Jump to content

50 Years Ago: Skylab 4 Astronauts Return From Record-Breaking Spaceflight


NASA

Recommended Posts

  • Publishers

The longest spaceflight up to that time ended on Feb. 8, 1974, when Skylab 4 astronauts Gerald P. Carr, Edward G. Gibson, and William R. Pogue splashed down in the Pacific Ocean after their 84-day mission aboard Skylab, America’s first space station. During their stay, they carried out a challenging research program, including biomedical investigations on the effects of long-duration space flight on the human body, Earth observations using the Earth Resources Experiment Package, and solar observations with instruments mounted in the Apollo Telescope Mount (ATM). To study newly discovered Comet Kohoutek, scientists added cometary observations to the crew’s already busy schedule, including adding a far ultraviolet camera to Skylab’s instrument suite. The astronauts conducted four spacewalks, a then-record for a single Earth orbital mission.

View from the Skylab 4 Command and Service Module Skylab during the final fly around Distant view of Skylab
Left: View from the Skylab 4 Command and Service Module (CSM) shortly after undocking from Skylab. Middle: Skylab during the final fly around, with the CSM’s shadow visible on the solar array. Right: Distant view of Skylab as the crew departed.

Carr, Gibson, and Pogue spent the first week of February 1974 finishing up their experiments, preparing the station for uncrewed operations, and packing their Command Module (CM) with science samples and other items for return to Earth. On Feb. 8, they closed all the hatches to Skylab and undocked their CM. Carr flew a complete loop around Skylab, the crew inspecting the station, noting the discoloration caused by solar irradiation. The sunshade installed by the Skylab 3 crew appeared to be in good condition. Finally, Carr fired the spacecraft’s thrusters to separate from the station. Three and a half hours after undocking, they received the go for the deorbit burn and fired the Service Module’s (SM) main engine. After 84 days in weightlessness, the burn felt like “a kick in the pants” to the astronauts. They separated the CM from the SM, but when Carr tried to reorient it with its heat shield forward for reentry, nothing happened! Carr switched to a backup system and corrected the problem, caused by an inadvertent flipping of the wrong circuit breakers. Reentry took place without incident, the two drogue parachutes opened at 24,000 feet to slow and stabilize the spacecraft, followed by the three main parachutes at 10,000 feet to slow the descent until splashdown.

Splashdown of Skylab 4 The Skylab 4 Command Module in the apex down or Stable II position
Left: Splashdown of Skylab 4, ending the longest crewed mission to that time. Right: The Skylab 4 Command Module in the apex down or Stable II position.

Splashdown of Skylab 4 took place 176 miles from San Diego and three miles from the prime recovery ship the helicopter carrier U.S.S. New Orleans (LPH-11). The mission of 84 days 1 hour 16 minutes set a human spaceflight duration record for that time. Carr, Gibson, and Pogue had orbited the Earth 1,214 times and traveled 70.5 million miles. The CM first assumed a Stable II or apex down orientation in the water. Balloons at the top of the spacecraft inflated within minutes to right it to the Stable I or apex up position. In Mission Control at NASA’s Johnson Space Center (JSC) in Houston, flight controllers met the splashdown with mixed feelings – elation at the conclusion of the longest and highly successful mission and sadness at the end of the Skylab program with an upcoming prolonged hiatus in human spaceflights until the Apollo-Soyuz Test Project in July 1975. The three major television networks chose not to carry the splashdown live, the first American splashdown not covered live since the capability began with the Gemini VI mission in 1965. The networks deemed the event not newsworthy.

Mission Control at the NASA Johnson Space Center in Houston shortly after the Skylab 4 splashdown
Mission Control at the NASA Johnson Space Center in Houston shortly after the Skylab 4 splashdown.

Recovery helicopter from the U.S.S. New Orleans about to drop swimmers into the water Swimmers attach an inflatable collar around the Skylab 4 Command Module (CM) Sailors lift the CM onto an elevator deck on the New Orleans
Left: Recovery helicopter from the U.S.S. New Orleans about to drop swimmers into the water. Middle: Swimmers attach an inflatable collar around the Skylab 4 Command Module (CM). Right: Sailors lift the CM onto an elevator deck on the New Orleans.

Within 40 minutes of splashdown, recovery teams had placed an inflatable collar around the spacecraft and lifted it aboard the New Orleans. Seven minutes later, they had the hatch open and flight surgeons quickly examined the three astronauts, declaring them to be healthy.

Edward G. Gibson emerges first from the Skylab 4 Command Module (CM) William R. Pogue stands after emerging from the Command Module Skylab 4 crew members Gibson, left, Pogue, and Gerald P. Carr seated on a forklift platform after emerging from the CM and on their way to the medical facility
Left: Aboard the U.S.S. New Orleans, Edward G. Gibson emerges first from the Skylab 4 Command Module (CM). Middle: William R. Pogue stands after emerging from the CM. Right: Skylab 4 crew members Gibson, left, Pogue, and Gerald P. Carr seated on a forklift platform after emerging from the CM and on their way to the medical facility.

Gibson, riding in the spacecraft’s center seat, emerged first, followed by Pogue. Carr exited last, befitting his role as commander. They walked the few steps to a platform where they could sit and wave to the cheering sailors. A forklift picked up the entire platform with the astronauts, and transported them to the Skylab mobile medical facilities aboard the carrier. Extensive medical examinations of the astronauts continued throughout landing day while the carrier sailed toward San Diego.

Skylab 4 Commander Gerald P. Carr enjoys a cup of coffee during medical testing aboard the U.S.S. New Orleans Skylab 4 astronauts mingle with some of the crew aboard the New Orleans
Left: Skylab 4 Commander Gerald P. Carr enjoys a cup of coffee during medical testing aboard the U.S.S. New Orleans. Right: During a break from medial testing, the Skylab 4 astronauts mingle with some of the crew aboard the New Orleans.

Medical exams revealed Carr, Gibson, and Pogue to have withstood the rigors of weightlessness better than the previous two Skylab crews despite having spent more time in space. They attributed this to their increased exercise regimen, including the use of the Thornton treadmill, and better nutrition, an assertion backed up by flight surgeons and scientists. While on board ship, they had limited contact with the staff, all of whom wore protective masks when in close proximity to the crew to maintain the strict postflight medical quarantine.

From aboard the U.S.S. New Orleans, Skylab 4 astronauts Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue wave to the crowd assembled dockside at North Island Naval Air Station (NAS) in San Diego Carr, top, Gibson, and Pogue board a U.S. Air Force transport jet at North Island NAS that flew them to Houston Carr, Gibson, and Pogue aboard the transport jet on their way to Houston
Left: From aboard the U.S.S. New Orleans, Skylab 4 astronauts Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue wave to the crowd assembled dockside at North Island Naval Air Station (NAS) in San Diego. Middle: Carr, top, Gibson, and Pogue board a U.S. Air Force transport jet at North Island NAS that flew them to Houston. Right: Carr, Gibson, and Pogue aboard the transport jet on their way to Houston.

Carr, Gibson, and Pogue remained aboard the New Orleans until completion of the landing plus 2-day medical exams. The ship had arrived at North Island Naval Air Station in San Diego the morning of Feb. 9, and the astronauts participated in a dockside welcoming ceremony while remaining on the carrier. The next day, the trio left the carrier and boarded a U.S. Air Force transport jet that flew them to Ellington Air Force Base in Houston.

Skylab 4 astronauts Gerald P. Carr, bottom, Edward G. Gibson, and William R. Pogue descend the steps from the U.S. Air Force jet that had flown them from San Diego Pogue, left, Gibson, and Carr hug their wives for the first time in more than three months On the podium at Ellington, Carr, left, Gibson, and Pogue address the welcoming crowd
Left: At Ellington Air Force Base in Houston, Skylab 4 astronauts Gerald P. Carr, bottom, Edward G. Gibson, and William R. Pogue descend the steps from the U.S. Air Force jet that had flown them from San Diego. Middle: Pogue, left, Gibson, and Carr hug their wives for the first time in more than three months. Right: On the podium at Ellington, Carr, left, Gibson, and Pogue address the welcoming crowd.

Upon deplaning at Ellington, Carr, Gibson, and Pogue reunited with their wives, JoAnn, Julia, and Helen, respectively, whom they had not seen in three months. Director of JSC Christopher C. Kraft introduced them to the several hundred well-wishers who turned out to welcome the astronauts back to Houston.

Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue address reporters at their postflight press conference on Feb. 22 President Richard M. Nixon speaks to the assembled crowd at NASA’s Johnson Space Center in Houston during the ceremony where he presented the Skylab 4 astronauts In April 1974, the Skylab 4 astronauts address the assembled employees in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida
Left: Gerald P. Carr, left, Edward G. Gibson, and William R. Pogue address reporters at their postflight press conference on Feb. 22. Middle: President Richard M. Nixon speaks to the assembled crowd at NASA’s Johnson Space Center in Houston during the ceremony where he presented the Skylab 4 astronauts, sitting on the podium with their wives, with the Distinguished Service Medal on March 20, 1974. Right: In April 1974, the Skylab 4 astronauts address the assembled employees in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida.

The astronauts soon returned to work at JSC for a series of debriefings about their mission. During a press conference on Feb. 22, they showed a film of their experiences aboard Skylab and answered reporters’ questions. During a visit to Texas, on March 20, President Richard M. Nixon stopped at JSC to award Carr, Gibson, and Pogue the Distinguished Service Medal in a ceremony attended by thousands of employees and visitors.

The Skylab 4 Command Module on display at the Oklahoma History Center in Oklahoma City The Crew-1 astronauts aboard the space station talk with Skylab-4 astronaut Edward G. Gibson
Left: The Skylab 4 Command Module on display at the Oklahoma History Center in Oklahoma City. Image credit: courtesy Oklahoma History Center. Right: The Crew-1 astronauts aboard the space station talk with Skylab-4 astronaut Edward G. Gibson.

Following splashdown, the U.S.S. New Orleans delivered the CM to San Diego, from where workers trucked it to its manufacturer, the Rockwell International facility in Downey, California, for postflight inspection. NASA transferred the Skylab 4 CM to the National Air and Space Museum in 1975, where it went on display the following year when the Smithsonian Institution inaugurated its new building. After more than 40 years (1976 to 2018) on display there, in 2020, the NASM loaned the spacecraft to the Oklahoma History Center in Oklahoma City. The Skylab 4 CM held the record for the longest single flight for an American spacecraft for 47 years until Feb. 7, 2021, when the Crew Dragon Resilience flying the SpaceX Crew-1 mission to the International Space Station broke it. To commemorate the event, the four-person crew of Crew-1 held a video conference with Gibson from the space station.

The Skylab 4 rescue vehicle returns to the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida on Feb. 14, 1974 Workers in the VAB destack the Skylab rescue spacecraft Command and Service Module-119 (CSM-119) from the SA-209 Saturn IB rocket The Skylab 4 CSM-119 rescue spacecraft on display in the KSC Apollo/Saturn V Center
Left: The Skylab 4 rescue vehicle returns to the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center (KSC) in Florida on Feb. 14, 1974. Middle: Workers in the VAB destack the Skylab rescue spacecraft Command and Service Module-119 (CSM-119) from the SA-209 Saturn IB rocket. Right: The Skylab 4 CSM-119 rescue spacecraft on display in the KSC Apollo/Saturn V Center.

The Skylab 4 SA-209 Saturn IB rocket on display at the Visitor Center’s Rocket Garden at NASA’s Kennedy Space Center in Florida
The Skylab 4 SA-209 Saturn IB rocket on display at the Visitor Center’s Rocket Garden at NASA’s Kennedy Space Center in Florida. The rocket is topped with the Facility Verification Vehicle Apollo Command and Service Module.

The Skylab Rescue Vehicle’s rocket (SA-209) and spacecraft (CSM-119), on Launch Pad 39B since Dec. 3, 1973, returned to the Vehicle Assembly Building on Feb. 14, 1974. Workers destacked the vehicle, keeping the components in storage at KSC. Managers designated SA-209 and CSM-119 as the backup vehicle for the July 1975 Apollo-Soyuz Test Project. Engineers used the spacecraft to conduct lightning sensitivity testing in KSC’s Manned Spacecraft Operations Building’s high bay in September 1974. Following ASTP, NASA retired both the rocket and spacecraft, eventually putting them on display. Visitors can view the SA-209 Saturn IB in the Rocket Garden of KSC’s Visitor Center and the CSM-119 in the Apollo/Saturn V Center at KSC.

Illustration of a possible Skylab reboost mission by a space shuttle Track of Skylab’s reentry over Australia Managers, flight directors, and astronauts monitor Skylab’s reentry from Mission Control at NASA’s Johnson Space Center in Houston
Left: Illustration of a possible Skylab reboost mission by a space shuttle. Middle: Track of Skylab’s reentry over Australia. Right: Managers, flight directors, and astronauts monitor Skylab’s reentry from Mission Control at NASA’s Johnson Space Center in Houston.

Two days before leaving Skylab, the Skylab 4 crew boosted the station into a higher 269-by-283-mile orbit, assuming it would remain in space until 1983. By then, NASA hoped that space shuttle astronauts could attach a rocket to the station to either boost it to a higher orbit or safely deorbit it over the Pacific Ocean. But delays in the shuttle program and higher than expected solar activity resulting in increased atmospheric drag on the station ultimately thwarted those plans. It became apparent that Skylab would reenter in mid-1979, forcing NASA to devise plans to control its entry point as much as possible by adjusting the station’s attitude to influence atmospheric drag. On July 11, 1979, during its 34,981st orbit around the Earth, engineers in JSC’s Mission Control sent the final command to Skylab to turn off its control moment gyros, sending it into a slow tumble in an effort to ensure that Skylab would not reenter over a populated area. Skylab’s breakup resulted in most of the debris that survived reentry falling into the Indian Ocean, with some pieces falling over sparsely populated areas of southern Western Australia. 

The Skylab postage stamp issued by the U.S. Postal Service Skylab 2 Commander Charles “Pete” Conrad, center, accepts the Collier Trophy from Vice President Gerald R. Ford, right, as Skylab 4 Commander Gerald P. Carr, left, and Skylab 3 Commander Alan L. Bean look on
Left: The Skylab postage stamp issued by the U.S. Postal Service. Image credit: courtesy Smithsonian National Postal Museum. Right: Skylab 2 Commander Charles “Pete” Conrad, center, accepts the Collier Trophy from Vice President Gerald R. Ford, right, as Skylab 4 Commander Gerald P. Carr, left, and Skylab 3 Commander Alan L. Bean look on.

The scientific results returned during the 171 days of human occupancy aboard Skylab remain some of the most significant in the history of spaceflight. The medical studies on the astronauts represent the first comprehensive look at the human body’s response to long-duration spaceflight. The ATM solar telescopes took more than 170,000 images for astronomers, while Earth scientists received 46,000 photographs. The Skylab program received many accolades. The U.S. Postal Service honored it by releasing a stamp in the program’s honor on May 14, 1974, the 1-year anniversary of Skylab’s launch. The National Aviation Association awarded its prestigious Robert J. Collier Trophy to the nine Skylab astronauts and to Skylab Program Director William C. Schneider for “proving beyond question the value of man in future explorations of space and the production of data of benefit to all the people on Earth.” Vice President Gerald R. Ford presented the award on June 4, 1974.

The Skylab backup flight unit on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C The Skylab trainer on display at Space Center Houston
Left: The Skylab backup flight unit on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C. Image credit: courtesy NASM. Right: The Skylab trainer on display at Space Center Houston.

Possible plans for launching the Skylab backup flight unit never materialized due to budget constraints. That unit is on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C. The training units of the various Skylab modules are on display at Space Center Houston, JSC’s official visitors center.

Soviet cosmonauts Georgi M. Grechko, left, and Yuri V. Romanenko during their record-breaking 96-day mission aboard Salyut 6 NASA astronaut Norman E. Thagard during his American record-breaking 115-day flight aboard Mir
Left: Soviet cosmonauts Georgi M. Grechko, left, and Yuri V. Romanenko during their record-breaking 96-day mission aboard Salyut 6. Right: NASA astronaut Norman E. Thagard during his American record-breaking 115-day flight aboard Mir.

As for the record for longest spaceflight, Skylab 4’s 84-day mark held for four years, when Soviet cosmonauts Yuri V. Romanenko and Georgi M. Grechko surpassed it, spending 96 days aboard the Salyut 6 space station from December 1977 to March 1978. As an American record it held up longer, broken by NASA astronaut Norman E. Thagard during his 115-day flight aboard the Russian space station Mir between March and July 1995. Operational lessons learned from Skylab proved invaluable for the Shuttle-Mir and International Space Station programs.

For more insight into the Skylab 4 mission, read Carr’s, Gibson’s, and Pogue’s oral histories with the JSC History Office.

With special thanks to Ed Hengeveld for his expert contributions on Skylab imagery.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      Over the past two years, the first U.S. space service component has tripled in size, established a 24/7 space watch cell and executed three Tier 1 Combatant Command exercises.

      View the full article
    • By NASA
      On Nov. 16, 2009, space shuttle Atlantis began its 31st trip into space, on the third Utilization and Logistics Flight (ULF3) mission to the International Space Station, the 31st shuttle flight to the orbiting lab. During the 11-day mission, the six-member STS-129 crew worked with the six-person Expedition 21 crew during seven days of docked operations. The mission’s primary objectives included delivering two external logistics carriers and their spare parts, adding nearly 15 tons of hardware to the station, and returning a long-duration crew member, the last to return on a shuttle. Three of the STS-129 astronauts conducted three spacewalks to transfer spare parts and continue assembly and maintenance of the station. As a group of 12, the joint crews celebrated the largest and most diverse Thanksgiving gathering in space.

      Left: Official photograph of the STS-129 crew of Leland D. Melvin, left, Charles O. Hobaugh, Michael J. Foreman, Robert “Bobby” L. Satcher, Barry “Butch” E. Wilmore, and Randolph “Randy” J. Bresnik. Middle: The STS-129 crew patch. Right: The ULF3 payload patch.
      The six-person STS-129 crew consisted of Commander Charles O. Hobaugh, Pilot Barry “Butch” E. Wilmore, and Mission Specialists Randolph “Randy” J. Bresnik, Michael J. Foreman, Leland D. Melvin, and Robert “Bobby” L. Satcher. Primary objectives of the mission included launch and transfer to the station of the first two EXPRESS Logistics Carriers (ELC-1 and ELC-2) and their multiple spare parts, and the return of NASA astronaut and Expedition 20 and 21 Flight Engineer Nicole P. Stott, the last astronaut to rotate on the shuttle.

      Left: In the Orbiter Processing Facility (OPF) at NASA’s Kennedy Space Center in Florida, workers finish processing Atlantis for STS-129. Right: Space shuttle Atlantis rolls over from the OPF to the Vehicle Assembly Building.

      Left: Atlantis rolls out to Launch Pad 39A. Right: The STS-129 crew during the Terminal Countdown Demonstration Test.
      Atlantis returned to NASA’s Kennedy Space Center (KSC) from its previous mission, STS-125, on June 2, 2009, and workers towed it to the Orbiter Processing Facility (OPF) to prepare it for STS-129. The orbiter rolled over to the Vehicle Assembly Building on Oct. 6, and after mating with its external tank and twin solid rocket boosters, rolled out to Launch Pad 39A on Oct. 14, targeting a Nov. 16 launch. Six days later, the six-member crew participated in the Terminal Countdown Demonstration Test, essentially a dress rehearsal of the actual countdown for launch, returning to Houston for final training. They returned to KSC on Nov. 13 to prepare for launch.

      Left: With Atlantis sitting on Launch Pad 39A, the Ares 1-X rocket lifts off from Launch Pad 39B. Right: The payload canister arrives at Launch Pad 39A.

      Left: The STS-129 astronauts leave crew quarters for the ride to Launch Pad 39A. Right: Liftoff of space shuttle Atlantis on STS-129.
      On Nov. 16, at 2:28 p.m. EST, space shuttle Atlantis lifted off from Launch Pad 39A to begin its 31st trip into space, carrying its six-member crew on the ULF3 space station outfitting and resupply mission. Eight and a half minutes later, Atlantis and its crew had reached orbit. The flight marked Hobaugh’s third time in space, having flown on STS-104 and STS-118, Foreman’s and Melvin’s second, having flown on STS-123 and STS-122, respectively, while Wilmore, Bresnik, and Satcher enjoyed their first taste of weightlessness.

      Left: The two EXPRESS Logistics Carriers in Atlantis’ payload bay. Middle: Leland D. Melvin participates in the inspection of Atlantis’ thermal protection system. Right: The Shuttle Remote Manipulator System grasps the Orbiter Boom Sensor System for the inspection.
      After reaching orbit, the crew opened the payload bay doors, deployed the shuttle’s radiators, and removed their bulky launch and entry suits, stowing them for the remainder of the flight. The astronauts spent six hours on their second day in space conducting a detailed inspection of Atlantis’ nose cap and wing leading edges, with Hobaugh, Wilmore, Melvin, and Bresnik taking turns operating the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the Orbiter Boom Sensor System (OBSS).

      Left: The International Space Station as seen from Atlantis during the rendezvous and docking maneuver. Middle: Atlantis as seen from the space station, showing the two EXPRESS Logistics Carriers (ELC) in the payload bay. Right: View of the space station from Atlantis during the rendezvous pitch maneuver, with the Shuttle Remote Manipulator System grasping ELC-1 in preparation for transfer shortly after docking.
      On the mission’s third day, Hobaugh assisted by his crewmates brought Atlantis in for a docking with the space station. During the rendezvous, Hobaugh stopped the approach at 600 feet and completed the Rendezvous Pitch Maneuver so astronauts aboard the station could photograph Atlantis’ underside to look for any damage to the tiles. Shortly after docking, the crews opened the hatches between the two spacecraft and the six-person station crew welcomed the six-member shuttle crew. After the welcoming ceremony, Stott joined the STS-129 crew, leaving a crew of five aboard the station. Melvin and Bresnik used the SRMS to pick up ELC-1 from the payload bay and hand it off to Wilmore and Expedition 21 NASA astronaut Jeffrey N. Williams operating the Space Station Remote Manipulator System (SSRMS), who then installed it on the P3 truss segment.

      Images from the first spacewalk. Left: Michael J. Foreman unstows the S-band Antenna Support Assembly prior to transferring it to the station. Middle: Robert “Bobby” L. Satcher lubricates the robotic arm’s Latching End Effector. Right: Satcher’s image reflected in a Z1 radiator panel.
      During the mission’s first of three spacewalks on flight day four, Foreman and Satcher ventured outside for six hours and 37 minutes. During the excursion, with robotic help from their fellow crew members, they transferred a spare S-band Antenna Support Assembly from the shuttle’s payload bay to the station’s Z1 truss. Satcher, an orthopedic surgeon by training, performed “surgery” on the station’s main robotic arm as well as the robotic arm on the Kibo Japanese module, by lubricating their latching end effectors. One day after joining Atlantis’ crew, Stott celebrated her 47th birthday.

      Left: Space station crew member Jeffery N. Williams assists STS-129 astronaut Leland D. Melvin in operating the space station’s robotic arm to transfer and install the second EXPRESS Logistics Carrier (ELC2) on the S3 truss. Middle: The station robotic arm installs ELC2 on the S3 truss. Right: Michael J. Foreman, left, and Randolph J. Bresnik during the mission’s second spacewalk.
      On the mission’s fifth day, the astronauts performed another focused inspection of the shuttle’s thermal protection system. The next day, through another coordinated robotic activity involving the shuttle and station arms, the astronauts transferred ELC-2 and its complement of spares from the payload bay to the station’s S3 truss. Foreman and Bresnik completed the mission’s second spacewalk. Working on the Columbus module, they installed the Grappling Adaptor to On-Orbit Railing (GATOR) fixture that includes a system used for ship identification and an antenna for Ham radio operators. They next installed a wireless video transmission system on the station’s truss. This spacewalk lasted six hours and eight minutes.

      Left: Randolph J. Bresnik during the third STS-129 spacewalk. Middle: Robert “Bobby” L. Satcher during the third spacewalk. Right: The MISSE 7 exposure experiment suitcases installed on ELC2.
      Following a crew off duty day, on flight day eight Satcher and Bresnik exited the airlock for the mission’s third and final spacewalk. Their first task involved moving an oxygen tank from the newly installed ELC-2 to the Quest airlock. They accomplished this task with robotic assistance from their fellow crew members. Bresnik retrieved the two-suitcase sized MISSE-7 experiment containers from the shuttle cargo bay and installed them on the MISSE-7 platform on ELC-2, opening them to begin their exposure time. This third spacewalk lasted five hours 42 minutes.

      Left: An early Thanksgiving meal for 12 aboard the space station. Right: After the meal, who has the dishes?
      Thanksgiving Day fell on the day after undocking, so the joint crews celebrated with a meal a few days early. The meal represented not only the largest Thanksgiving celebration in space with 12 participants, but also the most international, with four nations represented – the United States, Russia, Canada, and Belgium (representing the European Space Agency).

      Left: The 12 members of Expedition 21 and STS-129 pose for a final photograph before saying their farewells. Right: The STS-129 crew, now comprising seven members.

      A selection of STS-129 Earth observation images. Left: Maui. Middle: Los Angeles. Right: Houston.
      Despite their busy workload, as with all space crews, the STS-129 astronauts made time to look out the windows and took hundreds of photographs of their home planet.

      Left: The space station seen from Atlantis during the flyaround. Middle: Atlantis as seen from the space station during the flyaround, with a now empty payload bay. Right: Astronaut Nicole P. Stott looks back at the station, her home for three months, from the departing Atlantis.
      On flight day nine, the joint crews held a brief farewell ceremony. European Space Agency astronaut Frank De Winne, the first European to command the space station, handed over command to NASA astronaut Williams. The two crews parted company and closed the hatches between the two spacecraft. The next day, with Wilmore at the controls, Atlantis undocked from the space station, having spent seven days as a single spacecraft. Wilmore completed a flyaround of the station, with the astronauts photographing it to document its condition. A final separation burn sent Atlantis on its way.
      The astronauts used the shuttle’s arm to pick up the OBSS and perform a late inspection of Atlantis’ thermal protection system. On flight day 11, Hobaugh and Wilmore tested the orbiter’s reaction control system thrusters and flight control surfaces in preparation for the next day’s entry and landing. The entire crew busied themselves with stowing all unneeded equipment.

      Left: Atlantis about to touch down at NASA’s Kennedy Space Center in Florida. Middle: Atlantis touches down. Right: Atlantis deploys its drag chute as it continues down the runway.

      Left: Six of the STS-129 astronauts pose with Atlantis on the runway at NASA’s Kennedy Space Center in Florida. Right: The welcome home ceremony for the STS-129 crew at Ellington Field in Houston.
      On Nov. 27, the astronauts closed Atlantis’ payload bay doors, donned their launch and entry suits, and strapped themselves into their seats, a special recumbent one for Stott who had spent the last three months in weightlessness. Hobaugh fired Atlantis’ two Orbital Maneuvering System engines to bring them out of orbit and head for a landing half an orbit later. He guided Atlantis to a smooth touchdown at KSC’s Shuttle Landing Facility.
      The landing capped off a very successful STS-129 mission of 10 days, 19 hours, 16 minutes. The six astronauts orbited the planet 171 times. Stott spent 90 days, 10 hours, 45 minutes in space, completing 1,423 orbits of the Earth. After towing Atlantis to the OPF, engineers began preparing it for its next flight, STS-132 in May 2010. The astronauts returned to Houston for a welcoming ceremony at Ellington Field.
      Enjoy the crew narrate a video about the STS-129 mission.
      Explore More
      23 min read 55 Years Ago: Apollo 12 Makes a Pinpoint Landing on the Moon
      Article 4 days ago 12 min read 40 Years Ago: STS-51A – “The Ace Repo Company”
      Article 1 week ago 1 min read Oral History with Jon A. McBride, 1943 – 2024
      Article 2 weeks ago View the full article
    • By NASA
      NASA/Joel Kowsky In this photo, NASA’s SLS (Space Launch System) rocket, carrying the Orion spacecraft, lifts off the pad at Launch Complex 39B at the agency’s Kennedy Space Center in Florida at 1:47 a.m. EST on Nov. 16, 2022. Set on a path to the Moon, this officially began the Artemis I mission.
      Since the completion of Orion’s 25.5-day mission around the Moon and back, teams across NASA have been hard at work preparing for the upcoming Artemis II test flight, which will send four astronauts on a 10-day mission around the Moon, paving the way for humans to land on the Moon as part of the Artemis III mission.
      Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all.
      Image Credit: NASA/Joel Kowsky
      View the full article
    • By NASA
      Parallels between spaceflight and the aging process may extend to encompass frailty.
      Figure Left: Venn diagram of differentially expressed frailty genes in rodent and human samples shows the common differentially expressed genes between the two species.
      Figure Right: Schematic of the Inspiration4 experiments and samples.
      This study relied on data from the OSDR, including 7 rodent spaceflight datasets, 2 human space analog datasets, astronaut data from the Japan Aerospace Exploration Agency (JAXA) and Inspiration4. Data on sarcopenia were mined from National Center for Biotechnology Information’s Gene Expression Omnibus. Spaceflight accelerates the symptoms of aging in astronaut bodies by inducing genomic instability, mitochondrial dysfunction, and increased inflammation. This is the first study to comprehensively examine biomarkers and pathways associated with spaceflight and terrestrial aging, frailty, and sarcopenia.
      Main Findings:
      Spaceflight induced notable changes in gene expression patterns related to frailty and muscle loss indicative of a frailty-like condition. Exposure to the space environment leads to changes related to inflammation, muscle wasting, and other age-related features observed in both mice and humans. Parallels between spaceflight and the aging process may extend to also encompass frailty. Impact: This work reveals the need for a frailty index to monitor development of frailty-related astronaut health risks during spaceflight. The results provide insights into potential avenues for developing countermeasures to combat frailty-related health risks for both astronauts and aging populations on Earth.
      This study was part of the 44-article Space Omics and Medical Atlas (SOMA) package published in Nature. It demonstrates the effectiveness of open science combined with robust data submission, standards, and curation. The study began within and was organized through the Analysis Working Groups (AWGs) of NASA’s Open Science Data Repository (OSDR).
      View the full article
    • By NASA
      NASA The Apollo 12 spacecraft launches from NASA’s Kennedy Space Center in Florida in this image from Nov. 14, 1969, with astronauts Charles Conrad Jr., Richard F. Gordon Jr., and Alan L. Bean aboard. During liftoff, the Saturn V rocket which carried the Apollo capsule was struck twice by lightning.
      On Nov. 19, 1969, the lunar module landed on the Moon. About three hours after landing, Conrad emerged from the lunar module, becoming the third person to step on the Moon. He was followed by Bean.
      Image credit: NASA
      View the full article
  • Check out these Videos

×
×
  • Create New...