Jump to content

Remarks by Chief of Space Operations Gen Chance Saltzman at the Space Systems Command Change of Command Ceremony


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA’s SpaceX Crew-9 Scientific Mission Aboard the Space Station
    • By NASA
      6 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Ahead of launch, NASA’s SPHEREx is enclosed in a payload fairing at Vandenberg Space Force Base on March 2. The observatory is stacked atop the four small satellites that make up the agency’s PUNCH mission.NASA/BAE Systems/Benjamin Fry NASA’s latest space observatory is targeting a March 8 liftoff, and the agency’s PUNCH heliophysics mission is sharing a ride. Here’s what to expect during launch and beyond.
      In a little over a day, NASA’s SPHEREx space telescope is slated to launch from Vandenberg Space Force Base in California aboard a SpaceX Falcon 9 rocket. The observatory will map the entire celestial sky four times in two years, creating a 3D map of over 450 million galaxies. In doing so, the mission will provide insight into what happened a fraction of a second after the big bang, in addition to searching interstellar dust for the ingredients of life, and measuring the collective glow from all galaxies, including ones that other telescopes cannot easily detect.
      The launch window opens at 7:09:56 p.m. PST on Saturday, March 8, with a target launch time of 7:10:12 p.m. PST. Additional opportunities occur in the following days.
      Launching together into low Earth orbit, NASA’s SPHEREx and PUNCH missions will study a range of topics from the early universe to our nearest star. NASA/JPL-Caltech Sharing a ride with SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer) is NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere), a constellation of four small satellites that will map the region where the Sun’s outer atmosphere, the corona, transitions to the solar wind, the constant outflow of material from the Sun.
      For the latest on PUNCH, visit the blog:
      https://blogs.nasa.gov/punch
      What SPHEREx Will Do
      The SPHEREx observatory detects infrared light — wavelengths slightly longer than what the human eye can see that are emitted by warm objects including stars and galaxies. Using a technique called spectroscopy, SPHEREx will separate the infrared light emitted by hundreds of millions of stars and galaxies into 102 individual colors — the same way a prism splits sunlight into a rainbow. Observing those colors separately can reveal various properties of objects, including their composition and, in the case of galaxies, their distance from Earth. No other all-sky survey has performed spectroscopy in so many wavelengths and on so many sources.
      The mission’s all-sky spectroscopic map can be used for a wide variety of science investigations. In particular, SPHEREx has its sights set on a phenomenon called inflation, which caused the universe to expand a trillion-trillionfold in a fraction of a second after the big bang. This nearly instantaneous event left an impression on the large-scale distribution of matter in the universe. The mission will map the distribution of more than 450 million galaxies to improve scientists’ understanding of the physics behind this extreme cosmic event.
      SPHEREx Fact Sheet Additionally, the space telescope will measure the total glow from all galaxies, including ones that other telescopes cannot easily detect. When combined with studies of individual galaxies by other telescopes, the measurement of this overall glow will provide a more complete picture of how the light output from galaxies has changed over the universe’s history.
      At the same time, spectroscopy will allow SPHEREx to seek out frozen water, carbon dioxide, and other key ingredients for life. The mission will provide an unprecedented survey of the location and abundance of these icy compounds in our galaxy, giving researchers better insight into the interstellar chemistry that set the stage for life.
      Launch Sequence
      But, first, SPHEREx has to get into space. Prelaunch testing is complete on the spacecraft’s various systems, and it’s been encapsulated in the protective nose cone, or payload fairing, atop the SpaceX Falcon 9 rocket that will get it there from Vandenberg’s Space Launch Complex-4 East.
      NASA’s SPHEREx mission will lift off from Space Launch Complex-4 East at Vanden-berg Space Force Base in California aboard a SpaceX Falcon 9 rocket, just as the Sur-face Water and Ocean Topography mission, shown here, did in December 2022. NASA/Keegan Barber A little more than two minutes after the Falcon 9 lifts off, the main engine will cut off. Shortly after, the rocket’s first and second stages will separate, followed by second-stage engine start. The reusable first stage will then begin its automated boost-back burn to the launch site for a propulsive landing.
      Once the rocket is out of Earth’s atmosphere, about three minutes after launch, the payload fairing that surrounds the spacecraft will separate into two halves and fall back to Earth, landing in the ocean. Roughly 41 minutes after launch, SPHEREx will separate from the rocket and start its internal systems so that it can point its solar panel to the Sun. After this happens, the spacecraft can establish communications with ground controllers at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for the agency. This milestone, called acquisition of signal, should happen about three minutes after separation.
      About 52 minutes after liftoff, PUNCH should separate as well from the Falcon 9.
      Both spacecraft will be in a Sun-synchronous low Earth orbit, where their position relative to the Sun remains the same throughout the year. Each approximately 98-minute orbit allows the SPHEREx telescope to view a 360-degree strip of the celestial sky. As Earth’s orbit around the Sun progresses, that strip slowly advances, enabling SPHEREx to image almost the entire sky in six months. For PUNCH, the orbit provides a clear view in all directions around the Sun.
      About four days after launch, SPHEREx should eject the protective cover over its telescope lens. The observatory will begin science operations a little over a month after launch, once the telescope has cooled down to its operating temperature and the mission team has completed a series of checks.
      NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, is providing the launch service for SPHEREx and PUNCH.
      For more information about the SPHEREx mission, visit:
      https://www.jpl.nasa.gov/missions/spherex
      More About SPHEREx
      SPHEREx is managed by NASA JPL for the agency’s Astrophysics Division within the Science Mission Directorate at NASA Headquarters in Washington. BAE Systems (formerly Ball Aerospace) built the telescope and the spacecraft bus. The science analysis of the SPHEREx data will be conducted by a team of scientists located at 10 institutions in the U.S., two in South Korea, and one in Taiwan. Data will be processed and archived at IPAC at Caltech, which manages JPL for NASA. The mission’s principal investigator is based at Caltech with a joint JPL appointment. The SPHEREx dataset will be publicly available at the NASA-IPAC Infrared Science Archive.
      Get the SPHEREx Press Kit How to Watch March 8 SPHEREx Launch 6 Things to Know About SPHEREx Why NASA’s SPHEREx Will Make ‘Most Colorful’ Cosmic Map Ever NASA’s SPHEREX Space Telescope Will Seek Life’s Ingredients News Media Contacts
      Karen Fox / Alise Fisher 
      NASA Headquarters, Washington
      202-358-1600 / 202-358-2546
      karen.c.fox@nasa.gov / alise.m.fisher@nasa.gov
      Calla Cofield, SPHEREx
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-808-2469
      calla.e.cofield@jpl.nasa.gov
      Sarah Frazier, PUNCH
      Goddard Space Flight Center, Greenbelt, Md.
      202-853-7191
      sarah.frazier@nasa.gov
      2025-033
      Share
      Details
      Last Updated Mar 07, 2025 Related Terms
      SPHEREx (Spectro-Photometer for the History of the Universe and Ices Explorer) Astrophysics Exoplanets Galaxies Heliophysics Jet Propulsion Laboratory Polarimeter to Unify the Corona and Heliosphere (PUNCH) The Big Bang The Milky Way The Search for Life The Sun The Universe Explore More
      5 min read NASA Webb Wows With Incredible Detail in Actively Forming Star System
      High-resolution near-infrared light captured by NASA’s James Webb Space Telescope shows extraordinary new detail and…
      Article 6 hours ago 2 min read Hubble Spies a Spiral in the Water Snake
      This NASA/ESA Hubble Space Telescope image of a vibrant spiral galaxy called NGC 5042 resides…
      Article 8 hours ago 5 min read NASA Turns Off 2 Voyager Science Instruments to Extend Mission
      Article 2 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      How to Know You’re in Space: Zero Gravity Indicators
    • By European Space Agency
      Image: The Copernicus Sentinel-2 mission takes us over Albania’s capital Tirana and its surroundings. View the full article
    • By NASA
      NASA’s SpaceX Crew-9 mission with agency astronauts Nick Hague, Butch Wilmore, and Suni Williams, and Roscosmos cosmonaut Aleksandr Gorbunov is preparing to return to Earth following their science mission aboard the International Space Station. Hague, Williams, and Wilmore completed more than 900 hours of research between over 150 unique scientific experiments and technology demonstrations during their stay aboard the orbiting laboratory.
      Here’s a look at some scientific milestones accomplished during their journey:
      Mighty microalgae
      NASA astronaut Nick Hague processes samples for Arthrospira C, an investigation from ESA (European Space Agency) that transplants and grows Arthrospiramicro-algae eboard the International Space Station. These organisms conduct photosynthesis and could be used to convert carbon dioxide exhaled by crew members into oxygen, helping maintain a safe atmosphere inside spacecraft. Arthrospira also could provide fresh food on long-duration space missions.
      NASA Improving astronaut exercise
      Researchers are testing the European Enhanced Exploration Exercise Device (E4D), a modular device that combines cycling, rowing, and resistance exercises to help keep crews healthy on long-duration missions. A single, small device effective at countering bone and muscle loss and improving cardiovascular health is needed for use on future spacecraft such as the Gateway lunar space station. NASA astronaut Butch Wilmore works on installing the device aboard the International Space Station ahead of its evaluation.
      NASA Watering the garden
      This red romaine lettuce growing in the International Space Station’s Advanced Plant Habitat is part of Plant Habitat-07, a study of how different moisture levels affect the microbial communities in plants and water. Results could show how less-than-ideal conditions affect plant growth and help scientists design systems to produce safe and nutritious food for crew members on future space journeys.
      NASA Packing it in
      Packed bed reactors are systems that “pack” materials such as pellets or beads inside a structure to increase contact between any liquids and gasses flowing through it. NASA astronaut Suni Williams installs hardware for the Packed Bed Reactor Experiment: Water Recovery Series (PBRE-WRS) investigation, which examines how gravity affects these systems aboard the International Space Station. Results could help scientists design better reactors for water recovery, thermal management, fuel cells, and other applications.
      NASA Fueling the flames
      During the Residence Time Driven Flame Spread (SOFIE-RTDFS) investigation at the International Space Station, this sheet of clear acrylic plastic burns at higher oxygen levels and half the standard pressure of Earth’s atmosphere. From left to right, the image sequence shows a side and top view of the fuel and the oxygen slowly diffusing into the flame. Studying the spread of flames in microgravity could help improve safety on future missions.
      NASA Monitoring microbes in space
      During a recent spacewalk, NASA astronaut Butch Wilmore swabbed the exterior of the International Space Station for ISS External Microorganisms, an investigation exploring whether microorganisms leave the spacecraft through its vents and, if so, which ones survive. Humans carry microorganisms along with them wherever they go, and this investigation could help scientists take steps to limit microbial spread to places like the Moon and Mars.
      NASA A hearty workout
      NASA astronaut Nick Hague exercises on the International Space Station’s Advanced Resistive Exercise Device while wearing the Bio-Monitor vest and headband. This set of garments contains sensors that unobtrusively collect data such as heart rate, breathing rate, blood pressure, and temperature. The data supports studies on human health, including Vascular Aging, a CSA (Canadian Space Agency) investigation that monitors cardiovascular function in space.
      NASA On-demand medical devices
      NASA astronaut Butch Wilmore works with hardware for InSPA Auxilium Bioprinter, a study that tests 3D printing of an implantable medical device that could facilitate recovery from peripheral nerve damage, a type of injury that can cause sensory and motor issues. In microgravity, this manufacturing technique produces higher-quality devices that may perform better, benefitting crew members on future long-duration missions and patients back home.
      NASA Could wood be better
      A deployer attached to the International Space Station’s Kibo laboratory module launches LignoSat into space. JAXA (Japan Aerospace Exploration Agency) developed the satellite to test using wood as a more sustainable alternative to conventional satellite materials. Researchers previously exposed different woods to space and chose magnolia as the best option for the study, including sensors to evaluate the wood’s strain and its response to temperature and radiation. Researchers also are monitoring whether Earth’s geomagnetic field interferes with the satellite’s data transmission.
      NASA Making microbes in space
      NASA astronaut Suni Williams poses with bacteria and yeast samples for Rhodium Biomanufacturing 03, part of an ongoing examination of microgravity’s effects on biomanufacturing engineered bacteria and yeast aboard the International Space Station. Microgravity causes changes in microbial cell growth, cell structure, and metabolic activity that can affect biomanufacturing processes. This investigation could clarify the extent of these effects and advance the use of microbes to make food, pharmaceuticals, and other products in space, reducing the cost of launching equipment and consumables from Earth.
      NASA A NICER spacewalk
      The International Space Station’s Neutron star Interior Composition Explorer, or NICER, studies neutron stars, the glowing cinders left behind when massive stars explode as supernovas. NASA astronaut Nick Hague installs patches during a spacewalk to repair damage to thermal shields that block out sunlight while allowing X-rays to pass through the instrument. NICER continues to generate trailblazing astrophysics discoveries reported in hundreds of scientific papers.
      NASA Earth from every angle
      From inside the International Space Station’s cupola, NASA astronaut Butch Wilmore photographs landmarks on Earth approximately 260 miles (418 kilometers) below. Crew members have taken millions of images of Earth from the space station for Crew Earth Observations, creating one of the longest-running records of how our planet changes over time. These images support a variety of research, including studies of phenomena such as flooding and fires, atmospheric processes affected by volcanic eruptions, urban growth, and land use.
      NASA An out-of-this-world sunrise
      This photograph captures an orbital sunrise above the lights of Rio de Janeiro and Sao Paulo as the International Space Station orbits above Brazil. This image is one of the millions of photographs taken by crew members for Crew Earth Observations. These images teach us more about our home planet, and studies show that taking them improves the mental well-being of crew members. Many spend much of their free time pursuing shots that, like this one, are only possible from space.
      NASA Vital vitamins
      The BioNutrients investigation demonstrates technology to produce nutrients during long-duration space missions using engineered microbes like yeast. Food stored for long periods can lose vitamins and other nutrients, and this technology could provide a way to make supplements on demand. NASA astronaut Suni Williams prepares specially designed growth packets for the investigation aboard the International Space Station.
      NASA Blowing in the solar wind
      The International Space Station’s robotic hand, Dextre, attached to the Canadarm2 robotic arm, moves hardware into position for the COronal Diagnostic EXperiment, or CODEX. This investigation examines solar wind and how it forms using a solar coronagraph, which blocks out bright light from the Sun to reveal details in its outer atmosphere or corona. Results could help scientists understand the heating and acceleration of the solar wind and provide insight into the source of the energy that generates it.
      NASA Can you hear me now?
      Roscosmos cosmonaut Aleksandr Gorbunov conducts a hearing test in the relative quiet of the International Space Station’s Quest airlock. Crew members often serve as test subjects for research on how spaceflight affects hearing and vision, the immune and cardiovascular systems, and other bodily functions. This research supports the development of ways to prevent or mitigate these effects.
      NASA Exposing materials to space
      Euro Material Ageing, an ESA (European Space Agency) investigation, studies how certain materials age when exposed to the harsh space environment. Findings could advance design for spacecraft and satellites, including improved thermal control, as well as the development of sensors for research and industrial applications. NASA astronaut Suni Williams installs the experiment into the Nanoracks Bishop airlock for transport to the outside of the International Space Station.
      NASA Sending satellites into space
      NASA astronauts Don Pettit and Butch Wilmore remove a small satellite deployer from an airlock on the International Space Station. The deployer had released several CubeSats into Earth orbit including CySat-1, a remote sensor that measures soil moisture, and DORA, a receiver that could provide affordable and accurate communications among small spacecraft.
      NASA Robotic relocation
      The Responsive Engaging Arms for Captive Care and Handling demonstration (Astrobee REACCH) uses the International Space Station’s Astrobee robots to test technology for capturing objects of any geometry or material orbiting in space. This ability could enable satellite servicing and movement to maximize the lifespan of these tools and removal of space debris that could damage satellites providing services to the people of Earth. NASA astronaut Suni Williams checks out an Astrobee fitted with tentacle-like arms and adhesive pads for the investigation.
      NASA Arms to hold
      As part of a program called High school students United with NASA to Create Hardware, or HUNCH, NASA astronaut Nick Hague demonstrates the HUNCH Utility Bracket, a student-designed tool to hold and position cameras, tablets, and other equipment that astronauts use daily. Currently, crew members on the International Space Station use devices called Bogen Arms, which have experienced wear and tear and need to be replaced.
      NASA A Dragon in flight
      The SpaceX Dragon spacecraft fires its thrusters after undocking from the International Space Station as it flies 260 miles (418 kilometers) above the Pacific Ocean west of Hawaii. NASA’s commercial resupply services deliver critical scientific studies, hardware, and supplies to the station.
      NASA Keep Exploring Discover More Topics From NASA
      Space Station Research and Technology
      Humans In Space
      Station Benefits for Humanity
      International Space Station News
      View the full article
  • Check out these Videos

×
×
  • Create New...