venus will shift towards Mars until they appear to merge into one another, just a half a degree apart, on Feb. 22.

To view this planetary illusion, you’ll need to find a place with a clear view of the western horizon – few to no tall trees or buildings.

For more skygazing opportunities, including observing spiral galaxy M81, check out the video from Jet Propulsion Laboratory’s monthly “What’s Up” video series.

Perkins, a Media Fusion employee, supports the Marshall Office of Communications.

› Back to Top

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Researchers demonstrated the feasibility of 3D bioprinting a meniscus or knee cartilage tissue in microgravity. This successful result advances technology for bioprinting tissue to treat musculoskeletal injuries on long-term spaceflight or in extraterrestrial settings where resources and supply capacities are limited.

      BFF Meniscus-2 evaluated using the BioFabrication Facility to 3D print knee cartilage tissue using bioinks and cells. The meniscus is the first engineered tissue of an anatomically relevant shape printed on the station. Manufactured human tissues have potential as alternatives to donor organs, which are in short supply. Bioprinting in microgravity overcomes some of the challenges present in Earth’s gravity, such as deformation or collapse of tissue structures.
      A human knee meniscus 3D bioprinted in space using the International Space Station’s BioFabrication Facility.Redwire Complex cultures of central nervous system cells known as brain organoids can be maintained in microgravity for long periods of time and show faster development of neurons than cultures on Earth. These findings could help researchers develop treatments for neurodegenerative diseases on Earth and address potential adverse neurological effects of spaceflight.

      Cosmic Brain Organoids examined growth and gene expression in 3D organoids created with neural stem cells from individuals with primary progressive multiple sclerosis and Parkinson’s disease. Results could improve understanding of these neurological diseases and support development of new treatments. Researchers plan additional studies on the underlying causes of the accelerated neuron maturation.
      Neural growth in brain organoids that spent more than a month in space. Jeanne Frances Loring, National Stem Cell Foundation Researchers demonstrated that induced pluripotent stem cells (iPSCs) can be processed in microgravity using off the-shelf cell culture materials. Using standard laboratory equipment and protocols could reduce costs and make space-based biomedical research accessible to a broader range of scientists and institutions.

      Stellar Stem Cells Ax-2 evaluated how microgravity affects methods used to generate and grow stem cells into a variety of tissue types on the ground. iPSCs can give rise to any type of cell or tissue in the human body, and insight into processing in space could support their use in regenerative medicine and future large-scale biomanufacturing of cellular therapeutics in space.
      NASA astronaut Peggy Whitson, an Axiom Mission 2 crew member, works on stem cell research on a previous mission. NASA/Shane KimbroughView the full article
    • By NASA
      Astrogram banner TIME Recognizes the Advanced Composite Solar Sail System
      In October, the Advanced Composite Solar Sail System a project managed at NASA Ames, was recognized by TIME Magazine as a “Top Invention of 2024”! TIME Magazine also recognized two other NASA missions this year: Europa Clipper, and the Deep Space Optical Communications experiment.   
      The Advanced Composite Solar Sail System is a demonstration of technologies that enable spacecraft to “sail on sunlight,” using solar radiation for propulsion. Results from this mission could provide an alternative to chemical and electric propulsion systems and guide the design of future larger-scale spacecraft for space weather early warning satellites, near-Earth asteroid reconnaissance missions, or communications relays for crewed exploration missions at the Moon and Mars.  
      The Advanced Composite Solar Sail System a project managed at NASA Ames, was recognized by TIME Magazine as a “Top Invention of 2024.”NASA This twelve-unit (12U) CubeSat features a reflective sail held taut by composite booms made from flexible polymer and carbon fiber materials that are stiffer and lighter than previous designs. The square-shaped solar sail measures approximately 80 square meters, but the new boom technology could support future missions for solar sails up to 500 square meters.   
      The mission launched on April 23 via a Rocket Lab Electron rocket and met its primary objective in August by deploying the boom and sail system in space. Next, the team will attempt to demonstrate maneuverability in orbit using the sail.   
      Congratulations to the Advanced Composite Solar Sail System team and the Small Spacecraft Technology program office, based at Ames, for this well-earned recognition. Their contributions continue to push the boundaries of what we can achieve at NASA, and this acknowledgment highlights the capabilities and vision of our center.   

      Representative Anna Eshoo Recognized for 32 Years of Distinguished Public Service
      On Oct. 29, Ames hosted a recognition event for Representative Anna Eshoo to honor her 32 years of public service and to thank her for her enduring support for NASA and our center. Representative Eshoo announced her retirement from Congress in 2023.
      On Oct. 29, Ames Center Director Dr. Eugene Tu presented the Pioneer Plaque to Congresswoman Anna Eshoo in the ballroom of Building 3 at NASA Research Park.NASA photo by Brandon Torres Representative Zoe Lofgren, public officials from across the Bay Area, and colleagues from around the center were in attendance to celebrate Representative Eshoo’s decades of tireless support. During the formal program, Ames Center Director Dr. Eugene Tu presented her with a replica of a Pioneer Plaque (photo above) as a token of appreciation for her many years as a champion for NASA Ames – from Hangar One, to the USGS Building, and the Moffett Field Museum.
      Congresswoman Anna Eshoo gives remarks to the audience during the unveiling of her commemorative plaque at the Moffett Field Museum, in NASA Research Park, on Oct. 29.NASA photo by Brandon Torres Safety Day Organizational Silence Town Hall Held

      On Oct. 1, a Safety Day Organizational Silence Town Hall was held that focused on employee feedback and insights from prior Safety Culture, Federal Employee Viewpoint, and DEIA Organizational Climate surveys.
      Fostering a psychologically safe culture of open communication at NASA and Ames is imperative for the safety of our team and for the collective success of our missions. This is a topic of particular interest and concern to Ames center leadership. 
      Acting Director of the NASA Safety Center Bob Conway speaks during the Oct. 1 Safety Day Organization Silence Town Hall.NASA photo by Don RIchey Acting Director of the NASA Safety Center, Bob Conway, presented in person at Ames to conduct the hybrid town hall event in the N201 auditorium on Organizational Silence. In addition to valuable insights and tactics, there was the opportunity for employees to ask questions via a Conference I/O channel and in person during the event. 
      Following the main presentation, Associate Center Director Amir Deylami, at the podium, leads a question-and-answer session with the town hall audience and online attendees of the Safety Day: Organizational Silence town hall, with (seated left to right) Acting Director of the NASA Safety Center Bob Conway, Deputy Center Director David Korsmeyer, Director of Safety and Mission Assurance Directorate Drew Demo, and Director of Center Operations Directorate Aga Goodsell.NASA photo by Don RIchey Deputy Administrator Pam Melroy Visits Ames, Attends Roundtable Discussions

      NASA Deputy Administrator Pam Melroy speaks with NASA 2040 participants in the lobby of N232, during her visit to Ames on Sept. 16.NASA photo by Brandon Torres On Sept. 16, Ames welcomed NASA Deputy Administrator Pam Melroy to the center. Having toured the facilities at Ames on past visits, Melroy visited the center to engage in several roundtable discussions with employees focused on procurement, NASA 2040, and leadership. She also greeted a delegation from the American Chamber of Commerce in Australia, with Australia being among the original eight international partners to sign on to the Artemis Accords in 2020. Across all of her conversations, Melroy voiced her appreciation for the Ames workforce for their steadfast dedication. She also consistently expressed her admiration for the diverse array of foundational work being done at Ames to advance NASA’s mission. 

      President of Latvia, Edgars Rinkēvičs Visits Ames
      The President of Latvia Edgars Rinkēvičs visited Ames on Sept. 18 to learn about our aeronautics research and some of the center’s technical capabilities. Accompanied by a delegation of Latvian business representatives, the president visited the Airspace Operations Lab and FutureFlight Central.  
      President of Latvia Edgars Rinkēvičs, right, chats with Ames Center Director Dr. Eugene Tu, second from right, while in FutureFlight Central.NASA photo by Brandon Torres During the visit, he was briefed on the center’s air traffic management simulation capabilities aimed at solving the challenges – present and emerging – of the nation’s air traffic management system. Center experts discussed innovative work in airspace management, including commercial and public safety drone operations that extend from local incidents to large-scale disaster response. Through these international visits, we are showcasing NASA to the world.  

      Discussions, Lightning Pitches Presented at Ames’ Aeronautics Innovation Forum
      The 2024 Aeronautics Innovation Forum was held Sept. 17 – 19, supporting aeronautics research and innovation. A panel discussion, “Aeronautics & Space Economy” was held the first day with Dr. Parimal Kopardekar, Director of the NASA Aeronautics Research Institute (NARI) acting as the moderator. Panelists were Dr. Alex MacDonald, Chief Economist, NASA; Peter Shannon, Radius Capital, AAM Investor; Julia Black, Director of Range Operations, Stoke Space; and Dr. Yewon Kim, Professor, Stanford Graduate School of Business. Facility tours were also given during the forum. Lightning pitches were presented, along with an All Hands meeting, an aeronautics taco fiesta picnic and games at the Ames Park, and an ice cream social and Aeronautics Innovation Center (AIC) discussion.
      Director of NASA’s Aeronautics Research Institute (NARI) Parimal Kopardekar (PK) moderates a panel session “Aeronautics & Space Economy” during the 2024 Ames Aeronautics Innovation Forum in the Syvertson Auditorium.NASA photo by Don Richey Nelson Iwai gives attendees of the 2024 Ames Aeronautics INNOVATION Forum a tour of the Aerospace Cognitive Engineering Lab Rapid Automation Test Environment (ACEL-RATE) in N262.NASA photo by Don Richey Don Durston gives his lightening pitch on day three of the 2024 Ames Aeronautics Innovation Forum in the Syvertson Auditorium.NASA photo by Don Richey Following the 2024 Ames Aeronautics Innovation Forum, attendees met in Mega-Bytes for an ice cream social and to discuss the Aeronautics Innovation Center.NASA photo by Don Richey
      NASA and Partners Scaling to New Heights in Air Traffic Management
      by Hillary Smith
      NASA, in partnership with AeroVironment and Aerostar, recently demonstrated a first-of-its-kind air traffic management concept that could pave the way for aircraft to safely operate at higher altitudes.
      This work seeks to open the door for increased internet coverage, improved disaster response, expanded scientific missions, and even supersonic flight. The concept is referred to as an Upper-Class E traffic management, or ETM.  There is currently no traffic management system or set of regulations in place for aircraft operating 60,000 feet and above. There hasn’t been a need for a robust traffic management system in this airspace until recently. That’s because commercial aircraft couldn’t function at such high altitudes due to engine constraints.  
      NASA and partners from Aerostar and AeroVironment discuss a simulation of a high-altitude air traffic management system in the Airspace Operations Lab at NASA Ames.NASA photo by Don Richey However, recent advancements in aircraft design, power, and propulsion systems are making it possible for high- altitude, long-endurance vehicles — such as balloons, airships, and solar aircraft — to coast miles above our heads, providing radio relay for disaster response, collecting atmospheric data, and more.  
      But before these aircraft can regularly take to the skies, operators must find a way to manage their operations without overburdening air traffic infrastructure and personnel.  
      “We are working to safely expand high-altitude missions far beyond what is currently possible,” said Kenneth Freeman, a subproject manager for this effort at NASA’s Ames Research Center in California’s Silicon Valley. “With routine, remotely piloted high-altitude operations, we have the opportunity to improve our understanding of the planet through more detailed tracking of climate change, provide internet coverage in underserved areas, advance supersonic flight research, and more.” 
      Current high-altitude traffic management is processed manually and on a case-by-case basis. Operators must contact air traffic control to gain access to a portion of the Class E airspace. During these operations, no other aircraft can enter this high-altitude airspace. This method will not accommodate the growing demand for high-altitude missions, according to NASA researchers.  
      To address this challenge, NASA and its partners have developed an ETM traffic management system that allows aircraft to autonomously share location and flight plans, enabling aircraft to stay safely separated. 
      During the recent traffic management simulation in the Airspace Operations Laboratory at Ames, data from multiple air vehicles was displayed across dozens of traffic control monitors and shared with partner computers off site.
      This included aircraft location, health, flight plans and more. Researchers studied interactions between a slow fixed-wing vehicle from AeroVironment and a high-altitude balloon from Aerostar operating at stratospheric heights.
      Each aircraft, connected to the ETM traffic management system for high altitude, shared location and flight plans with surrounding aircraft.  
      This digital information sharing allowed Aerostar and AeroVironment high-altitude vehicle operators to coordinate and deconflict with each other in the same simulated airspace, without having to gain approval from air traffic control.
      Because of this, aircraft operators were able to achieve their objectives, including wireless communication relay. 
      This simulation represents the first time a traffic management system was able to safely manage a diverse set of high-altitude aircraft operations in the same simulated airspace.
      Next, NASA researchers will work with partners to further validate this system through a variety of real flight tests with high-altitude aircraft in a shared airspace.   
      The Upper-Class E traffic management concept was developed in coordination with the Federal Aviation Administration and high-altitude platform industry partners, under NASA’s National Airspace System Exploratory Concepts and Technologies subproject led out of Ames.  

      Starship Super Heavy Breezes Through Wind Tunnel Testing at NASA Ames
      by Lee Mohon
      NASA and its industry partners continue to make progress toward Artemis III and beyond, the first crewed lunar landing missions under the agency’s Artemis campaign. SpaceX, the commercial Human Landing System (HLS) provider for Artemis III and Artemis IV, recently tested a 1.2% scale model of the Super Heavy rocket, or booster, in the transonic Unitary Plan Wind Tunnel at NASA Ames. The Super Heavy rocket will launch the Starship human landing system to the Moon as part of Artemis.
      A 1.2% scale model of the Super Heavy rocket that will launch the Starship human landing system to the Moon for future crewed Artemis missions was recently tested at NASA Ames’ transonic wind tunnel, providing valuable information on vehicle stability when re-entering Earth’s atmosphere.NASA During the tests, the wind tunnel forced an air stream at the Super Heavy scale model at high speeds, mimicking the air resistance and flow the booster experiences during flight. The wind tunnel subjected the Super Heavy model, affixed with pressure-measuring sensors, to wind speeds ranging from Mach .7, or about 537 miles per hour, to Mach 1.4, or about 1,074 miles per hour. Mach 1 is the speed that sound waves travel, or 761 miles per hour, at sea level.
      Engineers then measured how Super Heavy model responded to the simulated flight conditions, observing its stability, aerodynamic performance, and more. Engineers used the data to update flight software for flight 3 of Super Heavy and Starship and to refine the exterior design of future versions of the booster. The testing lasted about two weeks and took place earlier in 2024.
      After Super Heavy completes its ascent and separation from Starship HLS on its journey to the Moon, SpaceX plans to have the booster return to the launch site for catch and reuse. The Starship HLS will continue on a trajectory to the Moon.
      To get to the Moon for the Artemis missions, astronauts will launch in NASA’s Orion spacecraft aboard the SLS (Space Launch System) rocket from the agency’s Kennedy Space Center in Florida. Once in lunar orbit, Orion will dock with the Starship HLS or with Gateway. Once the spacecraft are docked, the astronauts will move from Orion or Gateway to the Starship HLS, which will bring them to the surface of the Moon. After surface activities are complete, Starship will return the astronauts to Orion or Gateway waiting in lunar orbit. The astronauts will transfer to Orion for the return trip to Earth. 
      With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.

      2024 NASA SmallSat In-Person LEARN Forum Held

      Audience members participate in a discussion during the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum held Sept. 24 in the ballroom of Building 3 at NASA Research Park.NASA NASA Conjunction Assessment Program Officer Lauri Newman speaks at the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum in the ballroom of Building 3 at NASA Research Park.NASA Attendees of the 2024 NASA SmallSat Learning from Experience, Achievements, and Resolution, Navigation LEARN forum read about other projects during the poster session in the ballroom of Building 3 at NASA Research Park.NASA NASA Astronauts, Leadership Visit Children’s Hospital, Cancer Moonshot Event
      NASA astronauts, scientists, and researchers, and leadership from the University of California, San Francisco (UCSF) met with cancer patients and gathered in a discussion about potential research opportunities and collaborations as part of President Biden and First Lady Jill Biden’s Cancer Moonshot initiative on Oct. 4.
      Roundtable discussions centered conversation around the five hazards of human spaceflight: space radiation, isolation and confinement, distance from Earth, gravity, and closed or hostile environments. Many of these hazards have direct correlations to a cancer patient’s lived experience, like the isolation of a hospital room and long-term effects of radiation.
      NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell pose with Eli Toribio and Rhydian Daniels at the University of California, San Francisco Bakar Cancer Hospital. Patients gathered to meet the astronauts and learn more about human spaceflight and NASA’s cancer research efforts.NASA photo by Brandon Torres During the visit with patients at the UCSF Benioff Children’s Hospital San Francisco, NASA astronaut Yvonne Cagle and former astronaut Kenneth Cockrell answered questions about spaceflight and life in space.
      Patients also received a video message from NASA astronauts Suni Williams and Butch Wilmore from the International Space Station, and met with the Director of NASA’s Johnson Space Center in Houston Vanessa Wyche, Ames Center Director Dr. Eugene Tu, and other agency leaders.
      Leadership from NASA and the University of California, San Francisco gathered for an informal luncheon before a collaborative roundtable discussion of research opportunities. From left to right, Alan Ashworth, president of the UCSF Helen Diller Family Comprehensive Cancer Center, Dr. Eugene Tu, director NASA Ames, Dr. David Korsmeyer, deputy director NASA Ames, Sam Hawgood, chancellor of UCSF, and Vanessa Wyche, director NASA’s Johnson Space Center in Houston.NASA photo by Brandon Torres By connecting the dots between human space research and cancer research, NASA and the University of California hope to open doors to innovative new research opportunities. NASA is working with researchers, institutions, and agencies across the federal government to help cut the nation’s cancer death rate by at least 50% in the next 25 years, a goal of the Cancer Moonshot Initiative.
      Learn more about the Cancer Moonshot at: https://www.whitehouse.gov/cancermoonshot

      NASA Begins New Deployable Solar Array Tech Demo on Pathfinder Spacecraft
      by Gianine Figliozzi
      NASA recently evaluated initial flight data and imagery from Pathfinder Technology Demonstrator-4 (PTD-4), confirming proper checkout of the spacecraft’s systems including its on-board electronics as well as the payload’s support systems such as the small onboard camera. Shown below is a test image of Earth taken by the payload camera, shortly after PTD-4 reached orbit. This camera will continue photographing the technology demonstration during the mission. 
      Payload operations are now underway for the primary objective of the PTD-4 mission – the demonstration of a new power and communications technology for future spacecraft. The payload, a deployable solar array with an integrated antenna called the Lightweight Integrated Solar Array and anTenna, or LISA-T, has initiated deployment of its central boom structure. The boom supports four solar power and communication arrays, also called petals. Releasing the central boom pushes the still-stowed petals nearly three feet (one meter) away from the spacecraft bus. The mission team currently is working through an initial challenge to get LISA-T’s central boom to fully extend before unfolding the petals and beginning its power generation and communication operations.
      A test image of Earth taken by NASA’s Pathfinder Technology Demonstrator-4’s onboard camera. The camera will capture images of the Lightweight Integrated Solar Array and anTenna upon deployment.NASA Small spacecraft on deep space missions require more electrical power than what is currently offered by existing technology. The four-petal solar array of LISA-T is a thin-film solar array that offers lower mass, lower stowed volume, and three times more power per mass and volume allocation than current solar arrays. The in-orbit technology demonstration includes deployment, operation, and environmental survivability of the thin-film solar array.  
      “The LISA-T experiment is an opportunity for NASA and the small spacecraft community to advance the packaging, deployment, and operation of thin-film, fully flexible solar and antenna arrays in space. The thin-film arrays will vastly improve power generation and communication capabilities throughout many different mission applications,” said Dr. John Carr, deputy center chief technologist at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These capabilities are critical for achieving higher value science alongside the exploration of deep space with small spacecraft.”
      The Pathfinder Technology Demonstration series of missions leverages a commercial platform which serves to test innovative technologies to  increase the capability of small spacecraft. Deploying LISA-T’s thin solar array in the harsh environment of space presents inherent challenges such as deploying large highly flexible non-metallic structures with high area to mass ratios. Performing experiments such as LISA-T on a smaller, lower-cost spacecraft allows NASA the opportunity to take manageable risk with high probability of great return. The LISA-T experiment aims to enable future deep space missions with the ability to acquire and communicate data through improved power generation and communication capabilities on the same integrated array.
      The PTD-4 small spacecraft is hosting the in-orbit technology demonstration called LISA-T. The PTD-4 spacecraft deployed into low Earth orbit from SpaceX’s Transporter-11 rocket which launched from Space Launch Complex 4E at Vandenberg Space Force Base in California on Aug. 16. NASA’s Marshall Space Flight Center in Huntsville, Alabama designed and built the LISA-T technology as well as LISA-T’s supporting avionics system. NASA’s Small Spacecraft Technology program, based at NASA’s Ames Research Center in California’s Silicon Valley and led by the agency’s Space Technology Mission Directorate, funds and manages the PTD-4 mission as well as the overall Pathfinder Technology Demonstration mission series. Terran Orbital Corporation of Irvine, California, developed and built the PTD-4 spacecraft bus, named Triumph.

      2024 Silver Snoopy Awards Presented by Astronaut Nicole Mann
      On Oct. 24, Astronaut Nicole Mann presented the Silver Snoopy Awards in the Syvertson Auditorium at the center. The Silver Snoopy best symbolizes the intent and spirit of Space Flight Awareness.  An astronaut always presents the Silver Snoopy because it is the astronauts’ own award for outstanding performance, contributing to flight safety and mission success.  Fewer than one percent of the aerospace program workforce receive it annually, making it a special honor to receive this award.
      Silver Snoopy Award recipient Tomomi Oishi (holding award) and Astronaut Nicole Mann with colleagues in the Syvertson Auditorium during the award ceremony on Oct. 24.NASA photo by Brandon Torres Silver Snoopy Award presented to Ali Guarneros Luna, center, by Center Director Dr. Eugene Tu, left, and Astronaut Nicole Mann in the Syvertson Auditorium on Oct. 24.NASA photo by Brandon Torres Jordan Kam Receives a Society of Hispanic Professional Engineers (SHPE) Undergraduate Research Competition Award
      by Maria C. Lopez
      Jordan Kam, a rising star at NASA Ames and a dedicated member of the Ames Hispanic Advisory Committee for Employees (HACE), recently received the prestigious Society of Hispanic Professional Engineers (SHPE) Undergraduate Research Competition Award at the SHPE 50th National Convention held in Anaheim, California.
      Left to right, at the SHPE 50th National Convention award ceremony: Oscar Dubón, professor of Materials Science & Engineering (MSE) and associate dean of Students in the College of Engineering at UC Berkeley; Jordan Kam, recipient of the SHPE Undergraduate Research Competition Award; and Marvin Lopez, director of Student Programs, College of Engineering at UC Berkeley. Currently pursuing an engineering degree at UC Berkeley, Jordan also is interning at NASA Ames through the Volunteer Internship Program, supporting the Intelligent Systems Division. Jordan’s award-winning research, entitled “Development of The Wireless Prototype ‘STAMPS’ for Data Acquisition, Analysis, and Visualization,” focuses on the System for Telemetry Amalgamation of Multimodal Prognostics. This innovative project plays a crucial role in diagnostics and prognostics for the Earth Independent Operations (EIO) Domain, which is essential for NASA’s Mars Campaign efforts.
      The SHPE National Convention is the largest annual gathering of Hispanic STEM students and professionals, with more than 20,000 members dedicated to promoting Hispanic leadership in STEM fields. Jordan’s achievement is not only a testament to hard work and dedication but also an inspiration to all of us.

      Celebrating Hispanic Heritage Month: Ignacio Lopez-Francos Featured in Newsweek En Español
      by Maria C. Lopez
      In honor of Hispanic Heritage Month, Newsweek En Español has released a special October/November edition that highlights Hispanics around the globe who are making significant contributions to the field of artificial intelligence. NASA Ames’ very own Ignacio Lopez-Francos has been featured in this prestigious publication!
      Ignacio Lopez-Francos, a principal research engineer with the Intelligent Systems Division at NASA Ames has been featured in this Newsweek En Español. Ignacio is a principal research engineer with the Intelligent Systems Division at NASA Ames, working through the KBR Wyle Services, LLC contract. Ignacio’s groundbreaking research focuses on applied AI for robot autonomy, encompassing core areas such as vision-based navigation, 3D scene reconstruction, geospatial mapping, edge computing, and foundation models. In addition to Ignacio’s impressive technical work, Ignacio is an active member of the Ames Hispanic Advisory Committee for Employees (HACE), further demonstrating his commitment to community and representation.
      Congratulations, Ignacio! Your pioneering efforts in AI are not only advancing technology but also making a global impact. It is inspiring to see you representing the NASA workforce and serving as a role model for future generations. We celebrate your passion and dedication!

      Congratulations to Major Crystal A. Armendariz on her Promotion to Army Major!
      by Maria C. Lopez
      On Sept. 16, the Ames Veterans Committee (AVC) proudly celebrated the promotion of Crystal A. Armendariz to the rank of United States Army Major during a ceremony at NASA Ames. This momentous occasion was organized by AVC and the Asian American Pacific Islander Advisory Group (AAPIAG), bringing together colleagues and friends to honor Major Armendariz’s exceptional service and dedication.
      Major Crystal Armendariz 397th Engineer Battalion Executive Officer (center) wears her new Major rank, standing alongside her daughter Maya Karp and guest David Chavez during the September 16 ceremony. Major Armendariz is a distinguished military graduate of California State University-Sacramento, where she earned a degree in Health Science with a focus on Community Health Education, as well as her commission in the United States Army. After completing the Army Military Intelligence Basic Officer Leader Course, she began her career with the 25th Combat Aviation Brigade at Wheeler Army Airfield in Hawaii, quickly deploying to Afghanistan as the Brigade Assistant Intelligence Officer in support of Operation Enduring Freedom. Her career has since seen her take on key leadership roles, including Battalion Intelligence Officer in Charge and Company Executive Officer, where she demonstrated remarkable skill and commitment to her missions.
      Following her completion of the Army Military Intelligence Captain’s Career Course, Major Armendariz served at Fort Carson, Colorado, and took part in Operation Atlantic Resolve in Germany. Her leadership extended to managing complex security programs and providing critical intelligence support in joint operational environments. In 2021, she served as the Battalion Security Officer for the 25th Infantry Division at Schofield Barracks, ensuring safety compliance and advising command on security matters across multiple operational theaters.
      In 2023, Major Armendariz transitioned to the 397th Reserve Engineer Battalion in Marina, California, as the Battalion S2. Shortly thereafter, she was selected as the Battalion Executive Officer and promoted to Major, overseeing staff operations and ensuring effective communication and planning. Her impressive accolades include the Knowlton Award, Joint Service Commendation Medal, and several other commendations that highlight her unwavering commitment to excellence in military service. Congratulations Major Crystal Armendariz on a well-deserved promotion and remarkable achievements!

      Faces of NASA – Ames’ Dr. Donald Mendoza, Chief Engineer
      “From my earliest childhood, flight had always captivated me. I lived out in the boonies and the farmlands, so I didn’t have neighbors to go and play with. If I wasn’t working, I was left to my own devices, and often, I would just be captivated by the wildlife and in particular, the birds of prey that I would see.
      Dr. Donald Menodoza, Chief Engineer, NASA Engineering and Safety Center at Ames.NASA photo by Dominic Hart “To me, they represented a freedom of some kind or another. These birds and the view they have — they can take in so much. So, from that point on, I knew I wanted to be involved in flight and aviation.
      “I [enjoyed] all things flight, all things spaceflight. I couldn’t get enough of it. I became an avid reader, whereas before, I wasn’t much of a reader. I couldn’t get enough material to read about my heroes from flight and space. They became my role models and the path that they took involved, at some point or another, a pretty rigorous education and dedication to doing well academically, physically, or athletically. So, I threw myself into that entire sort of mindset.
      “When I was working for the Air Force, I was able to fly and work on aircraft that I would dream about, looking at in the magazines Aviation Week and Space Technology. Here they are, right in front of me.
      “… So, my career has been as close as possible to that of a flight test engineer. And then, right on the heels of being captivated by atmospheric flight, working in human spaceflight has put me over the Moon.”
      —Dr. Donald Mendoza, Chief Engineer, NASA Engineering & Safety Center, NASA’s Ames Research Center
      Check out some of our other Faces of NASA.

      Cybersecurity Specialist Jonathan Kaldani Inspires Students at CSU East Bay
      On Oct. 29, Jonathan Kaldani, a cybersecurity specialist on the Cybersecurity Posture Assessment Services (CPAS) team within the Cybersecurity and Privacy Division (CSPD) at NASA Ames, spoke to students in Professor Ahmed Banafa’s Computer Network class at CSU East Bay in Hayward, California.
      Jonathan Kaldani, a cybersecurity specialist on the Cybersecurity Posture Assessment Services (CPAS) team at NASA Ames, giving his “Fly Me to the Moon” presentation to a Computer Network class at CSU East Bay in Hayward, California. The insightful session, “Fly Me to the Moon” delved into NASA’s mission and it’s future, and cybersecurity. It provided students with valuable career insights, including information about jobs and internships at NASA. The engagement was exceptional with students actively participating, and showcasing a high level of interest through numerous questions that extended beyond the scheduled class time.
      For all NASA Ames employees, if you are interested in sharing the NASA mission with others in your community, you are encouraged to take time to participate in NASA Engages speaking events!

      We Are All Made of Cells: Space and the Immune System
      by Rachel Hoover
      Malcolm O’Malley and his mom sat nervously in the doctor’s office awaiting the results of his bloodwork. This was no ordinary check-up. In fact, this appointment was more urgent and important than the SATs the seventeen-year-old, college hopeful had spent months preparing for and was now missing in order to understand his symptoms. 
      But when the doctor shared the results – he had off-the-charts levels of antibodies making him deathly allergic to shellfish – O’Malley realized he had more questions than answers. Like: Why is my immune system doing this? How is it working? Why is it reacting so severely and so suddenly (he’d enjoyed shrimp less than a year ago)? And why does the only treatment – an injection of epinephrine – have nothing to do with the immune system, when allergies appear to be an immune system problem? Years later, O’Malley would look to answer some of these questions while interning in the Space Biosciences Research Branch at NASA’s Ames Research Center in California’s Silicon Valley.
      Bone cells NASA/Eduardo Almeida and Cassie Juran “Anaphylaxis is super deadly and the only treatment for it is epinephrine; and I remember thinking, ‘how is this the best we have?’ because epinephrine does not actually treat the immune system at all – it’s just adrenaline,” said O’Malley, who recently returned to his studies as a Ph.D. student of Biomedical Engineering at the University of Virginia (UVA) in Charlottesville. “And there’s a thousand side effects, like heart attacks and stroke – I remember thinking ‘these are worse than the allergy!’”
      O’Malley’s curiosity and desire to better understand the mechanisms and connections between what triggers different immune system reactions combined with his interest in integrating datasets into biological insights inspired him to shift his major from computer science to biomedical engineering as an undergraduate student. With his recent allergy diagnosis and a lifelong connection to his aunt who worked at the UVA Heart and Vascular Center, O’Malley began to build a bridge between the immune system and heart health. By the time he was a senior in college, he had joined the Cardiac Systems Biology Lab, and had chosen to focus his capstone project on better understanding the role of neutrophils, a specific type of immune cell making up 50 to 70% of the immune system, that are involved in cardiac inflammation in high blood pressure and after heart attacks.
      “The immune system is involved in everything,” O’Malley says. “Anytime there’s an injury – a paper cut, a heart attack, you’re sick – the immune system is going to be the first to respond; and neutrophils are the first responders.”
      jA preflight image of beating cardiac spheroid composed of iPSC-derived cardiomyocytes (CMs), endothelial cells (ECs), and cardiac fibroblasts (CFs). These cells are incubated and put under the microscope in space as part of the Effect of Microgravity on Drug Responses Using Heart Organoids (Cardinal Heart 2.0) investigation.
      Image credit: courtesy of Drs. Joseph Wu, Dilip Thomas and Xu Cao, Stanford Cardiovascular Institute O’Malley’s work to determine what regulates the immune system’s interrelated responses – like how one cell could affect other cells or immune processes downstream – provided a unique opportunity for him to support multiple interdisciplinary NASA biological and physical sciences research projects during his 10-week internship at NASA Ames over the summer of 2024. O’Malley applied machine learning techniques to the large datasets the researchers were using from experiments and specimens collected over many years to help identify possible causes of inflammation seen in the heart, brain, and blood, as well as changes seen in bones, metabolism, the immune system, and more when humans or other model organisms are exposed to decreased gravity, social isolation, and increased radiation. These areas are of keen interest to NASA due to the risks to human health inherent in space exploration and the agency’s plans to send humans on long-duration missions to the Moon, Mars, and beyond.
      “It’s exciting that we just never know what’s going to happen, how the immune system is going to react until it’s already been activated or challenged in some way,” said O’Malley. “I’m particularly interested in the adaptive immune system because it’s always evolving to meet new challenges; whether it’s a pandemic-level virus, bacteria or something on a mission to Mars, our bodies are going to have some kind of adaptive immune response.”
      During his NASA internship, O’Malley applied a statistical analysis techniques to plot and make more sense of the massive amounts of life sciences data. From there, researchers could find out which proteins, out of hundreds, or attributes – like differences in sex – are related to which behaviors or outcomes. For example, through O’Malley’s analysis, researchers were able to better pinpoint the proteins involved in inflammation of the brain that may play a protective role in spatial memory and motor control during and after exposure to radiation – and how we might be able to prevent or mitigate those impacts during future space missions and even here on Earth.
      “I had this moment where I realized that since my internship supports NASA’s Human Research Program that means the work I’m doing directly applies to Artemis, which is sending the first woman and person of color to the Moon,” reflected O’Malley. “As someone who’s both black and white, representation is important to me. It’s inspiring to think there will be people like me on the Moon – and that I’m playing a role in making this happen.”
      When O’Malley wasn’t exploring the mysteries of the immune system for the benefit of all at NASA Ames, he taught himself how to ride a bike and started to surf in the nearby waters of the Pacific Ocean. O’Malley considers Palmyra, Virginia, his hometown and he enjoys playing sports – especially volleyball, water polo, and tennis – reading science fiction and giving guest lectures to local high school students hoping to spark their curiosity. 
      O’Malley’s vision for the future of biomedical engineering reflects his passion for innovation. “I believe that by harnessing the unique immune properties of other species, we can achieve groundbreaking advancements in limb regeneration, revolutionize cancer therapy, and develop potent antimicrobials that are considered science fiction today,” he said.

      Wildly Popular 21st Annual Chili Cook-Off and Car Show Held
      The Ames Exchange sponsored its 21st annual Chili Cook-Off on Oct. 30 behind Building 3. The theme for this year’s event was “Halloween Night,” which led to some really creative costumes. Attendees, both from Ames and the NASA Research Park, sampled chili and voted on their favorites. See below for photos of some of the spooky entries. A car and motorcycle show was also held in conjunction with the chili cook-off.
      The 21st Annual Chili Cook-off held Oct. 30 with Hanger One in the background.NASA photos by Don Richey The NASA Ames Fire Department won the Judge’s Choice award for best chili. The classic car collection at the recent Chili Cook-off. One of the collector’s cars at the Chili Cook-off. Classic bike collection at the Chili Cook-off. Employees Participate in the October Fun Run/Walk & Roll
      Runners begin the 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. The course covers a 2-mile stretch starting on Durand Road, runs up DeFrance Road to North Perimeter Road and back. The Ames Fitness Center is committed to fostering an inclusive community and encourages everyone, regardless of fitness level, experience, or capability, to participate in these events. Invite your colleagues and come join the fun at future Fun Run/Walk & Roll events! Contact Marco or Orion at the Fitness Center 650-604-5804 or visit https://q.arc.nasa.gov/content/fitness-center for more information about these events and other Fitness Center classes and programs.
      Runners begin the October 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. NASA photo by Don Richey Runners and organizers of the 2-mile Fun Run/Walk & Roll, sponsored by the Ames Fitness Center. Eric Yee front row left, David King, Nicholas Wogan, Sarah Nickerson, Jose Ignacio de Alvear Cardenas, Lara Lash, Bob Windhorst, Jon Hill, and Marco Santoyo front row right. Orion Spellman back row left, Marton Mester, Alejandro Serrano Borlaff, Evan Crowe, Jackson Donaldson, Jonathan Kaldani, Clayton Elder, and Collin Payne back row right.NASA photo by Don RIchey In Memoriam …

      Laura Lewis, Science Directorate Project Manager, Dies
      Laura Lewis passed away on Sept. 24 after a three-year fight against cancer.  Laura spent her entire 34-year career at NASA. She was a member of the Science Directorate at Ames. Laura launched her career at Kennedy Space Center. She then moved to Headquarters to work in the Space Life Sciences Office. She joined the Ames community in 1995.
      Laura Lewis Laura is survived by her husband and fellow Ames colleague, Bruce Yost, three children, and their three German Shepards.
      A passionate animal lover, Laura found ways throughout her life to care for and advocate for animals. In lieu of flowers, the family suggests donations be sent to animal shelters or animal rescue organizations such as the San Jose Humane Society or Sunshine Canyon Dog Rescue.
      Laura was a valued member of the NASA community. We extend our condolences to her family, friends, and colleagues.

      Former Technology Partnerships Manager Robin Orans Passes Away

      Robin Orans Robin Orans passed away on Sept. 27.  She was the technology partnership manager at Ames for 27 years. Prior to that role, she served as the software release authority for the center. She retired from NASA in 2015.
      Throughout Robin’s career at Ames she received numerous awards including NASA Ames Total Award for pivotal efforts in organizing the Technical SUPPORT Paper Contest for Woman and serving as the Technical Committee Paper Contest Committee in 1992; NASA Ames 2001 Technical Support Honor Award; NASA Ames 2015 Administrative Professional Honor Award; and NASA Ames 2016 Exceptional Service Medal.
      We value the many years Robin dedicated to the NASA mission and send our condolences to her family, friends, and colleagues.

      Joseph (Jay) Skiles, Senior Research Scientist, Dies
      Dr. Joseph (Jay) W. Skiles III passed away at home on October 22. He had a long and varied career studying, teaching, and lecturing about environmental sciences. He received a B.S. in biology from the University of Redlands, an M.S. in Botany from the University of Idaho, and a Ph.D. in Ecology and Evolutionary Biology from the University of California, Irvine.
      Joseph (Jay) Skiles Jay worked with a number of organizations, including SETI, Johnson Controls, and NASA Ames. While at Ames, he sponsored and tutored select groups of students, lectured internationally, evaluated various projects from schools and agencies, and initiated and developed scientific investigative projects on his own. He has worked modeling the effects of elevated atmospheric CO2 on ecosystems and modeling perturbations of Arctic ecosystems. He studied terrestrial plant responses to increased ultraviolet radiation in the polar regions of Earth and the effects of low intensity microwave fields on vascular plants. He used supercomputers to do ecosystem modeling.
      While not at work, Jay volunteered with the Mountain View Police Department and played golf. He was active with the local Masonic lodge and was a pretty fair clarinetist. Jay was born in Bakersfield, California, to Rev. Joseph W. Skiles II and Genevieve Eola Moody Skiles. He is survived by his brother Stephen, his sister Elizabeth, and eight nieces and nephews.
      Private service arrangements are pending.

      View the full article
    • By European Space Agency
      Week in images: 04-08 November 2024
      Discover our week through the lens
      View the full article
    • By NASA
      1 Min Read Oral History with Jon A. McBride, 1943 – 2024
      Jon A. McBride with the IMAX large format camera in the middeck during the STS-41G mission. Credits: NASA Selected as an astronaut in 1978, Jon A. McBride served as the pilot for STS 41-G, launched October 5, 1984, the first shuttle mission to carry a full crew of seven. His other NASA assignments included lead chase pilot for the maiden voyage of Columbia and CAPCOM for three early shuttle flights.
      Read more about Jon McBride
      Jon A. McBride Oral History, 4/17/12 NASA Biography More NASA Oral Histories The transcripts available on this site are created from audio-recorded oral history interviews. To preserve the integrity of the audio record, the transcripts are presented with limited revisions and thus reflect the candid conversational style of the oral history format. Brackets and ellipses indicate where the text has been annotated or edited for clarity. Any personal opinions expressed in the interviews should not be considered the official views or opinions of NASA, the NASA History Office, NASA historians, or staff members.
      View the full article
    • By European Space Agency
      Space startups and SMEs can meet ESA’s SME Office at Space Tech Expo, a space technology trade fair and conference in Bremen, Germany from 19–21 November.
      View the full article
  • Check out these Videos

×
×
  • Create New...