Jump to content

Nuevos astronautas de Artemis se gradúan y la NASA hará la cobertura


Recommended Posts

  • Publishers
Posted
ascan-2021.jpg?w=2048
La promoción de candidatos a astronautas de la NASA, fotografiada durante un acto cerca del Centro Espacial Johnson de la NASA en Houston el 7 de diciembre de 2021.
Créditos: NASA/James Blair

Read this release in English here.

La NASA rendirá homenaje a la nueva generación de candidatos a astronautas para el programa Artemis durante su acto de graduación, a las 10:30 a.m. hora del este del miércoles 5 de marzo en el Centro Espacial Johnson de la agencia en Houston.

Después de completar más de dos años de capacitación básica, estos candidatos recibirán sus “alas” y serán elegibles para vuelos espaciales, incluyendo asignaciones a la Estación Espacial Internacional, futuros destinos comerciales y misiones a la Luna y, más adelante, misiones a Marte.

La promoción de estudiantes que comenzaron sus estudios en 2021 incluye a 10 candidatos de la NASA, así como a dos candidatos de los Emiratos Árabes Unidos (EAU) del Centro Espacial Mohammed Bin Rashid, quienes han estado entrenando junto a los candidatos de la NASA.

Después de la ceremonia, a las 11:45 a.m. hora del este, la NASA tendrá una sesión de preguntas y respuestas con los estudiantes y los medios de comunicación presentes. Quienes sigan la sesión en las redes sociales pueden hacer preguntas usando la etiqueta #AskNASA. Los recién graduados también estarán disponibles para entrevistas con los medios de comunicación en persona y de manera remota.

Tanto la ceremonia como la sesión de preguntas y respuestas serán transmitidas en vivo por NASA+, NASA Television y el sitio web de la agencia. Aprende en este enlace (en inglés) cómo puedes ver la transmisión de NASA TV a través de diferentes plataformas, incluidas las redes sociales.

Los periodistas no estadounidenses que quieran participar de forma presencial deberán solicitar sus credenciales antes de las 5 p.m. hora de la zona central (CT) del miércoles 21 de febrero a la sala de redacción del Centro Espacial Johnson, llamando al teléfono +1 281-483-5111 o enviando un correo electrónico a jsccommu@mail.nasa.gov. Los periodistas estadounidenses que deseen participar en persona deben solicitar sus credenciales comunicándose con la sala de redacción del centro Johnson antes de las 5 p.m. CT del jueves 29 de febrero. Todos los medios interesados en obtener una entrevista en persona o en forma remota con los astronautas deberán solicitar sus credenciales antes de las 5 p.m. CT del 29 de febrero, comunicándose con la sala de redacción del centro Johnson.

Los candidatos a astronauta de la NASA son:

Nichole Ayers, mayor de la Fuerza Aérea de Estados Unidos, es nativa de Colorado y se graduó en el año 2011 de la Academia de la Fuerza Aérea de Estados Unidos en Colorado Springs, Colorado, con una licenciatura en matemáticas y una especialización en ruso. Más tarde obtuvo una maestría en matemáticas computacionales y aplicadas de la Universidad Rice en Houston. Ayers tiene más de 200 horas de combate y más de 1.400 horas de tiempo total de vuelo en el T-38 y en el avión de combate F-22 Raptor. Ayers, una de las pocas mujeres que ha pilotado el F-22, lideró en 2019 la primera formación de este avión compuesta exclusivamente por mujeres en combate.

Marcos Berríos, mayor de la Fuerza Aérea de Estados Unidos, creció en Guaynabo, Puerto Rico. Berríos trabajó como ingeniero aeroespacial para la Dirección de Desarrollo de la Aviación del Ejército de Estados Unidos en el aeródromo federal de Moffett en California y como piloto de helicópteros de búsqueda y rescate de combate para la Guardia Nacional Aérea de California. Es piloto de pruebas y tiene una licenciatura en ingeniería mecánica del Instituto de Tecnología de Massachusetts en Cambridge, Massachusetts, y una maestría en ingeniería mecánica, así como un doctorado en aeronáutica y astronáutica de la Universidad de Stanford en Palo Alto, California. Berríos ha acumulado más de 110 misiones de combate y 1.400 horas de vuelo en más de 21 aeronaves diferentes.

Chris (Christina) Birch creció en Gilbert, Arizona, y se graduó de la Universidad de Arizona en Tucson, con títulos en matemáticas y bioquímica y biofísica molecular. Después de obtener un doctorado en ingeniería biológica del Instituto de Tecnología de Massachusetts, dio clases de bioingeniería en la Universidad de California en Riverside, y de escritura y comunicación científicas en el Instituto de Tecnología de California en Pasadena. Posteriormente, dejó la academia para convertirse en ciclista de pista en el equipo de la selección nacional de Estados Unidos.

Deniz Burnham considera a Wasilla, Alaska, su hogar. Expasante en el Centro de Investigación Ames de la NASA en Silicon Valley, California, obtuvo una licenciatura en ingeniería química de la Universidad de California en San Diego y una maestría en ingeniería mecánica de la Universidad del Sur de California en Los Ángeles. Burnham es una líder con experiencia en la industria de la energía, y ha gestionado proyectos de perforación en plataformas petroleras durante más de una década, incluyendo el Ártico en Alaska, el norte de Alberta en Canadá y Texas. Burnham sirvió en la Reserva de la Marina de Estados Unidos como oficial del servicio de ingeniería. Es piloto privada licenciada con las siguientes calificaciones: avión monomotor de tierra y mar, avión de instrumentos y helicóptero-rotor.

Luke Delaney, mayor retirado del Cuerpo de Marines de Estados Unidos, creció en Debary, Florida. Tiene una licenciatura en ingeniería mecánica de la Universidad del Norte de Florida en Jacksonville, y una maestría en ingeniería aeroespacial de la Escuela Naval de Postgrado en Monterey, California. Delaney es un aviador naval que ha participado en ejercicios en toda la región del Pacífico asiático y realizó misiones de combate en apoyo de la Operación Libertad Duradera. Como piloto de pruebas, efectuó vuelos de evaluación de integración de sistemas de armas y se desempeñó como instructor. Delaney trabajó recientemente como piloto de investigación en el Centro de Investigación Langley de la NASA en Hampton, Virginia, donde apoyó misiones científicas aéreas. Incluyendo su carrera en la NASA, Delaney ha registrado más de 3.900 horas de vuelo en 48 modelos de aviones a reacción, de hélice y de ala giratoria.

Andre Douglas es nativo de Virginia. Obtuvo una licenciatura en ingeniería mecánica de la Academia de la Guardia Costera de Estados Unidos, una maestría en ingeniería mecánica y en arquitectura naval e ingeniería marina de la Universidad de Michigan en Ann Arbor, una maestría en ingeniería eléctrica e informática de la Universidad Johns Hopkins en Baltimore y un doctorado en ingeniería de sistemas de la Universidad George Washington en Washington. Douglas sirvió en la Guardia Costera de Estados Unidos como arquitecto naval, ingeniero de salvamento, asistente de control de daños y oficial de cubierta. Recientemente fue miembro sénior del personal del Laboratorio de Física Aplicada de la Universidad Johns Hopkins en Laurel, Maryland, trabajando en robótica marítima, defensa planetaria y misiones de exploración espacial para la NASA.

Jack Hathaway, comandante de la Marina de Estados Unidos, es oriundo de Connecticut. Obtuvo licenciaturas en física e historia de la Academia Naval de Estados Unidos y completó sus estudios de posgrado en la Universidad de Cranfield en Inglaterra y en la Escuela Profesional de Guerra Naval de Estados Unidos. Como aviador naval, Hathaway voló y fue desplegado con el Escuadrón de Caza y Ataque 14 de la Marina a bordo del USS Nimitz y el Escuadrón de Caza y Ataque 136 a bordo del USS Truman. Se graduó de la Escuela de Pilotos de Prueba del Imperio en Wiltshire, Inglaterra, apoyó al Estado Mayor Conjunto en el Pentágono y, más recientemente, fue asignado como futuro oficial ejecutivo del Escuadrón de Caza y Ataque 81. Tiene más de 2.500 horas de vuelo en 30 tipos de aeronaves, más de 500 aterrizajes en portaaviones y ha volado en 39 misiones de combate.

Anil Menon, teniente coronel de la Fuerza Aérea de Estados Unidos, nació y creció en Minneapolis. Fue el primer médico de la tripulación de vuelo de SpaceX, ayudando a llevar al espacio a los primeros seres humanos que viajaron con esta empresa, durante la misión Demo-2 de SpaceX para la NASA, y desarrollando una organización médica para apoyar a los sistemas humanos durante futuras misiones. Antes de eso, sirvió en la NASA como médico de la tripulación de vuelo para diferentes expediciones de transporte de astronautas a la Estación Espacial Internacional. Menon es un médico especializado en medicina de emergencia en ejercicio activo con formación en medicina rural y aeroespacial. Como médico, fue socorrista durante el terremoto de 2010 en Haití, el terremoto de 2015 en Nepal y el accidente del Salón Aeronáutico de Reno de 2011. En la Fuerza Aérea, Menon apoyó a la 45.a Ala Espacial como médico de la tripulación de vuelo y a la 173.a Ala de Combate, donde realizó más de 100 salidas en el avión de combate F-15 y transportó a más de 100 pacientes como parte del equipo de transporte aéreo de cuidados críticos.

Christopher Williams creció en Potomac, Maryland. Se graduó de la Universidad de Stanford con una licenciatura en física y obtuvo un doctorado en física del Instituto de Tecnología de Massachusetts, donde dedicó sus investigaciones a la astrofísica. Williams es físico médico certificado, y completó su formación como residente en la Escuela de Medicina de Harvard en Boston, antes de unirse al cuerpo docente como físico clínico e investigador. Recientemente trabajó como físico médico en el Departamento de Oncología Radioterápica en el hospital Brigham and Women’s y en el Instituto de Investigación contra el Cáncer Dana-Farber en Boston. Fue el físico principal del programa de radioterapia adaptativa guiada por resonancia magnética de ese instituto. Su investigación se centró en el desarrollo de técnicas de orientación por imagen para tratamientos contra el cáncer.

Jessica Wittner, teniente comandante de la Marina de Estados Unidos, es originaria de California y cuenta con una distinguida carrera en servicio activo como aviadora naval y piloto de pruebas. Tiene una licenciatura en ingeniería aeroespacial de la Universidad de Arizona en Tucson y una maestría en ingeniería aeroespacial de la Escuela Naval de Postgrado de Estados Unidos. Wittner fue comisionada como oficial naval mediante un programa de preparación para reclutas y ha servido operativamente volando aviones de combate F/A-18 con el Escuadrón de Caza y Ataque 34 en Virginia Beach, Virginia, y el Escuadrón de Caza y Ataque 151 en Lemoore, California. Graduada de la Escuela de Pilotos de Pruebas Navales de Estados Unidos, también trabajó como piloto de pruebas y oficial de proyectos con el Escuadrón de Pruebas y Evaluación Aérea 31 en China Lake, California.

Los candidatos a astronauta de los Emiratos Árabes Unidos son:

Nora AlMatrooshi, nacida en Sharjah, la primera mujer astronauta emiratí y árabe, fue seleccionada en el segundo grupo de candidatos a astronauta de los EAU y forma parte de la promoción de candidatos a astronautas de la NASA de 2021 que reciben su formación en Estados Unidos. AlMatrooshi tiene una licenciatura en ingeniería mecánica de la Universidad de los Emiratos Árabes Unidos y completó un semestre en la Universidad de Ciencias Aplicadas de Vaasa en Finlandia. Es miembro de la Sociedad Estadounidense de Ingenieros Mecánicos y anteriormente trabajó como ingeniera de tuberías en la National Petroleum Construction Co. Durante su trabajo allí, contribuyó a importantes proyectos de ingeniería para las empresas Abu Dhabi National Oil Co. y Saudi Aramco, y se desempeñó como especialista técnica. También fue vicepresidenta del Consejo Juvenil de la Empresa Nacional de Construcción Petrolera durante tres años.

Mohammed AlMulla, nacido en Dubai, también fue seleccionado en el segundo grupo de candidatos a astronauta de los EAU y forma parte de la promoción de candidatos a astronauta de la NASA de 2021 que reciben su formación en Estados Unidos. A los 19 años, obtuvo una licencia de piloto comercial de la autoridad de seguridad de la aviación civil de Australia, lo que lo convirtió en el piloto más joven de la policía de Dubai. A los 28 años, estableció otro récord al convertirse en el instructor más joven de esta misma organización después de recibir su licencia de entrenador de pilotos. AlMulla obtuvo una licenciatura en derecho y economía en 2015 y una maestría ejecutiva en administración pública de la Escuela de Gobierno Mohammed Bin Rashid en 2021. Con más de 15 años de experiencia, también se desempeñó como jefe del Departamento de Capacitación del Centro del Ala Aérea de la Policía de Dubai.

Todos los candidatos a astronautas han completado su capacitación en caminatas espaciales, robótica, sistemas de estaciones espaciales, dominio del jet T-38 y el idioma ruso. En la ceremonia, cada candidato recibirá un pin de astronauta, lo que marcará su graduación de la capacitación básica y su elegibilidad para ser seleccionado para volar en el espacio.

La NASA continúa su trabajo a bordo de la estación espacial, el cual ha mantenido más de 23 años consecutivos de presencia humana. La agencia también permite el desarrollo de nuevas estaciones espaciales comerciales donde los integrantes de la tripulación continuarán realizando actividades científicas en beneficio de la exploración de la Tierra y el espacio profundo.

Como parte de la campaña Artemis de la NASA, la agencia establecerá las bases para la exploración científica a largo plazo en la Luna, pondrá en la superficie lunar a la primera mujer, a la primera persona no blanca y al primer astronauta de sus socios internacionales, y se preparará para las expediciones humanas a Marte en beneficio de todos.

Encuentra fotos adicionales de los candidatos a astronautas y más acerca de su formación aquí:

https://flic.kr/s/aHsmXdVHhc

-fin-

Josh Finch / Claire O’Shea
Headquarters, Washington
202-358-1100
joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov

Courtney Beasley
Johnson Space Center, Houston
281-483-5111
courtney.m.beasley@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The four crew members of NASA’s SpaceX Crew-11 mission to the International Space Station train inside a SpaceX Dragon spacecraft in Hawthorne, California. From left to right: Roscosmos cosmonaut Oleg Platonov, NASA astronauts Mike Fincke and Zena Cardman, and JAXA astronaut Kimiya Yui.Credit: SpaceX NASA and its partners will discuss the upcoming crew rotation to the International Space Station during a pair of news conferences on Thursday, July 10, from the agency’s Johnson Space Center in Houston.

      First is an overview news conference at 12 p.m. EDT with mission leadership discussing final launch and mission preparations on the agency’s YouTube channel.
      Next, crew will participate in a news conference at 2 p.m. on NASA’s YouTube channel, followed by individual astronaut interviews at 3 p.m. This is the final media opportunity with Crew-11 before they travel to NASA’s Kennedy Space Center in Florida for launch.

      The Crew-11 mission, targeted to launch in late July/early August, will carry NASA astronauts Zena Cardman and Mike Fincke, JAXA (Japan Aerospace Exploration Agency) astronaut Kimiya Yui, and Roscosmos cosmonaut Oleg Platonov to the orbiting laboratory. The crew will launch aboard a SpaceX Dragon spacecraft on the company’s Falcon 9 rocket from Launch Complex 39A.

      United States-based media seeking to attend in person must contact the NASA Johnson newsroom no later than 5 p.m. on Monday, July 7, at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is available online.
      Any media interested in participating in the news conferences by phone must contact the Johnson newsroom by 9:45 a.m. the day of the event. Media seeking virtual interviews with the crew must submit requests to the Johnson newsroom by 5 p.m. on Monday, July 7.

      Briefing participants are as follows (all times Eastern and subject to change based on real-time operations):

      12 p.m.: Mission Overview News Conference
      Steve Stich, manager, Commercial Crew Program, NASA Kennedy Bill Spetch, operations integration manager, International Space Station Program, NASA Johnson NASA’s Space Operations Mission Directorate representative Sarah Walker, director, Dragon Mission Management, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA 2 p.m.: Crew News Conference
      Zena Cardman, Crew-11 commander, NASA Mike Fincke, Crew-11 pilot, NASA Kimiya Yui, Crew-11 mission specialist, JAXA Oleg Platonov, Crew-11 mission specialist, Roscosmos 3 p.m.: Crew Individual Interview Opportunities
      Crew-11 members available for a limited number of interviews
      Selected as a NASA astronaut in 2017, Cardman will conduct her first spaceflight. The Williamsburg, Virginia, native holds a bachelor’s degree in Biology and a master’s in Marine Sciences from the University of North Carolina at Chapel Hill. At the time of selection, she was pursuing a doctorate in geosciences. Cardman’s geobiology and geochemical cycling research focused on subsurface environments, from caves to deep sea sediments. Since completing initial training, Cardman has supported real-time station operations and lunar surface exploration planning. Follow @zenanaut on X and @zenanaut on Instagram.

      This will be Fincke’s fourth trip to the space station, having logged 382 days in space and nine spacewalks during Expedition 9 in 2004, Expedition 18 in 2008, and STS-134 in 2011, the final flight of space shuttle Endeavour. Throughout the past decade, Fincke has applied his expertise to NASA’s Commercial Crew Program, advancing the development and testing of the SpaceX Dragon spacecraft and Boeing Starliner spacecraft toward operational certification. The Emsworth, Pennsylvania, native is a graduate of the United States Air Force Test Pilot School and holds bachelors’ degrees from the Massachusetts Institute of Technology, Cambridge, in both aeronautics and astronautics, as well as Earth, atmospheric and planetary sciences. He also has a master’s degree in aeronautics and astronautics from Stanford University in California. Fincke is a retired U.S. Air Force colonel with more than 2,000 flight hours in over 30 different aircraft. Follow @AstroIronMike on X and Instagram.

      With 142 days in space, this will be Yui’s second trip to the space station. After his selection as a JAXA astronaut in 2009, Yui flew as a flight engineer for Expedition 44/45 and became the first Japanese astronaut to capture JAXA’s H-II Transfer Vehicle using the station’s robotic arm. In addition to constructing a new experimental environment aboard Kibo, he conducted a total of 21 experiments for JAXA. In November 2016, Yui was assigned as chief of the JAXA Astronaut Group. He graduated from the School of Science and Engineering at the National Defense Academy of Japan in 1992. He later joined the Air Self-Defense Force at the Japan Defense Agency (currently the Ministry of Defense). In 2008, Yui joined the Air Staff Office at the Ministry of Defense as a lieutenant colonel. Follow @astro_kimiya on X.

      The Crew-11 mission also will be Platonov’s first spaceflight. Before his selection as a cosmonaut in 2018, Platonov earned a degree in engineering from Krasnodar Air Force Academy in aircraft operations and air traffic management. He also earned a bachelor’s degree in state and municipal management in 2016 from the Far Eastern Federal University in Vladivostok, Russia. Assigned as a test cosmonaut in 2021, he has experience in piloting aircraft, zero gravity training, scuba diving, and wilderness survival.
      For more information about the mission, visit:
      https://www.nasa.gov/commercialcrew
      -end-
      Claire O’Shea / Joshua Finch
      Headquarters, Washington
      202-358-1100
      claire.a.o’shea@nasa.gov / joshua.a.finch@nasa.gov
      Sandra Jones / Joseph Zakrzewski
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov / Joseph.a.zakrzewski@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Humans in Space ISS Research Opportunities For International Participants to Get Involved View the full article
    • By NASA
      Credit: NASA NASA has awarded a contract to MacLean Engineering & Applied Technologies, LLC of Houston to provide simulation and advanced software services to the agency.
      The Simulation and Advanced Software Services II (SASS II) contract includes services from Oct. 1, 2025, through Sept. 30, 2030, with a maximum potential value not to exceed $150 million. The contract is a single award, indefinite-delivery/indefinite-quality contract with the capability to issue cost-plus-fixed-fee task orders and firm-fixed-price task orders.
      Under the five-year SASS II contract, the awardee is tasked to provide simulation and software services for space-based vehicle models and robotic manipulator systems; human biomechanical representations for analysis and development of countermeasures devices; guidance, navigation, and control of space-based vehicles for all flight phases; and space-based vehicle on-board computer systems simulations of flight software systems. Responsibilities also include astronomical object surface interaction simulation of space-based vehicles, graphics support for simulation visualization and engineering analysis, and ground-based and onboarding systems to support human-in-the-loop training.
      Major subcontractors include Tietronix Software Inc. in Houston and VEDO Systems, LLC, in League City, Texas.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov/
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov
      Chelsey Ballarte
      Johnson Space Center, Houston
      281-483-5111
      Chelsey.n.ballarte@nasa.gov
      Share
      Details
      Last Updated Jul 02, 2025 LocationNASA Headquarters Related Terms
      Technology Johnson Space Center View the full article
    • By NASA
      5 min read
      How NASA’s SPHEREx Mission Will Share Its All-Sky Map With the World 
      NASA’s SPHEREx mission will map the entire sky in 102 different wavelengths, or colors, of infrared light. This image of the Vela Molecular Ridge was captured by SPHEREx and is part of the mission’s first ever public data release. The yellow patch on the right side of the image is a cloud of interstellar gas and dust that glows in some infrared colors due to radiation from nearby stars. NASA/JPL-Caltech NASA’s newest astrophysics space telescope launched in March on a mission to create an all-sky map of the universe. Now settled into low-Earth orbit, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer) has begun delivering its sky survey data to a public archive on a weekly basis, allowing anyone to use the data to probe the secrets of the cosmos.
      “Because we’re looking at everything in the whole sky, almost every area of astronomy can be addressed by SPHEREx data,” said Rachel Akeson, the lead for the SPHEREx Science Data Center at IPAC. IPAC is a science and data center for astrophysics and planetary science at Caltech in Pasadena, California.
      Almost every area of astronomy can be addressed by SPHEREx data.
      Rachel Akeson
      SPHEREx Science Data Center Lead
      Other missions, like NASA’s now-retired WISE (Wide-field Infrared Survey Explorer), have also mapped the entire sky. SPHEREx builds on this legacy by observing in 102 infrared wavelengths, compared to WISE’s four wavelength bands.
      By putting the many wavelength bands of SPHEREx data together, scientists can identify the signatures of specific molecules with a technique known as spectroscopy. The mission’s science team will use this method to study the distribution of frozen water and organic molecules — the “building blocks of life” — in the Milky Way.
      This animation shows how NASA’s SPHEREx observatory will map the entire sky — a process it will complete four times over its two-year mission. The telescope will observe every point in the sky in 102 different infrared wavelengths, more than any other all-sky survey. SPHEREx’s openly available data will enable a wide variety of astronomical studies. Credit: NASA/JPL-Caltech The SPHEREx science team will also use the mission’s data to study the physics that drove the universe’s expansion following the big bang, and to measure the amount of light emitted by all the galaxies in the universe over time. Releasing SPHEREx data in a public archive encourages far more astronomical studies than the team could do on their own.
      “By making the data public, we enable the whole astronomy community to use SPHEREx data to work on all these other areas of science,” Akeson said.
      NASA is committed to the sharing of scientific data, promoting transparency and efficiency in scientific research. In line with this commitment, data from SPHEREx appears in the public archive within 60 days after the telescope collects each observation. The short delay allows the SPHEREx team to process the raw data to remove or flag artifacts, account for detector effects, and align the images to the correct astronomical coordinates.
      The team publishes the procedures they used to process the data alongside the actual data products. “We want enough information in those files that people can do their own research,” Akeson said.
      One of the early test images captured by NASA’s SPHEREx mission in April 2025. This image shows a section of sky in one infrared wavelength, or color, that is invisible to the human eye but is represented here in a visible color. This particular wavelength (3.29 microns) reveals a cloud of dust made of a molecule similar to soot or smoke. NASA/JPL-Caltech This image from NASA’s SPHEREx shows the same region of space in a different infrared wavelength (0.98 microns), once again represented by a color that is visible to the human eye. The dust cloud has vanished because the molecules that make up the dust — polycyclic aromatic hydrocarbons — do not radiate light in this color. NASA/JPL-Caltech




      During its two-year prime mission, SPHEREx will survey the entire sky twice a year, creating four all-sky maps. After the mission reaches the one-year mark, the team plans to release a map of the whole sky at all 102 wavelengths.
      In addition to the science enabled by SPHEREx itself, the telescope unlocks an even greater range of astronomical studies when paired with other missions. Data from SPHEREx can be used to identify interesting targets for further study by NASA’s James Webb Space Telescope, refine exoplanet parameters collected from NASA’s TESS (Transiting Exoplanet Survey Satellite), and study the properties of dark matter and dark energy along with ESA’s (European Space Agency’s) Euclid mission and NASA’s upcoming Nancy Grace Roman Space Telescope.
      The SPHEREx mission’s all-sky survey will complement data from other NASA space telescopes. SPHEREx is illustrated second from the right. The other telescope illustrations are, from left to right: the Hubble Space Telescope, the retired Spitzer Space Telescope, the retired WISE/NEOWISE mission, the James Webb Space Telescope, and the upcoming Nancy Grace Roman Space Telescope. NASA/JPL-Caltech The IPAC archive that hosts SPHEREx data, IRSA (NASA/IPAC Infrared Science Archive), also hosts pointed observations and all-sky maps at a variety of wavelengths from previous missions. The large amount of data available through IRSA gives users a comprehensive view of the astronomical objects they want to study.
      “SPHEREx is part of the entire legacy of NASA space surveys,” said IRSA Science Lead Vandana Desai. “People are going to use the data in all kinds of ways that we can’t imagine.”
      NASA’s Office of the Chief Science Data Officer leads open science efforts for the agency. Public sharing of scientific data, tools, research, and software maximizes the impact of NASA’s science missions. To learn more about NASA’s commitment to transparency and reproducibility of scientific research, visit science.nasa.gov/open-science. To get more stories about the impact of NASA’s science data delivered directly to your inbox, sign up for the NASA Open Science newsletter.
      By Lauren Leese
      Web Content Strategist for the Office of the Chief Science Data Officer 
      More About SPHEREx
      The SPHEREx mission is managed by NASA’s Jet Propulsion Laboratory for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters. BAE Systems in Boulder, Colorado, built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Caltech in Pasadena managed and integrated the instrument. The mission’s principal investigator is based at Caltech with a joint JPL appointment. Data will be processed and archived at IPAC at Caltech. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive. Caltech manages JPL for NASA.
      To learn more about SPHEREx, visit:
      https://nasa.gov/SPHEREx
      Media Contacts
      Calla Cofield
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Amanda Adams
      Office of the Chief Science Data Officer
      256-683-6661
      amanda.m.adams@nasa.gov
      Share








      Details
      Last Updated Jul 02, 2025 Related Terms
      Open Science Astrophysics Galaxies Jet Propulsion Laboratory SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) The Search for Life The Universe Explore More
      3 min read Discovery Alert: Flaring Star, Toasted Planet


      Article


      4 hours ago
      11 min read 3 Years of Science: 10 Cosmic Surprises from NASA’s Webb Telescope


      Article


      5 hours ago
      7 min read A New Alloy is Enabling Ultra-Stable Structures Needed for Exoplanet Discovery


      Article


      1 day ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Skywatching Skywatching Home What’s Up Meteor Showers Eclipses Daily Moon Guide More Tips & Guides Skywatching FAQ Night Sky Network A.M./P.M. Planet Watching, Plus the Eagle Constellation
      Mars shines in the evening, and is joined briefly by Mercury. Jupiter joins Venus as the month goes on. And all month, look for Aquila the eagle.
      Skywatching Highlights
      All Month – Planet Visibility:
      Venus: Shines brightly in the east each morning during the couple of hours before sunrise, with the Pleiades and bright stars Aldebaran and Capella. Mars: Sits in the west, about 20 degrees above the horizon as twilight fades. Sets a couple of hours after dark. Jupiter: Starts to become visible low in the east in the hour before sunrise after mid-month. You’ll notice it rises a bit higher each day through August, quickly approaching closer to Venus each morning. Mercury: Visible very low in the west (10 degrees or lower) the first week or so in July. Find it for a short time before it sets, beginning 30-45 minutes after sunset. Saturn: Rises around midnight and climbs to a point high in the south as dawn approaches. Daily Highlights:
      July 1 – 7 – Mercury is relatively bright and easy to spot without a telescope, beginning about 30-45 minutes after sunset for the first week or so of July. You will need an unobstructed view toward the horizon, and note that it sets within an hour after the Sun.
      July 21 & 22 – Moon, Venus, & Jupiter – Look toward the east this morning to find a lovely scene, with the crescent Moon and Venus, plus several bright stars. And if you have a clear view toward the horizon, Jupiter is there too, low in the sky.
      July 28 – Moon & Mars – The crescent Moon appears right next to Mars this evening after sunset.
      All month – Constellation: Aquila – The Eagle constellation, Aquila, appears in the eastern part of the sky during the first half of the night. Its brightest star, Altair, is the southernmost star in the Summer Triangle, which is an easy-to-locate star pattern in Northern Hemisphere summer skies.
      Transcript
      What’s Up for July? Mars shines in the evening sky, sixty years after its first close-up,
      July Planet Viewing
      Venus brightens your mornings, and the eagle soars overhead.
      First up, Mercury is visible for a brief time following sunset for the first week of July. Look for it very low in the west 30 to 45 minutes after sundown. It sets within the hour after that, so be on the ball if you want to catch it!
      Mars is visible for the first hour or two after it gets dark. You’ll find it sinking lower in the sky each day and looking a bit dimmer over the course of the month, as our two planets’ orbits carry them farther apart. The crescent Moon appears right next to Mars on the 28th.
      Sky chart showing Mercury and Mars in the western sky following sunset in early July. NASA/JPL-Caltech July is the 60th anniversary of the first successful flyby of Mars, by NASA’s Mariner 4 spacecraft in 1965. Mariner 4 sent back the first photos of another planet from deep space, along with the discovery that the Red Planet has only a very thin, cold atmosphere.
      Next, Saturn is rising late in the evening, and by dawn it’s high overhead to the south.
      Looking to the morning sky, Venus shines brightly all month. You’ll find it in the east during the couple of hours before sunrise, with the Pleiades and bright stars Aldebaran and Capella. And as the month goes on, Jupiter makes its morning sky debut,
      Sky chart showing Venus in the morning sky in July. NASA/JPL-Caltech rising in the hour before sunrise and appearing a little higher each day.
      By the end of the month, early risers will have the two brightest planets there greeting them each morning. They’re headed for a super-close meetup in mid-August, and the pair will be a fixture of the a.m. sky through late this year. Look for them together with the crescent moon on the 21st and 22nd.
      Aquila, The Eagle
      From July and into August, is a great time to observe the constellation Aquila, the eagle.
      Sky chart showing the shape and orientation of the constellation Aquila in the July evening sky. Aquila’s brightest star, Altair, is part of the Summer Triangle star pattern. NASA/JPL-Caltech This time of year, it soars high into the sky in the first half of the night. Aquila represents the mythical eagle that was a powerful servant and messenger of the Greek god Zeus. The eagle carried his lightning bolts and was a symbol of his power as king of the gods.
      To find Aquila in the sky, start by locating its brightest star, Altair. It’s one the three bright stars in the Summer Triangle, which is super easy to pick out during summer months in the Northern Hemisphere. Altair is the second brightest of the three, and sits at the southernmost corner of the triangle.
      The other stars in Aquila aren’t as bright as Altair, which can make observing the constellation challenging if you live in an area with a lot of light pollution. It’s easier, though, if you know how the eagle is oriented on the sky. Imagine it’s flying toward the north with its wings spread wide, its right wing pointed toward Vega. If you can find Altair, and Aquila’s next brightest star, you can usually trace out the rest of the spread-eagle shape from there. ​​The second half of July is the best time of the month to observe Aquila, as the Moon doesn’t rise until later then, making it easier to pick out the constellation’s fainter stars.
      Observing the constellation Aquila makes for a worthy challenge in the July night sky. And once you’re familiar with its shape, it’s hard not to see the mythical eagle soaring overhead among the summertime stars.
      Here are the phases of the Moon for July.
      The phases of the Moon for July 2025. NASA/JPL-Caltech You can stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      Explore Webb Webb News Latest News Latest Images Webb’s Blog Awards X (offsite – login reqd) Instagram (offsite – login reqd) Facebook (offsite- login reqd) Youtube (offsite) Overview About Who is James Webb? Fact Sheet Impacts+Benefits FAQ Science Overview and Goals Early Universe Galaxies Over Time Star Lifecycle Other Worlds Observatory Overview Launch Deployment Orbit Mirrors Sunshield Instrument: NIRCam Instrument: MIRI Instrument: NIRSpec Instrument: FGS/NIRISS Optical Telescope Element Backplane Spacecraft Bus Instrument Module Multimedia About Webb Images Images Videos What is Webb Observing? 3d Webb in 3d Solar System Podcasts Webb Image Sonifications Webb’s First Images Team International Team People Of Webb More For the Media For Scientists For Educators For Fun/Learning Since July 2022, NASA’s James Webb Space Telescope has been unwaveringly focused on our universe. With its unprecedented power to detect and analyze otherwise invisible infrared light, Webb is making observations that were once impossible, changing our view of the cosmos from the most distant galaxies to our own solar system.
      Webb was built with the promise of revolutionizing astronomy, of rewriting the textbooks. And by any measure, it has more than lived up to the hype — exceeding expectations to a degree that scientists had not dared imagine. Since science operations began, Webb has completed more than 860 scientific programs, with one-quarter of its time dedicated to imaging and three-quarters to spectroscopy. In just three years, it has collected nearly 550 terabytes of data, yielding more than 1,600 research papers, with intriguing results too numerous to list and a host of new questions to answer.
      Here are just a few noteworthy examples.
      1. The universe evolved significantly faster than we previously thought.
      Webb was specifically designed to observe “cosmic dawn,” a time during the first billion years of the universe when the first stars and galaxies were forming. What we expected to see were a few faint galaxies, hints of what would become the galaxies we see nearby.
      Instead, Webb has revealed surprisingly bright galaxies that developed within 300 million years of the big bang; galaxies with black holes that seem far too massive for their age; and an infant Milky Way-type galaxy that existed when the universe was just 600 million years old. Webb has observed galaxies that already “turned off” and stopped forming stars within a billion years of the big bang, as well as those that developed quickly into modern-looking “grand design” spirals within 1.5 billion years.
      Hundreds of millions of years might not seem quick for a growth spurt, but keep in mind that the universe formed in the big bang roughly 13.8 billion years ago. If you were to cram all of cosmic time into one year, the most distant of these galaxies would have matured within the first couple of weeks, rapidly forming multiple generations of stars and enriching the universe with the elements we see today.
      Image: JADES deep field
      A near-infrared image from NASA’s James Webb Space Telescope shows a region known as the JADES Deep Field. Tens of thousands of galaxies are visible in this tiny patch of sky, including Little Red Dots and hundreds of galaxies that existed more than 13.2 billion years ago, when the universe was less than 600 million years old. Webb also spotted roughly 80 ancient supernovae, many of which exploded when the universe was less than 2 billion years old. This is ten times more supernovae than had ever been discovered before in the early universe. Comparing these supernovae from the distant past with those in the more recent, nearby universe helps us understand how stars in these early times formed, lived, and died, seeding space with the elements for new generations of stars and their planets. NASA, ESA, CSA, STScI, JADES Collaboration 2. Deep space is scattered with enigmatic “Little Red Dots.”
      Webb has revealed a new type of galaxy: a distant population of mysteriously compact, bright, red galaxies dubbed Little Red Dots. What makes Little Red Dots so bright and so red? Are they lit up by dense groupings of unusually bright stars or by gas spiraling into a supermassive black hole, or both? And whatever happened to them? Little Red Dots seem to have appeared in the universe around 600 million years after the big bang (13.2 billion years ago), and rapidly declined in number less than a billion years later. Did they evolve into something else? If so, how? Webb is probing Little Red Dots in more detail to answer these questions.
      3. Pulsating stars and a triply lensed supernova are further evidence that the “Hubble Tension” is real.
      How fast is the universe expanding? It’s hard to say because different ways of calculating the current expansion rate yield different results — a dilemma known as the Hubble Tension. Are these differences just a result of measurement errors, or is there something weird going on in the universe? So far, Webb data indicates that the Hubble Tension is not caused by measurement errors. Webb was able to distinguish pulsating stars from nearby stars in a crowded field, ensuring that the measurements weren’t contaminated by extra light. Webb also discovered a distant, gravitationally lensed supernova whose image appears in three different locations and at three different times during its explosion. Calculating the expansion rate based on the brightness of the supernova at these three different times provides an independent check on measurements made using other techniques. Until the matter of the Hubble Tension is settled, Webb will continue measuring different objects and exploring new methods.
      4. Webb has found surprisingly rich and varied atmospheres on gas giants orbiting distant stars.
      While NASA’s Hubble Space Telescope made the first detection of gases in the atmosphere of a gas giant exoplanet (a planet outside our solar system), Webb has taken studies to an entirely new level. Webb has revealed a rich cocktail of chemicals, including hydrogen sulfide, ammonia, carbon dioxide, methane, and sulfur dioxide — none of which had been clearly detected in an atmosphere outside our solar system before. Webb has also been able to examine exotic climates of gas giants as never before, detecting flakes of silica “snow” in the skies of the puffy, searing-hot gas giant WASP-17 b, for example, and measuring differences in temperature and cloud cover between the permanent morning and evening skies of WASP-39 b.
      Image: Spectrum of WASP-107 b
      A transmission spectrum of the “warm Neptune” exoplanet WASP-107 b captured by NASA’s Hubble and Webb space telescopes, shows clear evidence for water, carbon dioxide, carbon monoxide, methane, sulfur dioxide, and ammonia in the planet’s atmosphere. These measurements allowed researchers to estimate the interior temperature and mass of the core of the planet, as well as understand the chemistry and dynamics of the atmosphere. NASA, ESA, CSA, Ralf Crawford (STScI) 5. A rocky planet 40 light-years from Earth may have an atmosphere fed by gas bubbling up from its lava-covered surface.
      Detecting, let alone analyzing, a thin layer of gas surrounding a small rocky planet is no easy feat, but Webb’s extraordinary ability to measure extremely subtle changes in the brightness of infrared light makes it possible. So far, Webb has been able to rule out significant atmosphere on a number of rocky planets, and has found tantalizing signs of carbon monoxide or carbon dioxide on 55 Cancri e, a lava world that orbits a Sun-like star. With findings like these, Webb is laying the groundwork for NASA’s future Habitable Worlds Observatory, which will be the first mission purpose-built to directly image and search for life on Earth-like planets around Sun-like stars.
      6. Webb exposes the skeletal structure of nearby spiral galaxies in mesmerizing detail.
      We already knew that galaxies are collections of stars, planets, dust, gas, dark matter, and black holes: cosmic cities where stars form, live, die, and are recycled into the next generation. But we had never been able to see the structure of a galaxy and the interactions between stars and their environment in such detail. Webb’s infrared vision reveals filaments of dust that trace the spiral arms, old star clusters that make up galactic cores, newly forming stars still encased in dense cocoons of glowing dust and gas, and clusters of hot young stars carving enormous cavities in the dust. It also elucidates how stellar winds and explosions actively reshape their galactic homes.
      Image: PHANGS Phantom Galaxy (M74/NGC 628)
      A near- to mid-infrared image from NASA’s James Webb Space Telescope highlights details in the complex structure of a nearby galaxy that are invisible to other telescopes. The image of NGC 628, also known as the Phantom Galaxy, shows spiral arms with lanes of warm dust (represented in red), knots of glowing gas (orange-yellow), and giant bubbles (black) carved by hot, young stars. The dust-free core of the galaxy is filled with older, cooler stars (blue). NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS team 7. It can be hard to tell the difference between a brown dwarf and a rogue planet.
      Brown dwarfs form like stars, but are not dense or hot enough to fuse hydrogen in their cores like stars do. Rogue planets form like other planets, but have been ejected from their system and no longer orbit a star. Webb has spotted hundreds of brown-dwarf-like objects in the Milky Way, and has even detected some candidates in a neighboring galaxy. But some of these objects are so small — just a few times the mass of Jupiter — that it is hard to figure out how they formed. Are they free-floating gas giant planets instead? What is the least amount of material needed to form a brown dwarf or a star? We’re not sure yet, but thanks to three years of Webb observations, we now know there is a continuum of objects from planets to brown dwarfs to stars.
      8. Some planets might be able to survive the death of their star.
      When a star like our Sun dies, it swells up to form a red giant large enough to engulf nearby planets. It then sheds its outer layers, leaving behind a super-hot core known as a white dwarf. Is there a safe distance that planets can survive this process? Webb might have found some planets orbiting white dwarfs. If these candidates are confirmed, it would mean that it is possible for planets to survive the death of their star, remaining in orbit around the slowly cooling stellar ember.
      9. Saturn’s water supply is fed by a giant fountain of vapor spewing from Enceladus.
      Among the icy “ocean worlds” of our solar system, Saturn’s moon Enceladus might be the most intriguing. NASA’s Cassini mission first detected water plumes coming out of its southern pole. But only Webb could reveal the plume’s true scale as a vast cloud spanning more than 6,000 miles, about 20 times wider than Enceladus itself. This water spreads out into a donut-shaped torus encircling Saturn beyond the rings that are visible in backyard telescopes. While a fraction of the water stays in that ring, the majority of it spreads throughout the Saturnian system, even raining down onto the planet itself. Webb’s unique observations of rings, auroras, clouds, winds, ices, gases, and other materials and phenomena in the solar system are helping us better understand what our cosmic neighborhood is made of and how it has changed over time.
      Video: Water plume and torus from Enceladus
      A combination of images and spectra captured by NASA’s James Webb Space Telescope show a giant plume of water jetting out from the south pole of Saturn’s moon Enceladus, creating a donut-shaped ring of water around the planet.
      Credit: NASA, ESA, CSA, G. Villanueva (NASA’s Goddard Space Flight Center), A. Pagan (STScI), L. Hustak (STScI) 10. Webb can size up asteroids that may be headed for Earth.
      In 2024 astronomers discovered an asteroid that, based on preliminary calculations, had a chance of hitting Earth. Such potentially hazardous asteroids become an immediate focus of attention, and Webb was uniquely able to measure the object, which turned out to be the size of a 15-story building. While this particular asteroid is no longer considered a threat to Earth, the study demonstrated Webb’s ability to assess the hazard.
      Webb also provided support for NASA’s Double Asteroid Redirection Test (DART) mission, which deliberately smashed into the Didymos binary asteroid system, showing that a planned impact could deflect an asteroid on a collision course with Earth. Both Webb and Hubble observed the impact, serving witness to the resulting spray of material that was ejected. Webb’s spectroscopic observations of the system confirmed that the composition of the asteroids is probably typical of those that could threaten Earth.
      —-
      In just three years of operations, Webb has brought the distant universe into focus, revealing unexpectedly bright and numerous galaxies. It has unveiled new stars in their dusty cocoons, remains of exploded stars, and skeletons of entire galaxies. It has studied weather on gas giants, and hunted for atmospheres on rocky planets. And it has provided new insights into the residents of our own solar system.
      But this is only the beginning. Engineers estimate that Webb has enough fuel to continue observing for at least 20 more years, giving us the opportunity to answer additional questions, pursue new mysteries, and put together more pieces of the cosmic puzzle.
      For example: What were the very first stars like? Did stars form differently in the early universe? Do we even know how galaxies form? How do stars, dust, and supermassive black holes affect each other? What can merging galaxy clusters tell us about the nature of dark matter? How do collisions, bursts of stellar radiation, and migration of icy pebbles affect planet-forming disks? Can atmospheres survive on rocky worlds orbiting active red dwarf stars? Is Uranus’s moon Ariel an ocean world?
      As with any scientific endeavor, every answer raises more questions, and Webb has shown that its investigative power is unmatched. Demand for observing time on Webb is at an all-time high, greater than any other telescope in history, on the ground or in space. What new findings await?
      By Dr. Macarena Garcia Marin and Margaret W. Carruthers, Space Telescope Science Institute, Baltimore, Maryland
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Galaxies



      Exoplanets



      Universe


      Share








      Details
      Last Updated Jul 02, 2025 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      James Webb Space Telescope (JWST) Astrophysics Black Holes Brown Dwarfs Exoplanet Science Exoplanets Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Nebulae Science & Research Star-forming Nebulae Stars Studying Exoplanets The Universe View the full article
  • Check out these Videos

×
×
  • Create New...